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Strongly nonlinear wave dynamics of continuum phononic materials with periodic rough contacts
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We investigate strongly nonlinear wave dynamics of continuum phononic material with discrete nonlinearity.
The studied phononic material is a layered medium such that the elastic layers are connected through contact
interfaces with rough surfaces. These contacts exhibit nonlinearity by virtue of nonlinear mechanical deformation
of roughness under compressive loads and strong nonlinearity stemming from their inability to support tensile
loads. We study the evolution of propagating Gaussian tone bursts using time-domain finite element simulations.
The elastodynamic effects of nonlinearly coupled layers enable strongly nonlinear energy transfer in the
frequency domain by activating acoustic resonances of the layers. Further, the interplay of strong nonlinearity
and dispersion in our phononic material forms stegotons, which are solitarylike localized traveling waves. These
stegotons satisfy properties of solitary waves, yet exhibit local variations in their spatial profiles and amplitudes
due to the presence of layers. We also elucidate the role of rough contact nonlinearity on the interrelationship
between the stegoton parameters as well as on the generation of secondary stegotons from the collision of
counterpropagating stegotons. The phononic material exhibits strong acoustic attenuation at frequencies close
to (and fractional multiples of) layer resonances, whereas it causes energy propagation as stegotons for other
frequencies. This study sheds light on the wave phenomena achievable in continuum periodic media with local
nonlinearity, and opens opportunities for advanced wave control through discrete and local contact nonlinearity.
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I. INTRODUCTION

Nonlinearity is ubiquitous and exists in all disciplines of
physics, from optics [1], chemistry [2], biology [3], thermo-
dynamics [4], and material science [5] to cosmology [6], and
even at various length scales. These physical nonlinearities
have enabled advanced functionalities in engineering appli-
cations [7,8] and recently received great attention in enriching
the dynamics of periodic media [9,10]. Specific to periodic
mechanical systems, nonlinearity has enabled behaviors such
as amplitude-dependent dynamic response [11-13], energy
transfer between frequencies [14], nonreciprocity [15], supra-
transmission [16], and many more (see the review of [17]),
not possible with linear media. Yet, most of these nonlinear
studies were focused on pure discrete or continuum periodic
systems. However, the hybrid nature of discrete nonlinearity
in a continuum, which holds the potential for further enhanc-
ing the nonlinear wave dynamics, is relatively unexplored.

One of the revolutionary nonlinear behaviors studied in
periodic media is the propagation of solitons or solitary waves,
which are localized traveling waves, meaning they have a
spatially localized (or compact) profile that travels through
the system. Following Russell’s observation of shallow-water
waves [18] that maintained their shape and speed for a
very long distance, characteristics of solitary waves have
been extensively studied across various domains of science
[11,19-21]. The formation of solitary waves is a result of the
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counterbalance between nonlinearity and dispersion. Recent
progress on realizing these waves in phononic materials has
led to numerous applications such as diodes [22], sound bul-
lets [23], impact mitigators [24], robotic motion [25], and
sensors [26]. Solitary waves have been studied in granular
crystals [11,13,27-29], tensegrity structures [30], and bistable
[31] and soft architecture [22,25,32], all of which were
assumed as lumped-mass periodic systems, i.e., discrete non-
linearity connecting discrete particle masses. A few studies
have explored the propagation of solitary waves in bilayered
phononic media with material [33] or geometric [34] nonlin-
earity. Yet, it is an open question whether solitary waves exist
in a continuum with periodic and discrete nonlinearity.
Moreover, the system architecture itself governs the nature
of solitary waves that propagate through it. For example,
phononic media supporting single polarization form scalar
[13] solitary waves whereas media with coupled polarization
support propagation of vector [22,32,33] solitary waves. A
couple of other studies on nonlinear phononic materials have
reported the formation and propagation of nanopterons [35]
and stegotons [36]. These two solitarylike localized traveling
waves arise from a unique interplay of the underlying periodic
system and nonlinearity, and exhibit different characteristics
than classical solitons. For example, nanopterons are solitary
waves on top of small oscillations as observed in stacked
woodpile structures with Hertzian contact nonlinearity [35]
whereas stegotons are solitary waves with a roof-type (or
stepwise) profile as reported in bilayered media with exponen-
tial material nonlinearity [36]. Clearly, the complex nonlinear
wave dynamics is an effect of how nonlinearity is embedded
and interacts with the underlying phononic system. In this
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work, we study wave dynamics of a layered phononic material
where the linear continua (or layers) are nonlinearly coupled.
The focus of the study is to understand the role of strongly
nonlinear coupling on the elastodynamic behavior of linear
layers and the existence and propagation of localized traveling
waves in such media. Additionally, we investigate how energy
is distributed and exchanged within this architecture, where
nonlinearity exists only at discrete locations separated by lin-
ear continua. Such understanding is crucial for these materials
to be used for controlling the propagation of mechanical wave
energy.

We take inspiration from the nonlinear dynamics of
naturally occurring geomaterials [37]. Geomaterials offer
nonlinear physical sources in the form of heterogeneous
grains, pores, and microcracks. Despite rich nonlinear re-
sponses, these microstructural features are not yet explored
in the context of engineered periodic media. We are inter-
ested in studying wave propagation through elastic media
with these microstructures, but intentionally architected pe-
riodically. Specifically, we focus on periodic rough contacts,
inspired by microcracks in geomaterials. Microcracks with
rough surfaces are formed inside materials due to cyclic
loading and thus have been investigated in the field of non-
destructive evaluation as a parameter to indicate material
damage [38]. Taking motivation from these applications, we
are exploring wave propagation characteristics of periodic
rough contacts—an architecture representative of nonlinearly
coupled elastic layers. In our previous work [39], we revealed
that the weak nonlinear interaction of the fundamental wave
with precompressed rough contacts generates zero, second
harmonic, and self-demodulated frequency waves. The am-
plitudes of these nonlinearly generated frequencies depend on
(1) dispersion arising from the periodic arrangement of con-
tacts and (2) local coupling of contacts with the surrounding
continuum.

In this work, we investigate strongly nonlinear wave dy-
namics of the phononic material studied in our previous work
[39]. The one-dimensional (1D) nonlinear phononic mate-
rial is such that the periodicity is architected in the form of
contact interfaces with rough surfaces, connecting finite thick-
ness linear elastic layers. The uncompressed contacts exhibit
strong nonlinearity stemming from their inability to support
tensile loads. This is in addition to nonlinear contact response
under compressive loads arising from nonlinear mechanical
deformation of roughness. We study the evolution of propa-
gating waves, excited in the form of Gaussian tone burst at
frequencies on the same order as the modal frequencies of
individual layers, using time-domain finite element (FE) sim-
ulations. Particularly, we illustrate the elastodynamics effects
arising from the nonlinearly coupled layers and investigate
the existence and properties of localized traveling waves in
such phononic materials. The main objective of the paper
is to report nonlinear wave phenomena of energy transfer
through acoustic resonances and emergence of stegotons in
continuum phononic materials with discrete contact nonlin-
earity, and present some insights through extensive numerical
simulations.

The organization of the paper is as follows: In Sec. II, we
discuss rough contact nonlinearity and a continuum phononic
material model with periodic contacts. Our FE model for

the analysis of strongly nonlinear wave propagation is also
described. We then present strongly nonlinear responses of
the phononic material in Sec. III. Nonlinearly activated layer
resonances are described first, followed by the characteristics
and collision dynamics of localized traveling waves. Finally,
we conclude in Sec. IV and discuss open questions in this less
explored domain for future investigations.

II. MATERIAL MODEL

A. Strongly nonlinear rough contacts

Rough contacts are defined as interfaces between rough
surfaces, and they exhibit a nonlinear response due to
the nonlinear mechanical deformation of contact asperities
(unevenness of rough surfaces) under compressive loads
[Fig. 1(a)]. At wavelengths much larger than these asperity
sizes and assuming negligible interfacial mass, rough contacts
can be treated as nonlinear springs through a quasistatic model
approach [40]. Based on this model, a stiffness-pressure rela-
tion at the precompressed interface of two aluminum blocks
with rough surfaces was obtained experimentally [40], which
was later expanded asymptotically to eventually derive a
nonlinear relationship between the contact pressure, p(Au),
and displacement, Au [41]. The nonlinear relation follows a
power-law dependence [41] as given by

[po " — (1 = BYC(Au— 8))]
Ppo exp [—C(Au — )],

1/(1-8)
p(Au) = ’
B =1,
ey
where C and f are curve fitting parameters of the experimental
data, and §y is the initial static deformation corresponding to
external precompression, pp. C and B depend on the base
material and roughness topography such as asperity size,
shape, and height distribution. As a result, a wide range of
B is reported in the literature based on roughness distribution
[42,43]. Theoretically, 8 for a contact between rough fractal
surfaces is such that 8 = 1/(1 4+ H) in the interval H € (0, 1),
where H is a Hurst exponent [42]. Physically, 8 tends to be
towards unity for roughness having statistical (or nonuniform)
height distribution, whereas it tends to 0.5 for uniform rough-
ness [41]. Further, the value of 8 for a rough contact changes
if the asperities undergo plastic deformation; this has been ex-
perimentally observed, but only during the first loading cycle
[40]. We use B corresponding to elastic deformations of rough
contacts after the first loading cycle (i.e., after hysteresis has
been removed) and consider wave amplitudes much smaller
than the maximum deformation of asperities caused by the
loads in the experimental work of [40]. Therefore, the rough
contacts in our study do not undergo any plastic deformation
during wave propagation and as a result, energy dissipation at
the contacts is neglected.

In addition to the nonlinear relation of Eq. (1), the contacts
exhibit strong nonlinearity when unloaded externally. For
such initially uncompressed rough contacts, the relationship
for compressive loads exhibits essential nonlinearity as

p(Au) = [(1 — B)CAu]=P). )

Here, we consider C = 6x10'° «/Pa/m and exponent 8 =
0.5, which results in a quadratic dependence of pressure on
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FIG. 1. Continuum phononic material with strongly nonlinear
periodic rough contacts. (a) Strong nonlinearity of rough contacts
arising from nonlinear dependence between contact pressure, p(Au),
and displacement, Au, and lack of tensile forces during contact
loss. Markers highlight three contact configurations: (A) contact
under compressive load undergoing flattening of rough asperities,
(B) contact under no load, and (C) contact loss. The inset of (B)
shows undeformed rough asperities, and thin black lines in (C) in-
dicate nominal surfaces. (b) Phononic material with identical linear
elastic layers coupled through rough contacts and corresponding
schematic with contacts modeled as nonlinear springs. (c) FE model
of phononic material in (b). The gray shaded region is a continuum,
while vertical black lines are thin elastic layers (see text) representing
contacts. Dashed lines are symmetric boundaries. A Gaussian tone
burst is excited from the left boundary.

displacement, a similar approximation made in [44] owing
to experimentally acquired data [41]. This means the rough
contact model in our study corresponds to rough surfaces with
uniform height distribution of asperities. Thus, the complete
nonlinear force-displacement relation at the rough contacts in
our system is

Au >0

05
Au) = 3
p(Au) {%’ Au<O0. 3)

This indicates that the dynamics of rough contacts is non-
smooth as contacting surfaces can collide and separate
[Fig. 1(a)]. As a result, the dynamics of rough contacts are
strongly nonlinear (in fact, not even linearizable) when no
precompression is applied. This strong nonlinearity is in ad-
dition to the nonlinear power-law interaction between rough
asperities.

B. Phononic material with periodic rough contacts

We develop a 1D phononic material by periodically ar-
ranging strongly nonlinear rough contacts. As a result, the
elastic layers are coupled through rough contact nonlinearity
[Fig. 1(b)]. The layers are modeled as aluminum (Young’s
modulus = 69 GPa, Poisson’s ratio = 0.33, density =
2700 kg/m?) to align with prior experiments [40], and each
layer has identical thickness, s. Both the layers and con-
tacts are assumed to be infinite in the y direction. We study
wavelengths of the order of layer thickness, and thus, unlike
granular crystals, significant elastic deformation occurs in our
system—both at the rough contacts and within the layers. To
model these mechanical deformations, layers are considered
as continuous material and contacts are treated as nonlinear
springs with the pressure-displacement relationship as given
by Egs. (3).

We study nonlinear wave propagation using finite ele-
ment time-domain simulations based on our previous work
in a weakly nonlinear regime [39] but modified enough to
capture strongly nonlinear responses. The commercial FE
package COMSOL MULTIPHYSICS 5.6 with solid mechanics
module is used. The 1D phononic material is modeled within
a two-dimensional (2D) plane strain framework [Fig. 1(c)]
by applying symmetry boundary conditions (BCs) on the top
and bottom edges of the model. A phononic material with
200 layers was modeled with displacement excitation BC on
the left edge and traction-free BC on the right edge of the
material. However, the simulations were ended even before
the wave reaches the right boundary to avoid the influence of
any reflections. The contacts were modeled through nonlinear
thin elastic layers (TELs)—in-built internal BCs that decouple
adjacent layers through a springlike element following the
characteristics of Egs. (3). We used the mapped quad meshing
with the quadratic serendipity shape function. The element
size in the model is determined based on the minimum num-
ber of elements required to capture (1) wave propagation
results and (2) elastodynamics effects of layers. To satisfy
the first criterion, the element size in the model was kept
eight times smaller than the smallest wavelength of interest
[39], i.e., Ax; = Xo/8, where Ag is the smallest wavelength.
Ao is defined by the first free-free acoustic resonance of the
layers, firee—free (i-€., the largest frequency of interest in the
simulations) and the bulk (i.e., aluminum) phase velocity, cy.
To satisfy the second criterion, at least four elements per layer
were ensured, i.e., Ax, = s/4. Thus, the element size, Ax,
in our model is min(Ax;, Ax;). The direct time-dependent
solver—PARDISO—with generalized o« time stepping is used,
and the Courant-Friedrichs-Lewy (CFL) number of 0.2 is
considered to achieve convergence while solving the partial
differential equations numerically [39]. The time step, At,
according to CFL in our simulation is At = CFL x Ax/cy.
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We assumed negligible damping in the model due to the metal
material and short wave propagation distance. Further, diffrac-
tion was neglected as a plane wave is excited in our model.

We excited a Gaussian modulated longitudinal tone burst
at a center frequency, f, from the entire left edge of the FE
geometry [Fig. 1(c)]. This type of excitation is common in
experiments at ultrasonic frequencies where internal rough
cracks have been studied [38]. Further, the modulation ensures
a narrow-band frequency excitation and therefore can reveal
additional frequencies generated due to the contact nonlinear-
ity (for example, acoustic resonances of elastic layers from
harmonics as discussed in Sec. III A). The Gaussian modu-
lated burst is defined as

. r—C\?
G(t) = U sin(2rw ft) exp |:— (T) ], (@)

where U is displacement excitation amplitude, ¢ is time, and
o and ¢ are the Gaussian parameters controlling the length
and mean of the time-domain tone burst, respectively (i.e.,
controlling the number of cycles in the tone burst and there-
fore the number of collisions of rough surfaces). We introduce
a nondimensional frequency, €2, which is obtained by nor-
malizing the excitation frequency, f, by the first fixed-free
resonance frequency of layers, fhixed—free- All the numerical
simulations in this paper were conducted at 2 = 0.52, unless
explicitly specified. This particular frequency is chosen for
simulation as it allows us to capture the elastic deformation
of the layers (and therefore the elastodynamic response of the
layers due to strong nonlinearity of contacts) within a reason-
able computational cost. All the simulations were conducted
with £ = 12.5/f, 0 = 2.5/f and at an excitation amplitude,
U, corresponding to strain, €, of 1.25x 1076 in layers, unless
explicitly specified.

III. STRONGLY NONLINEAR WAVE DYNAMICS

Our phononic material is a synthesis of strong nonlinearity
of rough contacts and linear continuum. This design concept
gives rise to enriched dynamic response including both local-
ized and propagating dynamics effects. In particular, localized
effects include spectral energy transfer through the activation
of layer acoustic resonances, and propagating dynamic effects
include the formation of localized (compact) traveling waves.
In this section, we report these nonlinear observations and
discuss the mechanics behind their emergence and existence.

A. Energy transfer through layer resonances

The interaction of the excited wave with rough contacts
results in clapping (or breathing), which is a collision and
separation of contacting rough surfaces. We first explain the
mechanics of such collision and separation and then the com-
plex wave dynamics arising from it.

Consider a wave cycle propagating from layer 1 to layer 2
[Fig. 2(a)] such that layer 1 is the first layer of the phononic
material in the direction of excitation. The rough contact
between these layers is at an uncompressed initial condition;
thus, the deformation, Au, of the nonlinear spring represent-
ing the contact is initially zero [Fig. 2(al)]. A collision occurs
at the contact when the spring deformation is less than zero;

otherwise, contact separation will take place. As a result, only
a fraction of a full-wave cycle is transmitted across the contact
[Fig. 2(a)]. This fraction of the cycle consists of a portion of
the compressive part of the wave cycle [Figs. 2(a2) and 2(a3)].
This can be explained as follows: When the displacement of
the wave cycle increases from zero to its peak amplitude, the
rough surface of layer 1 is forced to move toward the rough
surface of layer 2, causing the contact spring to deform and
transmit the forces across the contact [Fig. 2(a2)]. At the same
time, layer 2 deforms under the action of transmitted force,
causing the rough surface at the contact to move to the right.
During the next part of the wave cycle from its peak amplitude
to zero, the rough surface of layer 1 retracts, releasing the
spring deformation. The forces are still transferred across the
contact during this stage until the rough surface of layer 1
retracts to position § to account for the deformation of layer 2
[Fig. 2(a3)]. At this instant, the spring is back to the uncom-
pressed state. As the cycle progresses, the lack of tensile force
at the contact results in a contact loss (Au > 0), and the rough
surface of layer 2 cannot be pulled back [Fig. 2(a4)]. It should
be noted that the wave transmitted across the contact now
propagates through layer 2 and thus moves the right boundary
(or surface) of layer 2 further toward the right. As expected,
the tensile part of the wave cycle further increases the gap
between the two rough surfaces at the contact [Fig. 2(a5)].
At the end of the cycle, layer 1 stays at the original position
whereas layer 2 has moved to the right from its original
position [Fig. 2(a6)].

This same clapping-separation behavior is repeated with
each cycle of the tone burst until the tone burst reaches its
maximum amplitude [red marker in Fig. 2(b)]. Note that the
strongly nonlinear behavior of the contacts cause a change
in the position of subsequent layers [for example, layer 2;
see Fig. 2(c), black line]. Also, recall that due to the Gaus-
sian profile, the amplitudes of the later cycles of the tone
burst are larger than the previous ones [refer to the Gaussian
tone burst in Fig. 2(b)]. Thus, wave cycles of the tone burst
can cause clapping as long as their amplitudes are larger
than the gap between the contacting surfaces generated from
the previous cycles [compare black and light blue lines of
Fig. 2(c)]. Wave cycles beyond the maximum amplitude of
the tone burst do not result in clapping, as they do not cause
the rough surfaces to come in contact [wave cycles beyond
the red marker in Fig. 2(c)]. This contact loss remains in place
for all times due to the lack of external precompression and
the system’s inability to support any tensile forces [Figs. 2(d)
and 2(e)]. The forces transmitted across the contact during
tone burst interaction propagate through the phononic material
and subsequently cause separation of surfaces at each contact
[Fig. 2(d)]. B

Interestingly, the normalized displacement profile, U, in-
side the first layer of the phononic material shows a harmonic
response for all times after tone burst excitation [inset of
Fig. 3(a)]. Similar observations are made in layer 2 [inset
of Fig. 3(b)] and so on. The wavelet transform reveals that
the frequency content of these harmonic responses is differ-
ent from the tone burst excitation frequency of = 0.52.
The frequency spectrum shows that these oscillations, in fact,
correspond to the acoustic resonances of the corresponding
layers. Layer 1 exhibits the first acoustic resonance under the
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FIG. 2. Contact clapping under wave excitation. (a) Schematic demonstration of contact collision and separation under the first wave cycle
of the Gaussian tone burst of (b). Black markers show specific instants of the wave cycle and corresponding contact conditions (al)—(a6).
Dashed lines are the initial interface location. The red marker in (b) is the maximum amplitude of the tone burst. (¢) Displacement-time profile
of the contact surface of layer 2 (black) and spring deformation of the rough contact between layers 1 and 2 (light blue). The last instance of
clapping is associated with the maximum amplitude of the tone burst. The displacement profile, U, is normalized by the excitation displacement
amplitude, U. (d) Spatiotemporal plot of the contact pressure, and (e) temporal plot of the contact pressure at the first rough contact. Contact
pressure is normalized by the uniaxial modulus of the layer material, where A and u are the material Lamé parameters.

fixed-free BC. This is because the tone burst interaction with
the rough contact causes a separation between surfaces of
layer 1 and layer 2 (as illustrated in Fig. 2), which ultimately
creates a free BC on the right side of layer 1, and the excitation
boundary is held fixed in its original position after the exci-
tation (a physical BC as seen in the experiments [45]). These
BC:s of the layer activate acoustic resonances given by ncg/4s,
where n is the order of resonance, i.e., first, third, fifth, and so
on. Thus, a fraction of the excited energy is now localized in
layer 1 at its resonance frequencies. Higher-order resonances
of this layer also exist but their amplitudes are much smaller
than the first resonance. On the other hand, layer 2 experi-
ences free BCs on either side because of loss of contact due
to wave interaction with corresponding rough contacts. This
results in acoustic resonances of layer 2 as given by ncy/2s.
Owing to free-free resonance, the center point inside layer
2 is a node while boundary points are antinodes [Fig. 3(d)].
Thus, wave responses shown in Fig. 3(b) are from a point
close to the boundary in layer 2. Due to the separation of
surfaces at each contact as waves propagate [Fig. 2(d)], the
later layers also oscillate in a free-free resonance [discussed
in terms of energy-frequency dependence later in Fig. 4(c)];
however, their amplitudes are very small due to relatively
weaker excitation energy at later contacts.

This indicates that the combined effects of strong nonlin-
earity, continuum layers, and dynamic excitations result in the
nonlinear energy transfer between frequencies. While many
other nonlinear energy transfer mechanisms have been re-
ported, such as subharmonic [46] and superharmonic [14,39]
generation, self-demodulation [39,47], and nonlinear wave
mixing [48], the mechanism in our phononic material is dif-
ferent in that it is fundamentally based on activating acoustic
resonances of elastic elements (for example, layers in our
case). This behavior has been not reported so far, as studies
of unconsolidated phononic media were focused at frequen-
cies much lower than modal frequencies of individual elastic
elements (for example, particles in granular crystals [13,29]).
At such low frequencies, elastic media between contacts have
been considered point masses. As a result, there exists a
lack of coupling between these masses after contact loss and
no resonances are activated. While granular metamaterials
[49] and woodpile structures [35] have shown spectral energy
transfer through resonances, the mechanism is based on local
resonances. These studies considered lumped-mass elements,
where resonators are only coupled directly to an oscillator at
each site. On the other hand, our system is not set up as a
locally resonant system; in fact, the layers are coupled and
modeled as continua. As a result, the resonances observed
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FIG. 3. Energy transfer through activated layer resonances due to strong contact nonlinearity. Dynamic response of (a) layer 1 and (b) layer
2. The response is extracted at the center point for layer 1 and near the contact boundary for layer 2. Time-domain normalized displacement
(top), corresponding wavelet transform (middle), and fast Fourier transform (FFT) of the entire time-domain signal (bottom) are plotted
for both the points. Insets are zoomed views of dashed rectangles indicating resonant oscillations. Wavelet amplitudes are normalized by
their maximum amplitude whereas FFT amplitudes are normalized by the FFT amplitude of the excitation signal, Ag. Normalized modal
deformations of (c) layer 1 and (d) layer 2 under fixed-free and free-free acoustic resonances, respectively. The deformations are plotted for

three different time instants during resonant oscillations.

inside the phononic material correspond to acoustic reso-
nances of these layers. Further, these acoustic resonances
capture the physical deformation of the layers in the form of
modes of finite bodies [Figs. 3(c) and 3(d)] and can also cap-
ture higher-order resonances of the layers for high frequency
excitations.

We further evaluate the distribution and dependencies of
the energies (normalized by the total energy, Er) trapped
in these layers due to their resonances on the excitation
frequency, f (Fig. 4). We conduct parametric numerical sim-
ulations by sweeping excitation frequency from far away
from the layer resonances to the layer resonance frequen-
cies. As the excitation frequency approaches the resonance
of layer 1, f,1, almost all the energy of the system is stored
in layer 1 [Fig. 4(a) as f/f,1 — 1]. Interestingly, even when
the excitation frequency is a fraction multiple of resonance
frequency (f/f1 = 1/5,1/4,1/3,1/2), a significant portion

of the total energy is stored in layer 1. This is because of
higher harmonic responses arising from the nonlinear rough
contact. As the wave interacts with the quadratically nonlinear
rough contact, higher harmonics are generated at the contact,
which activates the resonances of layer 1. Layer 1 stores
more energy when lower-order harmonics, such as the second
(for f/f, = 1/2) and third (for f/f,; = 1/3), of the excita-
tion frequency fall close to the resonance, compared to other
higher-order harmonics (for f/f,; = 1/4, 1/5). As expected,
the energy stored in layer 2 also increases as the excitation
frequency approaches the resonance of layer 2 [Fig. 4(b) as
f/fr» — 1]. Similarly, fractional multiples of the excitation
frequency contribute to activating the resonance of layer 2.
Since harmonics with increasing order are associated with re-
duced amplitudes, the energies stored in layer resonances are
increasingly weaker from harmonics with increasing order.
For example, the free-free resonances of layer 2 activated for
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FIG. 4. Energy distribution within the phononic material due to layer acoustic resonances. Dependence of the energies trapped in (a) layer
1 (E}) due to fixed-free resonance (f,1) and (b) layer 2 (E,) due to free-free resonance (f,,) on excitation frequency, f. Vertical dashed lines
correspond to when the excitation frequency is a fraction multiple of resonances. (c) Energy stored in the resonances of subsequent layers (E;),
where i indicates layer index from the excitation boundary. (d) Resonance energy distribution in the first ten layers of the phononic material
for different excitation frequencies. The color bar indicates energy inside the layers normalized by the total energy in the system.

f/fr2 ~ 0.125 [leftmost peak in Fig. 4(b)] are much weaker
than for other fractional frequencies; in particular, the energy
in the layer resonance for f/ f,» ~ 0.125 is almost three orders
of magnitude smaller than the total energy. As the excita-
tion frequency decreases further (f/f,» — 0), corresponding
higher-order harmonics become significantly less effective in
exciting the free-free resonances of layer 2. At excitation
frequency f/f,» ~ 0.7, the generated third harmonic is close
to the second-order free-free resonance of the layer (2f,).
Thus, layer 2 stores more energy at this excitation frequency
and shows a local maximum. The energy stored in layer 2
for an excitation frequency of f/f,, = 0.5 is much smaller
compared to other adjacent fractional frequencies. This is
contradictory to the dependence of layer 1 energy on exci-
tation frequency. This difference in the energy dependence of
these two layers can be attributed to the relation between their
resonance frequencies. Recall that the resonant frequency of
layer 2, f,,, is twice the resonant frequency of layer 1, f,.
Thus, most of the total energy is localized in layer 1 when
f = fr1 = 0.5f.2, leaving only a small amount of energy in
layer 2.

The energy dependence of the subsequent layers (i =
3,4, ...) on excitation frequency is identical to layer 2 as all
these layers oscillate under free-free resonance [Fig. 4(c)].
However, energy stored in these layers gradually reduces
away from the excitation boundary [Fig. 4(d)]. While the
reduction in stored energy with propagation distance is also
frequency dependent, energy localization primarily happens
in the first few layers (i < 6) only [Fig. 4(d)]. Clearly, a por-
tion of the wave energy is localized in each of these layers as
a wave propagates through them, specifically for frequencies
that significantly contribute to activating the resonances of

these layers. In other words, wave energy at these frequencies
sharply reduces as it propagates. Therefore, wave interactions
with subsequent contacts do not excite the resonances of the
subsequent layers as effectively as previous layers. This can
be seen through a monotonic reduction in the energy stored
in layers with layer indices [Fig. 4(d)]. This is the reason for
the reduction in the resonant oscillations of the later layers.
The remaining portion of the total energy, which is not stored
in these layers, propagates through the phononic material as
we discuss in the next section (Sec. III B). Remarkably, the
percentage of total energy propagating through the material
is frequency dependent [Fig. 4(d)]. For example, the energy
localized near the excitation boundary for f/f,; ~ 0.5 and
f/fr1 ~ 11is almost the same as the total energy, whereas for
f/fr1 <025 033 < f/fi1 <05, and 0.5 < f/f,1 <0.6,
only a small portion of the energy is localized and the remain-
ing energy propagates through the material. Clearly, the elastic
media between nonlinear contacts contributes to complex dy-
namics due to overlapping effects of harmonic responses of
contacts and resonances of layers. The energy dependencies
presented here further inform that the proposed phononic
material can be used for both acoustic attenuation and signal
propagation by carefully selecting the excitation frequency
with respect to layer acoustic resonances.

B. Propagation of stegotons

An interplay between nonlinearity and dispersion gives rise
to solitary waves in periodic media [13,29]. A study of such
waves in layered media with exponential material nonlinearity
revealed a new type of solitarylike wave [36]. Unlike clas-
sical solitons, this new wave exhibited a roof- or ridge-type
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FIG. 5. Propagation of stegotons. (a) Formation of stegoton trains under tone burst excitation. Results at two different time instants, when
stegotons are within the same layers, are shown indicating changing spatial profile of stegotons within these layers. Magnified views of the
stegotons in dashed rectangles are to the right (al and a2). Layer width is marked with blue arrows. Inset of al shows stegoton amplitude
variation inside a layer between the 43rd and 44th contacts. Arrows indicate wave propagation direction. Propagation distance is marked in
terms of contact indices. (b) Stegoton amplitude dependence on propagation distance. The three plots correspond to the three stegotons of
(a) with amplitudes evaluated at the center point in each layer. Insets show amplitudes evaluated at multiple locations inside each layer, in the
neighborhood of the 25th contact (dashed rectangles), highlighting their local variation. The amplitudes are extracted from the temporal wave
profile for each spatial point. Results are shown for the first 50 contacts only. (c) Spatiotemporal amplitude plot showing constant propagation
speed of the generated stegotons. The temporal profile of the stegotons on the right corresponds to a location near the 50th contact (dashed

vertical line).

spatial profile and thus was named a “stegoton.” This wave,
however, satisfied the other properties of solitons, which are
propagation at a constant speed, and speeds being propor-
tional to the wave amplitude. Later, stegotons were observed
mathematically in the context of hyperbolic partial differen-
tial equations with spatially varying coefficients [50] and in
a spring dimer configuration of Fermi-Pasta-Ulam-Tsingou
lattices [51]. Still, it is not well understood what role non-
linearity plays in the propagation characteristics of stegotons.
Moreover, stegotons have not been reported in a phononic
system with physically motivated nonlinearity, such as contact
nonlinearity. In our phononic materials, the combined effects
of strong nonlinearity of rough contacts, dispersion from their

periodic arrangement, and presence of elastic layers give rise
to the propagation of stegotons. In this section, we report these
waves and their characteristics in our phononic materials.

For a tone burst at excitation frequency, 2 = 0.52, trains of
stegotons are observed [Fig. 5(a)]. Such trains are generated
because of two simultaneous effects: (1) multiple collisions
of contacting rough surfaces due to multiple wave cycles in
the tone burst excitation, and (2) layer internal reflections
(such as seen in the dynamics of an impact of a striker on
a Hopkinson bar [52]). Three dominant stegotons observed
in the simulations are a result of three strong collisions of
rough surfaces during the tone burst interaction with the first
rough contact [Figs. 2(c) and 2(e)]. The loss of contact after

024201-8



STRONGLY NONLINEAR WAVE DYNAMICS OF CONTINUUM ...

PHYSICAL REVIEW E 105, 024201 (2022)

these collisions results in a gap between the layers preventing
any further collision from the later cycles of the tone burst
[Fig. 2(c)]. Additional stegotons due to other weaker colli-
sions from tone burst cycles and internal layer reflections are
also generated but their amplitudes are relatively negligible
(two orders smaller).

The stegotons in our phononic materials are localized
traveling waves yet due to the continuum between succes-
sive nonlinear contacts, they show a stepwise wave profile
[Fig. 5(a)] that is different from the continuous shape of classi-
cal solitons. This is because displacements are discontinuous
across the contact, causing steps in the spatial profile, whereas
displacements inside layers vary smoothly due to layer defor-
mation. This stepwise profile that consists of both jumps and
continuous variation has not been seen in solitary waves in
granular crystals, as these systems have thus far been modeled
as spring-mass chains. Further, the stegoton spatial profiles
continuously change while propagating through a collection
of three layers, as can be seen at two representative time
instants [Fig. 5(a)]. Note that the stegotons are propagating
through the same three layers at both of these time instants.
At t1, the leading part of the stegoton (between 44th and 45th
contact) is lower compared to the trailing part (between 42nd
and 43rd contact) [Fig. 5(al)]. The opposite is the case at
t; + 20At¢ [Fig. 5(a2)]. The same change in profile is repeated
as the wave propagates to the next layers. Clearly, two simulta-
neous effects are happening inside the phononic material: (1)
macroscopic dynamics of phononic material and (2) localized
dynamics within the layers. By macroscopic dynamics, we
mean the dispersion from periodicity that counteracts that of
the contact nonlinearity, which gives rise to the propagation
of compact waves. This is similar to the mechanics of the
formation of solitary waves in, e.g., nonlinear granular media.
As aresult, stegotons propagate with a constant spatial profile
between layers despite exhibiting changing profiles within a
collection of three layers. Additionally, the local dynamics
of the continuum layers cause elastic deformations [inset of
Fig. 5(al)]. These localized effects have typically not been
considered in nonlinear granular media, where masses are
modeled as point masses. In that case, the displacement profile
across the particles is constant, and no local effects are seen
[13,29].

The spatial width of the stegotons in our phononic material
is equal to three layers [Fig. 5(a)]. This is in contrast to the
spatial width of solitary waves arising due to Hertzian contact
nonlinearity, which is equal to five particle diameters [13], and
due to exponentially nonlinear bilayer media, which is equal
to ten layers [36]. As demonstrated in [53], the width of a
solitary wave in granular crystal in terms of the particle size
depends upon the coefficient resulting from the power law
of contact nonlinearity. Solitary wave width narrows as the
exponent of power-law nonlinearity increases. Based on this
theory, it can be determined that the rough contact nonlinear-
ity between elastic layers generates more compact localized
waves compared to other forms of nonlinearities explored thus
far.

The amplitudes of the stegotons, in terms of particle
velocity, v, normalized by Uw (where w is angular excita-
tion frequency such that w = 2z f, and U is the excitation
displacement amplitude), varies within the layer [insets of

FIG. 6. Dependence of the energies carried by stegotons, Eg, on
the excitation frequency, f. Vertical dashed lines correspond to when
the excitation frequency is a fraction multiple of layer resonances.

Fig. 5(b)] yet remains constant with propagation distance for a
given point inside each layer. Note that the amplitudes shown
in Fig. 5(b) are evaluated at the center point inside each layer,
whereas amplitudes in the insets are evaluated at five locations
inside each layer. Interestingly, these waves propagate at a
constant speed when traced at a particular point [e.g., the
center point in Fig. 5(c)] in each layer. The temporal profile
highlights that the temporal width of these localized traveling
waves is inversely proportional to their amplitude [Fig. 5(c)].

Next, we analyze the energy carried by these stegotons
(normalized by the total energy, Er) as a function of excitation
frequency, f (Fig. 6). The plotted energies, Es, are of all the
stegotons such that Eg = Z’f Eg;, where k is the number of
stegotons generated in the phononic material. We observe that
there exist certain frequencies for which stegotons carry very
low energy (two orders smaller than the total energy), for
example, f/f,1 ~ 1. This is because most of the total energy
at these excitation frequencies is localized in layer 1 (refer to
Fig. 4). Similarly, when the excitation frequency is a fraction
multiple of the layer resonances, there exists a drop in the
energy carried by the stegotons (refer to the dashed vertical
lines in Fig. 6). For all other frequencies, stegotons carry a
large portion of the energy through the phononic material.
This characteristic demonstrates possible applications of this
phononic material from filtering to signal propagation. This is
because only a small amount of energy propagates through the
material for certain frequencies (specifically for f/f,; ~ 1)
while for others, excited wave energy can travel through the
material.

We further evaluate the dependence of stegoton propaga-
tion speed (c) on stegoton amplitude (v) [Fig. 7(a)], and on
the contact pressure between layers (p) [Fig. 7(b)]. These
relationships are determined at the excitation frequency of
Q = 0.52. A long tone burst (¢{ = 50/f and o = 10/ f) was
used to generate multiple stegotons to find both the c-v and
c-p relation. Stegoton amplitudes are evaluated at the center
point in the 50th layer and the speed is determined through
propagation time delay between two points separated by a
distance equal to five layers. The dependence of the speed
of stegotons on their amplitudes is found to be a power-law
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FIG. 7. Stegoton characteristics due to rough contact nonlin-
earity. Stegoton wave speed dependence on (a) its amplitude and
(b) contact pressure. Dashed lines are linear fits of the normalized
variables in logarithmic scale. Solid lines indicate slopes of the fitted
lines along with corresponding values.

relation with an exponent equal to ~1/3 [Fig. 7(a)]. The
dependence of the speed of stegotons on the contact pressure
follows a power-law relation with an exponent equal to ~1/4
[Fig. 7(b)].

It is interesting to compare these results to those of stego-
tons and solitary waves studied in prior work. For example, the
dependence of the speed of stegotons on their amplitudes was
found to be linear in a bilayer material with exponential non-
linearity [36]. These differences in dependencies potentially
arise from the differences in the phononic materials of [36]
and in this work, which are the form and type of nonlinear-
ity (material vs contact), nature of nonlinearity (exponential
vs quadratic), type of excitation (pulse vs tone burst), and
impedance mismatch at the interfaces. In the case of Hertzian
contact nonlinearity, the solitary wave speed has a power-law
dependence on its amplitude with an exponent equal to 1/5
and on contact force between particles with an exponent equal
to 1/6 [13]. Clearly, the phononic material with rough contact
nonlinearity shows a stronger relationship between (1) the
speed and amplitude of the stegotons and (2) the speed of
stegotons and contact pressure, compared to Hertzian contact.

Further, the wave speed of stegotons can be tuned through
system parameters, such as excitation amplitude, frequency,
and layer thickness. As discussed in Fig. 7(a), the stegoton
speed is proportional to its amplitude. Thus, the speed of

0.15

0.07

0.01 0.03 0.06

FIG. 8. Stegoton wave speed dependence on its amplitude for
different layer thicknesses (s/2, 3s/4, s, and 5s/4). Dashed lines
indicate slopes of the fits (solid lines) along with corresponding
values. The arrow shows that speeds increase with layer thickness
for a given amplitude.

stegotons can be tuned by controlling the amplitude of the
generated stegotons. This can be achieved by changing the
excitation amplitude: a larger excitation amplitude causes
stronger collisions at the rough contacts forming stegotons
with higher amplitudes, and vice versa. Similarly, as discussed
in Fig. 6, the amount of energy carried by the stegotons
depends upon the frequency of excitation. In other words,
the properties of stegoton propagation (i.e., their amplitude
and wave speed) can be changed by changing the excitation
frequency. The speed of stegotons also depends upon the
layer thickness. We evaluated the speed-amplitude relation
of stegotons by following the method of Fig. 7(a) but for
different layer thicknesses. For all the simulated cases, ex-
citation frequency was appropriately selected to account for
the change in layer resonances frequencies, i.e., to keep nor-
malized frequency (2 = 0.52) the same. Increasing the layer
thickness in phononic material increases the wave speed of
the stegotons for a given amplitude; however, the relation-
ship between the speed and amplitude remains unchanged
(Fig. 8). This is likely because the relationship is governed
by contact law, which depends only on the contacts and not
the layer thickness. However, changing the layer thickness
changes the overall dispersion and thus affects the speed of
the stegotons. Finally, stegotons are generated from the coun-
terbalance between nonlinearity and dispersion; hence, their
speed-amplitude relation would depend upon the exponent of
rough contact law. Rough contacts with different power-law
exponents are achievable through different roughness topogra-
phies between contacting layers [41-43]. Therefore, stegoton
properties can be potentially tuned through appropriate rough-
ness selection as well.

C. Collision dynamics of stegotons

Studies of collision dynamics of solitary waves formed in
granular crystals have shown that these waves escape frontal
collision; however, they generate additional weaker solitary
waves [54,55]. This is because the collision process releases
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FIG. 9. Collision dynamics of stegotons. Spatiotemporal amplitude plot of stegotons when the collision happens (a) inside a layer (for an
odd number of layers) and (c) at a rough contact (for an even number of layers). (b) and (d) are snapshots of (a) and (c), respectively, at time
equal to 175 us [dashed yellow line in (a) and (c)]. Arrows indicate the direction of propagation, with longer and shorter arrows corresponding
to primary and collision-induced secondary stegotons, respectively. Insets in (b) and (d) are zoomed views of dashed rectangles. Propagation
distances are in terms of contact indices. (e) Phase shift due to the collision of stegotons. Stegotons are recorded inside the 80th layer in the
system with N = 100, when a stegoton is excited from each end (solid) and the left end only (dash-dotted). Inset is a zoomed view of the
overlapped stegotons. (f) Dependence of the amplitudes of secondary stegotons, v,, on primary stegotons, vy, when the collision happens at a

rough contact (squares) and inside a layer (circles).

some energy, owing to the squeezing of solitary waves during
a collision, which eventually contributes to the generation of
secondary solitary waves [54]. Surprisingly, the collision of
stegotons in layered material with exponential nonlinearity
did not result in the generation of additional waves [36]. In
contrast, here we show that the collision of counterpropagat-
ing stegotons of equal amplitude in phononic materials with
rough contacts generates a train of secondary stegotons.

To study collision dynamics, we excite a tone burst ({ =
2.5/f ando = 0.5/ f) from each end of the phononic material
at frequency 2 = 0.52 such that the excited signal results in a
single dominant stegoton propagating from both ends towards
each other. We study two cases of phononic material, with odd
(N = 101) and even (N = 100) numbers of layers. In the case
of an odd number of layers [Fig. 9(a)], the collision takes place
inside the elastic layer at the center (i = 51) of the phononic
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material. Upon collision, we observe the formation of sec-
ondary stegotons with an amplitude (and therefore speed)
much (two orders) smaller than primary stegotons [Figs. 9(a)
and 9(b)]. In the case of an even number of layers [Fig. 9(c)],
the collision takes place at a rough contact (between i = 50
and i = 51). Generation of secondary stegotons is observed
in this case as well; however, the amplitudes of these gen-
erated stegotons are significantly higher than the secondary
stegotons from the collision inside the layer [Figs. 9(b) and
9(d)]. In both cases, we observe a phase shift in propagating
stegotons postcollision [Figs. 9(e), results shown for an even
number of layers case only]—an observation consistent with
the collision dynamics of solitary waves in granular crystals
[55]. We further evaluate the dependence of the amplitudes of
secondary stegotons on the amplitudes of primary stegotons in
both collision cases [Fig. 9(f)]. There is an order of magnitude
difference between the amplitudes of secondary stegotons
generated at contact and within a layer.

To understand the role of the number of layers on the
generation of secondary stegotons, we study displacements
and energies of the layers at and in the vicinity of collision.
When the collision of stegotons takes place inside a layer,
the layer does not move before, during, or after the collision
[Fig. 10(a), refer to i.]. On the other hand, adjacent layers
first move towards the center layer and then away from it
postcollision, resulting in a contact loss [Fig. 10(a), refer to
ic—1 and i.11]. This is because the stegoton propagating from
left to right forces the layer i, to initially move to the right,
which eventually ceases due to the stegoton propagating in the
opposite direction. This backward (right to left) propagating
stegoton, when coming through the collision, forces the same
layer to move to the left. The reverse is the case for the layer
i.+1. Despite these surrounding motions, the center layer is
always at rest. As a result, the total kinetic energy in the
center layer (i, = 51) is approximately zero, unlike adjacent
layers (i.—; = 50 and i.+; = 52) [Fig. 10(c)]. However, there
exists a nonzero potential energy inside the center layer, which
is significantly larger than the potential energy in other lay-
ers [Fig. 10(c), red lines]. This excess potential energy is a
result of the squeezing of the stegotons, equivalent to the
squeezing of solitary waves in granular crystals [54], during
the collision. This squeezing can be physically understood as
follows: When two identical stegotons propagating towards
each other collide, the layers that came in contact due to
leading fronts of the stegotons start to move in the reverse
direction due to repelling forces. At the same time, the trailing
fronts of the stegotons are moving in the direction of the wave
propagation, eventually causing them to squeeze. Note that
stegotons have a spatial width of three layers and therefore
the trailing front is not affected by the dynamics of the leading
front for a certain duration of time, allowing such squeezing.
The potential energy released from this dynamics, however, is
temporarily transferred to the center layer during the collision
[Fig. 10(c)] and thus only generates weaker secondary ste-
gotons [Figs. 9(a) and 9(b)]. As stegotons propagate through
the collision, they regain their kinetic energy [Fig. 10(c), re-
fer to i =40 and i = 62]. This can also be confirmed from
the fact that the kinetic energy in the stegotons postcolli-
sion is only ~0.005% smaller than that of the precollision
ones.

When stegotons collide at a contact, both layers adjacent
to the contact (i~ and it) change their position, causing sepa-
ration of contacting surfaces postcollision [Fig. 10(b)]. This
can be understood in the same way as the motion of the
adjacent layers in an odd number of layers. The squeezing
of the stegotons in this case also releases potential energy
[Fig. 10(d)], which cannot be stored at an interface and needs
to be released. The phononic material considered here can
only support localized traveling waves; hence, the energy is
released in the form of (secondary) stegotons [Figs. 9(c) and
9(d)]. We do observe some of this potential energy temporar-
ily stored in the adjacent layers [Fig. 10(d), refer to i = 50
and i = 51]. The energy in the layers in the vicinity of the
collision also shows an evolving difference pre- and postcol-
lision [Fig. 10(d), refer to i = 49 and i = 52], which is likely
because of the overlapping effects of the leading and trailing
fronts of the forward- and backward-propagating stegotons.
Eventually, the stegotons attain a stable energy [Fig. 10(d),
refer to i = 40 and i = 61]. Specifically, we observe that the
energy in the stegotons postcollision is 0.4% smaller than
precollision, indicating a stronger percentage of energy being
utilized during the collision for the generation of secondary
stegotons, compared to the case with an odd number of lay-
ers. In the absence of contact nonlinearity, it is possible that
the energy imbalances upon collision in the system of [36]
were stored inside the layers and thus no secondary stegotons
were seen. Clearly, the dynamics of stegotons in phononic
materials with rough contacts not only depend on the contact
nonlinearity and elastic layers, but they also depend on the
finite dimensions of the phononic material that can result in
complex collision dynamics.

IV. CONCLUSION

We numerically studied strongly nonlinear wave propa-
gation through a continuum phononic material with periodic
rough contacts. The wave response of the phononic material
is a combined effect of strong nonlinearity of rough contacts,
dispersive effects due to their periodic arrangement, nonlin-
ear coupling of elastic layers, and the finite dimensions of
the phononic material. The interplay of these features in our
phononic materials at frequencies comparable to the modal
frequencies of elastic layers activates acoustic resonances of
layers and generates stegotons, which are localized traveling
waves belonging to the family of solitary waves. Layer res-
onances allow spectral energy transfer and localization near
the excitation boundary, while stegotons carry wave energy
without dispersion as these waves propagate with constant
speed and amplitude. We illustrated these nonlinear signatures
by evaluating the interrelationship of excitation frequency,
energy, wave amplitude, and propagation speed. Stegotons are
generated from the counterbalancing effects of strong non-
linearity and dispersion, in addition to discrete nonlinearity
embedded in a continuum. Due to the discrete nonlinearity
in the form of rough contacts between continua, stegotons
exhibit different propagation characteristics than those of soli-
tary waves, which includes a stronger dependence between
propagation parameters such as amplitude, speed, and con-
tact pressure. Further, stegotons show local variations in their
spatial profiles and amplitudes inside elastic layers. While

024201-12



STRONGLY NONLINEAR WAVE DYNAMICS OF CONTINUUM

PHYSICAL REVIEW E 105, 024201 (2022)

a .
(@ 1 /p\ S
051 11| . l:c
i It
U 0~ p========s=ss
L
051 i
Li
v
_1 L L L L
100 120 140 160 180
Time [ps]
© ' '
i=40
0.5
0 . | . .
80 100 120 140
1 —
le.1 =50
0.5
0 . | . .
80 100 120 140
1
lc :51
E 05
N A |
80 100 120 140
1 - - —
ie =352
0.5
0 . | . .
80 100 120 140
: i=62
057
0 1 1 1 1
80 100 120 140
Time [ps]

() 1 - - - =

051 A\

140 160 180
Time [ps]

120

i=40

140
i=49

120

A

120

80 100

80 100

80 100 120

80 100 120

A

120

140

i=52

80 100 140

i=61

057

80 100 120

Time [ps]

140

FIG. 10. Normalized displacement profile of the layers in the vicinity of collision in phononic material with an (a) odd and (b) even number
of layers. For an odd number of layers, i. is the layer index in which collision is taking place, while i._; and i, are the layers before and after
i, respectively. For an even number of layers, i+ and i~ are the layers before and after the contact where collision is taking place. Signals are
recorded at the center point inside layers. Normalized kinetic (blue) and potential (red) energy of the layers in systems with an (c) odd and
(d) even number of layers. Energies, E, are normalized by the total energy of the stegoton. The layer indices are located at the top-right corner

of each subplot.

stegotons were formed at all the studied frequencies, propaga-
tion of energy through the phononic material was frequency
dependent. Most of the energy either is spatially localized at
frequencies close to (and fractional multiples of) layer res-
onances or propagates through the material as stegotons for
other frequencies.

The observed nonlinear behaviors of the phononic ma-
terial could have potential engineering applications. Layer

resonances can localize energy near the excitation bound-
ary, which can be used for impact mitigation, energy
absorption, and harvesting. Further, stegotons can transfer
signals over long propagation distances without dispersion
in conservative material. This property could be poten-
tially useful in developing advanced sensors and energy
propagators. These properties are also amplitude and fre-
quency dependent, and can be further tuned through system
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parameters allowing control over the propagation of mechan-
ical energy.

This study provides a platform to further explore phononic
material with rough contacts for enriched dynamic response.
The nonlinearity in these materials stems from the nonlinear
mechanical deformation of the rough asperities in contacts.
This would open opportunities to design a more robust and
controllable nonlinear contact response by simply altering
the roughness topography. While this study particularly fo-
cused on zero precompression, phononic materials with weak
precompression can still exhibit strongly nonlinear dynam-
ics for high excitation amplitudes and could possibly offer
an advantage over tuning the wave response through exter-
nal precompression. Importantly, strong nonlinear response
of rough contacts, as studied here, may also allow the re-
alization of new wave phenomena in damped media by
overcoming dissipation losses typically not possible in soft-
flexible metamaterials. The studied phononic material can
be realized through a conventional manufacturing approach
where layers can be aluminum discs or blocks with rough-
ness on either side. Roughness could be generated through
surface treatment using, e.g., rough sandpaper, shot peening,
or sandblasting. Additive manufacturing can also be used
to generate controlled roughness and height distribution of
asperities. While aluminum is used as the base material in
our study to align with prior experiments [40], one could
certainly explore other materials, both hard and soft, that may
change the nonlinearity at the contacts and thus the wave
response.

The present study also opens directions in understand-
ing the fundamental question: What is the role of discrete
nonlinearity in wave propagation? The observations from
our numerical simulations confirm that the existence of a
continuum between successive and discrete nonlinearity can
fundamentally change the overall dynamics of the system by
introducing local modes and resonances. This work could
spur interest in understanding the nature of energy exchange
between coupled discrete-continuum nonlinear systems and
may have implications on exploiting nonlinear discreteness
to control wave propagation. Further, this concept is not just
limited to mechanical systems but could be extended to other
physics.

The emerging field of soft granular crystals cannot fol-
low the assumption of conventional granular media where
particles in contact are assumed as point masses. Our work
provides groundwork on the nonlinear behavior of a system,
qualitatively similar to that of soft granular crystals. This
work opens additional questions in this field: What role does
particle elastic deformation and resonance play on the overall
dynamics of granular crystals? Which type of localized travel-
ing waves do soft granular crystals support? Addressing these
questions could help improve the dynamic response of soft
granular media at frequencies close to the modal frequencies
of individual beads.

Finally, we particularly focused on geomaterial-inspired
rough contact nonlinearity; however, other physical sources
such as hard-soft boundaries, laminated interfaces, and
porosity are other examples of discrete nonlinearities in a
continuum, and their role in wave propagation has not yet
been explored in the phononics community. Specific to rough
contacts, the role of friction, adhesion, and plasticity has been
neglected in our study. The incorporation of these physi-
cal mechanisms could predict a more accurate, if not new,
dynamic response. The heat generation at contacts and cor-
responding thermal stresses may change the local dynamic
response of the material. Further, this study has been limited
to wavelengths larger than the layer thickness and much larger
than the rough asperities. The behaviors at much shorter wave-
lengths may have more pronounced and interesting dynamic
effects. Extending the study to multidimensional systems
could be exciting as it may shed light on the existence of
vector stegotons.
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