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Generalized virial equation for nonlinear multiplicative Langevin dynamics:
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The virial theorem, and the equipartition theorem in the case of quadratic degrees of freedom, are handy
constraints on the statistics of equilibrium systems. Their violation is instrumental in determining how far from
equilibrium a driven system might be. We extend the virial theorem to nonequilibrium conditions for Langevin
dynamics with nonlinear friction and multiplicative noise. In particular, we generalize it for confined laser-cooled
atoms in the semiclassical regime. The resulting relation between the lowest moments of the atom position and
velocity allows to measure in experiments how dissipative the cooling mechanism is. Moreover, its violation can
reveal the departure from a strictly harmonic confinement or from the semiclassical regime.
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I. INTRODUCTION

A major challenge in the field of condensed matter is to
quantify how far from equilibrium a complex system is. In
both hard and soft matter experiments it is often unclear
how driving and dissipation—typically operating locally and
microscopically—manifest in the large-scale dynamics. Such
complexity makes detailed measures of dissipation difficult to
perform.

Entropy production, which is proportional to the dissi-
pated heat for a system in contact with a single thermal
bath [1,2], is the most used measure of nonequilibrium [3].
Nevertheless, it depends on all the nonequilibrated degrees
of freedom of a system, thus making it problematic to be
directly measured [4]. Oftentimes, entropy production is es-
timated by “local” measurement. Indeed, recent advances in
nonequilibrium physics have showed that entropy production
can be lower bounded by the signal-to-noise ratio of a class
of observables [5–7]. Although these inequalities may be
useful for stationary Markovian systems, they are loose for
nonstationary and non-Markovian dynamics [8]. Moreover,
entropy production becomes useless for systems exhibiting
slow dynamics and long-lived metastable states. Indeed, it can
be evaluated divergent on experimental timescales [9] because
some backward transitions cannot be observed.

The probability currents in some reduced phase space can
be considered instead of entropy production [10]. Even though
the method can be useful to detect broken detailed balance
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[11,12]—revealed by the presence of any statistically sig-
nificant current—and may be applicable to slow systems, it
suffers from some of the aforementioned downsides. Namely,
a correct estimation of the dissipation cannot be achieved by
monitoring only a portion of the global phase space of the
system.

Another common approach consists in comparing the
spontaneous fluctuations of the systems with its linear
response to an external perturbation. Violation of the pro-
portionality between the two—the tenet of the fluctuation-
dissipation theorem, valid in equilibrium [13]—is then taken
as a measure of nonequilibrium [14–18]. Clearly, this method
is not free from drawbacks either. In particular, the fact that
the perturbation may inadvertently force the system into the
nonlinear regime and the strong dependence on the choice of
the observable make the method of limited efficacy.

The virial theorem is a further result that can reveal signa-
tures of nonequilibrium. Recently, it was noted that it applies
to a large class of stationary states—not necessarily detailed
balanced—in a generalized form, and reduces to the com-
monly known formula under equilibrium conditions [19]. The
relevance of these results is twofold. On the one hand, the vi-
olation of the equilibrium virial theorem—or the equipartition
theorem for the case of quadratic degrees of freedom—can
be used as a measure of nonequilibrium. On the other hand,
the violation of its generalized expression (valid away from
equilibrium) can reveal the breakdown of the conditions under
which it holds true, namely stationary Langevin dynamics
with additive noise and linear friction.

Here, we further extend the result of Ref. [19] by deriving
a generalized virial theorem for Langevin dynamics with mul-
tiplicative noise and nonlinear friction. We then specialize the
results to the semiclassical model of trapped atoms [20–24],
laser-cooled by the Sisyphus mechanism. The violation of
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the classical energy equipartition theorem for this system was
experimentally observed by Afek et al. [25], which is however
a combined effect of dissipative cooling and anharmonicity
of the confining lattice potential. Our generalized virial re-
lations, Eqs. (28) and (29), respectively, provide a concrete
way to disentangle these effects. Indeed, the presence of a
nonharmonic external potentials makes Eq. (29) invalid, while
Eq. (28) holds true; the presence of dissipation makes the
combination of the higher order moments nonvanishing in
both expressions. Besides that, the simultaneous breakdown
of both formulas would signify a breakdown of the semi-
classical Fokker-Planck description, which might happen in
experiments when atoms are not trapped in a deep lattice.

II. VIRIAL FOR LANGEVIN DYNAMICS

In this section we derive a nonequilibrium relation between
average kinetic energy and force-dependent terms. It builds
upon the mesoscopic virial equation [19], here with a special
focus on nonlinear frictions. We limit our discussion to cases
where position-dependent forces are conservative and derived
from a confining potential U , while all nonequilibrium effects
are explicitly appearing only in the velocity-dependent forces,
which we associate to the notion of nonlinear frictions. A
generalization to nonconservative position-dependent forces
would be straightforward and was already exposed [19]. Its
derivation used (backward) generators of the dynamics while
here we use the complementary approach: we start from den-
sities and use the velocity dependent Fokker-Planck equation,
also known as Kramers equation.

Let us first briefly consider a Langevin motion for a mo-
mentum p = m dq/dt , where m is the mass of the system.
When particles are in an external potential field U (q), a de-
terministic space-dependent force −U ′ ≡ −∂qU enters in the
Langevin equations

ṗ(t ) = −U ′(q) + F (p) +
√

2D(p)ξ (t ),

q̇(t ) = p(t )/m, (1)

where ξ (t ) is a standard white noise and D(p) = D0 + D1(p)
is a diffusion coefficient that in general may have a term D1(p)
depending on the momentum. We choose to interpret this
equation in the Ito convention for stochastic calculus and to
denote this choice by the dot in

√
2D(p)ξ (t ). The term F [p(t )]

represents a momentum-dependent force. It contains a friction
force Ff (p), in general different from the linear damping
∼ − p of the original Langevin equation, yet we assume that
it is odd under velocity reversal Ff (−p) = −Ff (p).

Considering the joint probability density function
ρ(q, p, t ) of density of particles in phase space, we have
the Kramers equation,

∂ρ

∂t
+ p

m

∂ρ

∂q
− U ′(q)

∂ρ

∂ p
= ∂2

∂ p2
[D(p)ρ] − ∂

∂ p
[F (p)ρ], (2)

where the right-hand side contains the Newtonian streaming
terms. A typical example of deterministic force comes from a
harmonic potential, U (q) = m

2 (ωq)2. This potential is confin-
ing (limq→±∞ U (q) = +∞), which is a necessary condition
for the existence of a steady state regime with distribution
ρs(q, p) that fulfills ∂tρs = 0. We consider a generic confining

U (q) and we assume the distribution ρs(q, p) to exist and
to be normalizable. In the following we will only consider
stationary conditions (unless otherwise stated) and averages
with respect to ρs will be denoted by 〈. . .〉. Moreover, for
simplicity and in analogy with the harmonic case, we will also
assume that the potential is even, U (q) = U (−q).

We now multiply Eq. (2) by qp and integrate by parts
over q and p. The term including ∂2

p[D(p)ρ(p)] provides a
null contribution because the associated boundary terms are
assumed to vanish. Hence, we get〈

p2

m

〉
− 〈qU ′(q)〉 = −〈qF (p)〉. (3)

This expression represents a generalized virial relation be-
tween kinetic energy, a virial term −〈qU ′(q)〉, and a nonlinear
dissipative term −〈qF (p)〉. For example, assuming that F (p)
reduces to a linear friction force Ff (p) = −γ p/m we get〈

p2

m

〉
− 〈qU ′(q)〉 = γ

m
〈qp〉, (4)

but here also 〈qp〉 = m
2

d
dt 〈q2〉 = 0 in a steady state. Hence, we

recover the virial theorem〈
p2

m

〉
= 〈qU ′(q)〉. (5)

For example, for the harmonic potential it gives〈
p2

m

〉
= 〈mω2q2〉, (6)

namely, the equipartition on the average of kinetic and poten-
tial energies.

An additional relation can be obtained multiplying Eq. (2)
by p2 and integrating by parts over q and p:

0 = 〈D(p)〉 + 〈pF (p)〉. (7)

Here we have used the fact that 〈pU ′(q)〉 = m d
dt 〈U (q)〉 van-

ishes in the stationary state. Note that for systems in contact
with a thermal bath, i.e., such that F (p) = Ff (p) = −γ p/m
and D(p) = γ kBT (with kB the Boltzmann constant), Eq. (7)
relates the mean kinetic energy to the bath temperature T as
1
m 〈p2〉eq = kBT . Here 〈. . . 〉eq denotes an average with respect
to the equilibrium Gibbs-Boltzmann probability distribution

ρeq(p, q) = 1
Z e− 1

kBT [ p2

2m +U (q)], with Z a normalization factor.
Therefore, in thermal equilibrium the energy equipartition
Eq. (6) is not only between the particle velocity and position,
but also between the particle and the thermal bath degrees of
freedom, in the form〈

p2

m

〉
eq

= kBT = 〈mω2q2〉eq. (8)

However, if F (p) is nonlinear, while Eq. (3) remains valid,
then we may also evaluate other approaches for obtaining
simpler relations. If the dissipative force is polynomial in
the momentum, then it seems reasonable to plug it directly
to Eq. (3). For example, for the case of Rayleigh-Helmholtz
friction used to describe active Brownian particles [26] and
molecular motors [27], there is a velocity-dependent force

F (p) = αp − p3, α > 0. (9)
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This force corresponds in our notation to a nonlinear fric-
tion, which correctly dampens the motion for large velocities
(p > p0 ≡ √

α), while F (p) is in the same direction of the
velocity for p < p0 and hence it effectively propels the slow
particles. By expanding the last term in the mesoscopic virial
Eq. (3) and collecting also mixed position-velocity terms from
〈qF (p)〉, we get (recalling that 〈qp〉 = 0)〈

p2

m

〉
− 〈qU ′(q)〉 = 〈qp3〉. (10)

This is simple enough to not need alternative approaches. In
the following sections we show that a better option exists
for systems displaying nonpolynomial forces, such as trapped
atoms with Sisyphus cooling, which we now briefly introduce.

III. LASERS AND SISYPHUS COOLING

Cold atoms with a Sisyphus cooling mechanism are perfect
for illustrating the basic steps of the strategy introduced in the
next section. In the semiclassical approximation, we consider
a stochastic motion induced by a laser field on cold atoms
[22,23]:

ṗ(t ) = −U ′(q) + ∂D(p)

∂ p
− γ p

1 + (p/pc)2︸ ︷︷ ︸
F (p)

+
√

2D(p)ξ (t ),

q̇(t ) = p(t )/m. (11)

Note that, with respect to the anti-Ito Langevin equation in
Refs. [22,23], the equivalent Ito form Eq. (11) acquires an
extra term ∂pD(p) in the dissipative force F (p). Here, the
momentum-dependent diffusion constant has the form

D(p) = D0 + D1(p)

= D0 + D1

1 + (p/pc)2
, (12)

where pc is the capture momentum above which cooling
becomes ineffective, D0 is the constant part of the diffusion
coefficient, and with a slight abuse of notation by D1(p) we
term the momentum-dependent part of the diffusion coeffi-
cient and by D1 its amplitude. Indeed, in the semiclassical
approximation, the friction for Sisyphus cooling is

Ff (p) = − γ p

1 + (p/pc)2
. (13)

This friction has two distinct regimes:

Ff (p) ∼ −p for p 
 pc,

Ff (p) ∼ −1

p
for p � pc. (14)

Note in particular that the friction tends to zero for p → ∞,
while it retains a linear character for small momenta.

We will focus on a typical experimental condition in which
the confining potential is harmonic,

U (q) = m

2
ω2q2, (15)

expressed in terms of a typical frequency ω/2π and of the
“mass” m. Given the typical timescale 1/ω and the refer-
ence momentum pc, it is convenient to convert the above

TABLE I. With a slight abuse of notation, we use the same letter
t both for the physical time and for the dimensionless time. Note that
Ff (v) and D(v) would be proportional to each other and satisfying a
fluctuation-dissipation relation if D0 = 0.

Quantity Dimensionless

Time t t ← γ t

Momentum p v = p

pc

Position q x = mω

pc
q

Angular frequency ω 	 = ω

γ

Diffusion constants D0 D0 = D0

γ p2
c

D1 D1 = D1

γ p2
c

D1(p) D1(v) = D1

1 + v2

D(p) = D0 + D1(p) D(v) = D0 + D1(v)

Friction force Ff (p) Ff (v) = − v

1 + v2

Harmonic force −U ′(q) = −ω2q −U ′(x) = −	x

equations in terms of the dimensionless quantities defined in
Table I. We obtain

v̇(t ) = −U ′(x) + ∂D(v)

∂v
+ Ff (v) +

√
2D(v)ξ (t ),

ẋ(t ) = 	v(t ). (16)

In dimensionless units, the harmonic potential becomes
U (x) = 1

2	x2. Any Langevin dynamics with generic con-
fining potential U (x) can be converted in its dimensionless
version Eq. (16), as long as a typical timescale 1/ω is defined.
Hence, the force −U ′(x) remains written in a generic notation
as long as we are not specializing the harmonic case.

IV. GENERALIZED VIRIAL RELATION

For systems with a peculiar friction term, we show that
there is an alternative approach to the straightforward Eq. (3),
which may lead to a simple and elegant generalized relation
involving sums of polynomial terms of the momentum and
position, in addition to the usual mean squared momentum
and mean squared position. We saw already that the stan-
dard virial theorem is found technically by multiplying the
Kramers Eq. (2) by qp and integrating by parts, then exploit-
ing the fact that the time derivative of 〈q2〉 is zero. We now
aim to use a similar strategy, but due to the nonlinearities we
cannot simply consider the product qp.

In the dimensionless units of Table I, with Kramers equa-
tion

∂ρ

∂t
+ 	v

∂ρ

∂x
− U ′(x)

∂ρ

∂v
= ∂2

∂v2
[D(v)ρ] − ∂

∂v
[F (v)ρ],

(17)

the basic idea is to get back a null term of the form 〈xv〉 =
0 after integration over x, v of Eq. (17) multiplied by xg(v),
where g(v) is a function suitable to transform favorably the
term − ∂

∂v
[Ff (v)ρ].
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To determine which g(v) makes the trick, consider the
integration by parts

−
∫ ∞

−∞
dx

∫ ∞

−∞
dv x g(v)

∂

∂v
[Ff (v)ρ]

=
∫ ∞

−∞
dx

∫ ∞

−∞
dv x

∂g(v)

∂v
Ff (v)ρ. (18)

It is convenient to choose g(v) such that its derivative g′(v) ≡
∂vg(v) satisfies

g′(v)Ff (v) = v ⇒ g′(v) = v

Ff (v)
, (19)

which leads to

g(v) =
∫

dv
v

Ff (v)
+ const. (20)

Again, with the usual linear friction Ff = −v this would lead
to g(v) = −v + const. The additive constant is not relevant
because it does not enter in Eq. (19), thus we could simply
choose g = −v, as above, to simplify the equations and get to
the virial theorem.

In the case of driven cold atoms, by embedding the friction
Eq. (13) in Eq. (20) we get

g(v) =
∫

dv(1 + v2) + const =
(

v + v3

3

)
+ const. (21)

In general, multiplying the Kramers Eq. (2) by xg(v) with
g(v) obtained through Eq. (20), after the usual averaging one
gets

−	〈vg(v)〉 +
〈
g′(v)x

[
U ′(x) − ∂D

∂v

]〉

= 〈D0xg′′(v)〉 + 〈D1(v)xg′′(v)〉 + 〈g′(v)xFf (v)〉, (22)

where for convenience we have already split the term with D0

from the one with fluctuating diffusion coefficient D1(v). The
last average on the right, by construction, transforms to the
null term 〈xv〉 = 1

2
d
dt 〈x2〉 = 0 at steady state. Moreover, if we

assume that the velocity-dependent part of the noise intensity
satisfies the (nonlinear) Einstein relation [28]

D1(v) = α
Ff (v)

v
= α

1

g′(v)
, (23)

(with some constant α), then we obtain that

−D′
1g′ = D1g′′. (24)

This is indeed the case for Sisyphus cooling, and generally
applies to any system in which the friction Ff and the part of
the noise with intensity D1 are originated in the same bath.
With the definition Eq. (20) and the assumption Eq. (23),
due to Eq. (24) we have that two terms cancel each other in
Eq. (22) and hence it reduces to the main general equation of
this work,

−	〈vg(v)〉 + 〈g′(v)xU ′(x)〉 = D0〈xg′′(v)〉 (25)

or

−〈vg(v)〉 +
〈

v

Ff (v)
xU ′(x)

〉
= D0

〈
x

∂

∂v

(
v

Ff (v)

)〉
. (26)

Note that the constant in Eq. (20) remains irrelevant as long as
〈v〉 = 0. One can check that Eq. (26) turns into the standard
equipartition Eq. (6) when Ff = −v.

A. Generalized virial relation for Sisyphus cooling

With Sisyphus friction Eq. (13) with g(v) = v + v3/3 we
may simplify Eq. (26) to

−	

〈
v

(
v + v3

3

)〉
+ 〈(1 + v2)xU ′(x)〉 = D0〈x2v〉 = 0,

(27)

in which again we have used 〈xv〉 = 0. Therefore, for cold
atoms driven by a laser one should observe

	〈v2〉 + 	

3
〈v4〉 = 〈xU ′(x)〉 + 〈v2xU ′(x)〉. (28)

With the harmonic potential U (x) = 1
2	x2 this relation be-

comes an equation involving simple even moments of velocity
and position,

〈v2〉 + 1
3 〈v4〉 = 〈x2〉 + 〈v2x2〉. (29)

In comparison to the equipartition 1
2 〈v2〉eq = 1

2 〈x2〉eq between
kinetic and potential degrees of freedom, one notes the addi-
tional presence of two other moments of velocity and position.
Arguably, it is more elegant and straightforward than the form
one would obtain by applying directly the general Eq. (3),
which would contain a term averaging a ratio 〈vx/(1 + v2)〉.

Note that Eq. (29) remains valid even for pc → ∞, when
the friction is linear and the dynamics is thus in equilib-
rium. Indeed, we can check that 1

3 〈v4〉eq = 〈v2〉2
eq thanks

to the Gaussian statistics of the velocity distribution, and
	〈v2x2〉eq = 〈v2〉eq〈x2〉eq = 〈v2〉2

eq, because x and v are in-
dependent and the equilibrium equipartition Eq. (6) (in the
dimensionless form) holds.

Finally, we mention that other choices for g(v) are possi-
ble. Each would yield a different generalized virial relation
involving higher moments of x and v. We provide an example
in Appendix.

B. Numerical results

To obtain trajectories for Sisyphus cooling trapped by a
harmonic potential, in the simplified setup with D1 = 0, we
have integrated numerically Eq. (16) by adapting a standard
scheme [29] to the case of nonlinear friction force. Within
each time step dt , the following algorithm generates the new
values of (dimensionless) velocity and position (vt+dt , xt+dt )
from (vt , xt ) and harmonic force ft = −	xt :

ct = e− 1
2 dt/(1+v2

t ), (30a)

vt+dt/2 = ctvt + dt

2
ft + BN , (30b)

xt+dt = xt + 	 dt vt+dt/2, (30c)

ft+dt = −	xt+dt , (30d)

ct+dt/2 = e− 1
2 dt/(1+v2

t+dt/2 ), (30e)

vt+dt = ct+dt/2vt+dt/2 + dt

2
ft+dt + BN ′, (30f)
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FIG. 1. Example of time series of velocity, minus friction force,
and position, for a harmonic potential with 	 = 0.1, D1 = 0 and
(a) D0 = 0.05, (b) D0 = 0.2, (c) D0 = 1. Numerical integrations of
Eq. (16) follow the scheme Eq. (30) with dt � 10−4.

where B =
√

(1 − e−dt )D0 is the prefactor of normally dis-
tributed random numbers N ,N ′, and where friction terms
ct , ct+dt/2 depend on the velocities vt and vt+dt/2, respectively.

We use a time step dt = 10−4 for D0 < 0.5 and dt = 0.5 ×
10−4 for D0 > 0.5. For each set of parameters we collect
N = 106 samples, with a sampling time step 
t = 1 � 104dt .
The autocorrelation Cx(i) = 〈x jx j+i〉 of the collected data se-
ries {xi}, i � N , is used to compute the autocorrelation “time”
i∗, as the smallest i∗ such that Cx(i∗)/Cx(0) < e−1. The corre-
sponding number of independent samples N ′ = N/i∗ is used
to compute errors for each average quantity 〈q〉 = ∑

i�N qi/N
as [(〈q2〉 − 〈q〉2)/N ′]1/2.

Some parts of time series generated with this method are
shown in Fig. 1 for three values of D0. The friction force
essentially equals (minus) the velocity when the system is
affected by a weak noise [small D0, as in Fig. 1(a), yields
−Ff � v]. Figure 1(b) shows longer periods of |Ff | < |v| for
larger D0’s, which are induced by broader variations of the
velocity v. Finally, Fig. 1(c) displays the broad fluctuations of
x and v in the large D0 regime, where their density function
acquires fat tails [22,23].

In Fig. 2 we plot 〈v2〉/D0 and 〈x2〉/D0 as a function of
D0, with 	 = 0.1. At small values of D0 they both tend to
1, showing that normal equipartition Eq. (8) at “tempera-
ture” kBT �→ D0 is approximately valid in that range. This
is because the friction force becomes linear in v in the limit
D0 → 0. Conversely, standard equipartition breaks down for
increasing values of D0. Figure 3 better visualizes the devia-
tion from equipartition by plotting the ratio

χ ≡ 〈x2〉
〈v2〉 , (31)

FIG. 2. For a harmonic potential with 	 = 0.1, 〈v2〉/D0 and
〈x2〉/D0 as a function of D0 (D1 = 0). For D0 → 0 equipartition is
approximately valid while it is violated for 0.1 � D0. Dotted lines
are guides to the eye.

while the ratio

χgen ≡ 〈x2〉 + 〈v2x2〉
〈v2〉 + 1

3 〈v4〉 (32)

remains equal to 1 (within statistical uncertainty) for all values
of D0, confirming that our new generalized virial relation
Eq. (29) is valid.

Analytical results valid in the regime of strong confinement
(	 � 1) and constant diffusion function (D1 = 0), show that
no stationary probability density exists for D0 > 1, and some
moments, such as the average energy, are time-dependent

FIG. 3. Ratio of equipartition terms vs D0 (D1 = 0, 	 = 0.1),
highlighting the departure from normal equipartition, the validity of
the new generalized virial Eq. (29), and the violation of the latter in
a nonharmonic system perturbed by a quartic potential energy term.
The gray curve is the analytical expansion of χ up to third order
in D0, Eq. (26) in Ref. [23]. Dotted lines are guides to the eye and
the gray area refers to the regime D0 > 1/2 where sampling is not
stationary due to fat tails in the phase space probability density.
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for D0 � 1/2 [23]. Notwithstanding, we decide to plot the
empirical averages of v2 and x2 up to D0 = 1. Interestingly,
data for χ suggests that standard yet nonthermal equipartition
〈x2〉 = 〈v2〉 �= D0 may be also satisfied at large values of D0.
This finding can be heuristically explained by the fact that for
large D0, large noise kicks accelerate the particle into a regime
of essentially vanishing friction force [see Eq. (14)]. The
resulting motion is characterized by long periods of quasiperi-
odic oscillations, with minimal dissipation only at the turning
points; see Fig. 1(c). Having this picture in mind, we conclude
that the standard equipartition may approximately hold even
far from equilibrium, as we can guess from Eq. (3) (still
assuming that d

dt 〈qp〉 � 0) by setting F (p) � 0.
Finally, we recall that Eq. (29) is valid for quadratic de-

grees of freedom and can be used to detect departures from a
purely harmonic potential. By adding a term Uε = 	εx4/4 to
the confining potential (ε = 10−3), we see in Fig. 3 that indeed
χgen departs from 1 at sufficiently high values of D0, where the
system can explore the nonharmonic region of the potential.
The trend of χgen toward small values is reasonable: with
respect to the harmonic case, the more confined motion seems
to reduce more the position dependent term 〈x2〉 + 〈x2v2〉 than
the term 〈v2〉 + 〈v4/3〉 depending purely on the velocity.

V. CONCLUSIONS

For the single-particle Langevin equations with nonlinear
friction and multiplicative noise we have shown a general
method to derive extensions of the virial law to nonequilib-
rium stationary states. In particular, for trapped atoms cooled
by the Sisyphus mechanism we have obtained simple explicit
expressions that involve only the lowest moment of the atom
position and velocity. For the case of harmonic confinement
and additive noise, we have numerically verified that our
generalized virial relation holds for all relevant values of the
noise strength, while equilibrium equipartition is broken at
intermediate noise strengths. These results can be tested in
experiments [25], and the method introduced here may be
extended to other systems displaying nonpolynomial friction
forces (see, e.g., Ref. [30]).
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APPENDIX: ALTERNATE VERSION
OF GENERALIZED VIRIAL

Let us reconsider the more general case D(v) = D0 +
D1/(1 + v2) in which D1 is not null. The aim remains to
find equations involving polynomial terms of x and v. Thus,
a suitable g(v) now should remove both the ∼(1 + v2)−1 in
D(v) and a ∼(1 + v2)−2 arising from the gradient of D(v)
in the drift of the stochastic equations. It turns out that an
interesting choice is

g(v) = v + 2
3v3 + 1

5v5, (A1)

g′(v) = 1 + 2v2 + v4 = (1 + v2)2, (A2)

g′′(v) = 4v(1 + v2). (A3)

Indeed, by using it in Eq. (22) together with U ′ = 	x, we get

0 = 	
[〈v2〉 + 2

3 〈v4〉 + 1
5 〈v6〉] + (4D0 − 1)〈xv3〉

− 	[〈x2〉 + 2〈x2v2〉 + 〈x2v4〉], (A4)

where we set again 〈xv〉 = 0 thanks to the condition of sta-
tionary state. This is another generalized virial relation in
which standard deviations of the position and velocity terms
are joined by mixed higher order moments. In Eq. (A5) there
is no explicit dependence on the constant D1, which enters
only implicitly in shaping the steady state averages. Compared
to the relation Eq. (29), this equation is slightly more complex
and includes an explicit dependence on the other constant D0

entering in the form of the noise strength D(v). Note that
plugging Eq. (29) into Eq. (A5) we can eliminate some higher
moments, arriving at

〈x2〉 − 〈v2〉 + 1

5
〈v6〉 − 〈x2v4〉 = 1 − 4D0

	
〈xv3〉. (A5)

However, these equations involve high moments of veloc-
ity and position; hence, in practice their precise evaluation
requires a better amount of sampling than that needed for
Eq. (29).
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