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Physics in nonfixed spatial dimensions via random networks

Ioannis Kleftogiannis 1 and Ilias Amanatidis 2

1Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
2Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Received 25 October 2021; revised 29 November 2021; accepted 24 January 2022; published 28 February 2022)

We study the quantum statistical electronic properties of random networks which inherently lack a fixed spatial
dimension. We use tools like the density of states (DOS) and the inverse participation ratio to uncover various
phenomena, such as unconventional properties of the energy spectrum and persistent localized states (PLS) at
various energies, corresponding to quantum phases with zero-dimensional (0D) and one-dimensional (1D) order.
For small ratio of edges over vertices in the network R we find properties resembling graphene(honeycomb)
lattices, like a similar DOS containing a linear dispersion relation at the band center at energy E = 0. In addition,
we find PLS at various energies including E = −1, 0, 1, and others, for example, related to the golden ratio. At
E = 0 the PLS lie at vertices that are not directly connected with an edge, due to partial bipartite symmetries of
the random networks (0D order). At E = −1, 1 the PLS lie mostly at pairs of vertices (bonds), while the rest of
the PLS at other energies, like the ones related to the golden ratio, lie at lines of vertices of fixed length (1D order),
at the spatial boundary of the network, resembling the edge states in confined graphene systems with zigzag
edges. As the ratio R is increased the DOS of the network approaches the Wigner semicircle, corresponding to
random symmetric matrices(Hamiltonians) and the PLS are reduced and gradually disappear as the connectivity
in the network increases. Finally, we calculate the spatial dimension D of the network and its fluctuations. We
obtain both integer and noninteger D and a logarithmic dependence on R. In addition, we examine the relation of
D and its fluctuations to the electronic properties derived. Our results imply that universal physics can manifest
in physical systems irrespectively of their spatial dimension. Relations to emergent spacetime in quantum and
emergent gravity approaches are also discussed.
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I. INTRODUCTION

The concept of spatial dimension has been central in
physics for many centuries. Physics problems are usually
formulated mathematically on geometrical manifolds with a
well-defined spatial dimension, which is taken as an input.
However, in recent decades problems like quantum and emer-
gent gravity and geometry have shown that a reconsideration
of this concept is required. For example, models like, string
theory formulated on continuous manifolds (membranes) of
variable dimensions higher than three [1,2], or discrete-
network-graph models like loop quantum gravity [3,4], causal
set cosmology [5–8], the Wolfram-Gorard-Piskunov model
[9,10], and others [11–16], hint that spatial dimension as a
fundamental concept has to be revised, if spacetime and its
dimensionality are to be recovered as emergent from other
more fundamental structures. Also, problems like the small
value of the cosmological constant, which could be an instrisic
property of spacetime as it emerges from other structures is
a major related issue. All the above are strong suggestions
that a theory reproducing the properties of spacetime in our
universe, gravity and quantum effects could be spatiodimen-
sionless in its nature. Apart from quantum and emergent
gravity, physics in nonfixed spatial dimensions can be use-
ful in characterizing quantum and other phases emerging
in many-body networks [17–20], that could be also rele-
vant to emergent spacetime and its dimensionality, through
entanglement.

In this paper we consider spatiodimensionless physical
systems, modelled via the most structureless models, random
networks [21–23], which are discrete mathematical models
that do not inherently have a fixed spatial dimension. We
consider uniform networks and study their quantum statistical
electronic properties, using tools like the density of states
(DOS) and the inverse participation ratio (IPR). We find that
for small ratio of edges over vertices R in the network, its
electronic properties resemble those of graphene(honeycomb)
lattices with properties like a linear dispersion relation at the
band center at energy E = 0 and edge states [24–28] con-
centrating at the spatial boundary of the network. We find
persistent localized states (PLS) at various energies, including
E = −1, 0, 1 and others, for example, related to the golden
ratio, via the study of the DOS and the IPR. These states are
composed primarily of single unconnected vertices (0D order)
at E = 0 and one-dimensional (1D) clusters (1D order) for the
other energies, where the wave function is localized. The en-
ergy of these 1D ordered states is determined by the dispersion
of 1D tight-binding chains formed by the 1D clusters of var-
ious lengths. The 0D ordered states at E = 0 spread over the
whole network, while the 1D ordered states concentrate at the
spatial boundary of the network, resembling the edge states
in confined graphene systems with zigzag edges [24,25,28].
As the number of edges between the vertices in the network
increases, the DOS approaches the Wigner semicircle, corre-
sponding to ensembles or random symmetric matrices, and
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the number of PLS is gradually reduced until they disappear
for large R. Finally, we calculate the spatial dimension D
of the network. We find that the networks which resemble
graphene have D ≈ 2, fitting into a 2D plane. The dimension
is increased logarithmically as R increases and the network
becomes more dense as more edges are added between its
vertices. Additionally, D reaches integer values like D ≈ 4
apart from noninteger ones. Our results show that universal
phenomena can manifest in physical systems irrespectively
of their spatial dimension. In addition, we briefly discuss the
relation of our results to emergent spacetime, relativity and
gravity from discrete mathematical models.

II. NETWORK MODEL

Random networks are discrete mathematical models com-
posed of many vertices randomly connected with edges
[21–23]. They can be used to express relations between
different quantities, which is useful, for example, in simu-
lating various real-world behaviors, such as propagation of
behavioral patterns in social networks or in communications
technology. Random networks are also useful in studying
various localization phenomena in mesoscopic and random
waveguide systems, theoretically and experimentally [29].
The probability distribution of the number of edges at each
vertex i [degree d (i)] determines the type of network. In
the current paper we choose the most simple type, uniform
networks (originally introduced by Paul Erdös and Alfred
Rényi), whose degree at each vertex follows a hypergeometric
function. Essentially, we have a fixed number of vertices n
and edges m, randomly distributed between them, forming
a random network G(n, m). All the configurations of the
edges among the vertices, whose number is

((n
2)
m

)
, have an

equal probability to appear p = 1

((n
2)
m )

. The mean degree for

each vertex in the uniform network is given by 〈d (i)〉 = 2 m
n

which can be interpreted as the average connectivity in the
network. Note, that there are no multiedges or loops namely
the network is a simple undirected graph. We define the ratio
of vertices over the edges in the network R = m

n , which is
half its average connectivity R = 〈d (i)〉

2 . We note that uniforms
networks are a variant of random binomial graphs G(n, p),
where each edge is present with probability p. When p = m

(n
2)

uniform graphs and binomial graphs behave similarly in the
limit n → ∞, where p ≈ 2m

n2 . For R � 1
2 the uniform network

lies on the subcritical phase, consisting of many small discon-
nected components. On the other hand, for R > 1

2 the uniform
network lies on the supercritical phase and contains instead a
unique giant component and a few disconnected small com-
ponents [23]. In our calculations, we consider R > 1

2 ensuring
that the network contains a large component to study.

We examine how a quantum particle behaves as it propa-
gates through the tight-binding lattice formed by the random
network, i.e., the electronic properties of the random network.
The Hamiltonian of the system can be written as

H =
m∑

<i, j>

(c†
i c j + H.c.), (1)

where c†
i (ci ) is the creation(annihilation) operation for a par-

ticle at vertex i in the random network. The indexes i, j are
randomly sampled and create m pairs, representing the edges
between the vertices in the network. Equation (1), known also
as the adjacency matrix of the network (graph) is a random
matrix with a fixed number of elements m (the number of
edges) with the value of one, randomly distributed inside its
upper diagonal. In certain cases, such random network Hamil-
tonians have been shown to belong to the same universality
class as models used to study Anderson localization phenom-
ena [29]. For example, regular tight-binding lattices like the
square or the cubic lattice with a random onsite potential
(Anderson model). The randomly distributed elements in the
Hamiltonian matrix Eq. (1) induce interference effects leading
to localization of the wave functions as in the Anderson model
or in random matrix theory (RMT) models.

III. ENERGY SPECTRUM

In this section, we examine the properties of the energy
spectrum of the random network via the distribution of eigen-
values of Eq. (1), i.e., the density of states (DOS) of the
random network. First, there are two limiting cases worth
mentioning. When all the n vertices in the network are dis-
connected (isolated) from each other (m = 0) then all the
elements of the Hamiltonian Eq. (1) are zero resulting in
n zero eigenvalues and a DOS localized at energy E = 0.
However, when all the vertices in the network are connected
with each other, forming a k-complete graph, the Hamiltonian
is full apart from its diagonal which has all its elements equal
to zero. In the intermediate case, for an arbitrary number of
vertices n and edges m in the network we have found two
major forms for the DOS. The results are shown in Fig. 2.
In the plots we have removed the eigenvalues E = 0 coming
from isolated vertices in the network which lead to lines and
columns of zeros in the Hamiltonian. For low ratio R in
Figs. 2(a) and 2(b) the DOS of the random network [ρ(E )]
resembles that of a graphene(honeycomb) lattice as can be
seen from the comparison between the blue dashed line and
the histogram. The DOS of graphene is given by

ρ(E ) =
⎧⎨
⎩

1
2π2

4E
(E+1)3(3−E ) K

(√
16

(E+1)3(3−E )

)
0 � E < 1,

1
2π2 K

(√
(E+1)3(3−E )

16

)
1 < E � 3,

(2)

for positive E , where K denotes the elliptic integral of the first
kind. The DOS of graphene for negative E is produced by
applying E → −E in the above equation. The main features
of the DOS for both graphene and the network are two peaks
at energies E = −1, 1 and a linear behavior ρ(E ) = α|E |
near E = 0 shown in the insets of Figs. 2(a) and 2(b). The
DOS of graphene reduces to the linear form ρ(E ) = 1

2π h̄2v2
f
|E |

near E = 0, where v f =
√

3at
2h̄ is the Fermi velocity of the

electrons and a is the lattice constant. For a = 1 and t = 1
we have ρ(E ) = 2

3π
|E | = 0.21|E |, which is represented by

the blue dashed curves in the insets of Figs. 2(a) and 2(b).
We note that for low R there is a large probability that the
network contains many small disconnected components as
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FIG. 1. Various random networks for different values of the ratio
of the number of edges m over the number of vertices n (R). We fix
n = 3000 for all the cases shown. For R = 0.67 the network is almost
planar with few overlapping (crossing) edges, meaning that it can be
fitted approximately into a 2D plane. As more edges are added, R
increases and the network becomes spatially more dense.

shown in Fig. 1. We have found that these components largely
contribute in the number of states appearing at E = −1, 1.
Another main feature is a peak at E = 0 which appears also
for confined graphene systems with zigzag edges like flakes
and nanoribbons, due to edge states [24,25,28]. However, the
corresponding wave functions of the networks at E = 0 are
not edge states. States resembling the edge states in graphene,
concentrating at the spatial boundary of the network, appear at
energies away from E = 0, as we shall show in the following
sections where we examine their localization properties also.
The resemblance to graphene can be seen schematically in
the network presented in Fig. 1 for R = 0.67. The network
consists primarily of polygons (cycles), whose corners con-
sist of vertices that are connected mostly to three or four
neighboring vertices with 〈d (i)〉 ≈ 3. In addition, there are
very few crossing edges, i.e., the network is approximately
planar, meaning that it can be fitted into a two-dimensional
(2D) plane. This structure is topologically very similar to a
graphene(honeycomb) lattice which is a 2D plane of hexagons
with every lattice site having three neighboring sites, i.e., the
connectivity is three. The hexagons in graphene are topolog-
ically equivalent to the cycles in the network, irrespectively
of their number of edges. Note that large uniform graphs, and
virtually all random graphs, are locally treelike. Cycles con-
sisting of few edges, such as triangles, squares, and pentagons,
are rare. When cycles appear they are usually very large, i.e.,
they consist of many edges. Therefore, the local structure of
graphs is very different from that of regular lattices, such as
graphene where short cycles are abundant. Despite this fact,
as we have shown from the analysis of the DOS, some of
the electronic properties of sparse uniform networks resemble
those of graphene. This is due to the similar lattice topologies
of the two systems, i.e., the existence of cycles and the same
connectivity between them (〈d (i)〉 = 3).

FIG. 2. The distribution of eigenvalues [density of states (DOS)]
of the adjacency matrix for various values of the ratio of edges
over vertices R in the network, represented by the black his-
tograms. We have considered 100 different configurations (runs) of
the network. Isolated vertices have been removed from the calcu-
lation. The DOS in the upper panels (a), (b) contain features from
graphene(honeycomb) lattice systems, as shown from the compar-
ison with the DOS of graphene, represented by the blue dashed
curve. A linear behavior of the DOS is shown in the insets, where
the green solid curve is a linear fitting ρ(E ) = α|E | with α = 0.32
for R = 0.67 and α = 0.6 for R = 1. As R increases, the network
becomes more dense and its DOS approaches the Wigner semicircle
in panels (c), (d), represented by the red solid curves, resembling the
distribution of eigenvalues of random symmetric matrices (Hamil-
tonians) from random matrix theory (RMT). A prominent peak at
E = 0 is present in all cases coming from many states at this energy,
persistent for all networks, due to a partial bipartite symmetry of the
network lattice.

A linear dispersion relation E ∼ k can be derived from
ρ(E ) = α|E |, by assuming a spherical symmetry in the Bril-
louin zone [30]. Since the network for R = 0.67 resembles
a 2D manifold we can assume a coordinate system with two
parameters x, y to describe it. We can define two wave vectors
kx, ky for a particle in a two-dimensional box,

kx = πnx
L ,

ky = πny

L ,

(3)

where L is the size of the box along the x and y directions.
The total number of states N in a volume and area inside the
Brillouin zone is

N =
∑
nx,ny

�nx�ny = L2

π2

∑
kx,ky

�kx�ky. (4)

Assuming a circular (rotational) symmetry in the Brillouin
zone and using polar coordinates we can write

∑
kx,ky

�kx�ky =
∫ k

0
kdk

∫ 2π

0
dφ = πk2, (5)
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where k2 = k2
x + k2

y . Then we have

N = L2k2

π
. (6)

The total number of states per system area is

n = N

L2
= k2

π
=>

dn

dk
= 2k

π
. (7)

Then we can derive a linear energy dispersion relation E (k) by
taking account of the linear behavior of the DOS near E = 0
(ρ(E ) = α|E |) as follows:

ρ(E ) = dn

dE
=> ρ(E )dE = dn

dk
dk =>

π

∫
α|E |dE =

∫
2kdk => E =

√
2

πα
|k|. (8)

The above dispersion is analogous to the linear energy dis-
persion for relativistic massless particles E = h̄ck, followed
also by graphene near E = 0, where the speed of light c is
replaced by the Fermi velocity of the electrons v f =

√
3at

2h̄ .
For the networks from Eq. (8) we get an effective speed of

light vnt = 1
h̄

√
2

πα
, with dispersion E = h̄vnt k, where α can be

obtained by the linearity(slope) of the DOS near E = 0 from
ρ(E ) = α|E |. For example, we have α = 0.32 for R = 0.67,
α = 0.6 for R = 1 and α = 0.21 for graphene. The velocity
vnt could represent an upper limit for the transmission speed of
information inside the network. Notice that a similar relation
v f = 1

h̄
√

2πα
is followed also by graphene, meaning that vnt

and v f will have the same order of magnitude (106 m/s),
assuming that the hopping t and the lattice constant a are the
same for both graphene and the network.

The peaks at E = −1, 0, 1 and the linear dispersion near
E = 0, gradually disappear as R increases as can be seen in
Figs. 2(c) and 2(d). As more edges are added in the network
its Hamiltonian starts to resemble ensembles of random sym-
metric matrices, from RMT, whose distribution of eigenvalues
follows the Wigner semicircle, as the size of the matrices
approach infinity. This behavior has been observed in vari-
ous uncorrelated random graphs [21]. The Wigner semicircle
function is defined as

f (x) =
{

2
πR2

√
R2 − x2 −R � x � R,

0 otherwise.
(9)

The above equation for various R is represented by the red
solid curve in Fig. 2 and describes sufficiently the DOS for
the cases shown in Figs. 2(c) and 2(d). Some features of
the DOS at its edges are also captured by the Wigner semi-
circle in Figs. 2(a) and 2(b) for low R. In overall we see
that the DOS of the random network contains features from
both graphene(honeycomb) lattices and disordered systems
described by RMT. The contribution of these two systems on
the electronic properties of the network depends on the value
of R, which determines the spatial density of the network.
Sparse networks for low R resemble graphene, while dense
networks for large R resemble disordered systems described
by RMT.

The main difference with regular and periodic lattices such
as the square, the cubic and the hypercubic is that their DOS

FIG. 3. The inverse participation ratio (IPR) for various values
of the ratio R, for 100 runs. All isolated vertices have been removed
from the calculation. The states across the whole energy spectrum
become in average less localized as the network becomes more
dense, since IPR decreases in average with increasing R. Persistent
localized states (PLS) can be distinguished at various energies in-
cluding E = −1, 0, 1, where IPR concentrates along vertical lines
with higher values than the rest of the states. As seen in the inset the
number of PLS is gradually decreased with increasing R, although it
happens more slowly for the E = 0 states.

reaches gradually a Gaussian distribution as the lattice con-
nectivity, i.e., the number of neighbors at each site in the
lattice goes to infinity.

IV. LOCALIZATION PROPERTIES

In Fig. 3 we show the inverse participation ratio (IPR) for
the wave functions of Eq. (1) defined as

IPR(E ) =
n∑

i=1

|�i(E )|4, (10)

where i runs over the all the vertices and � is the correspond-
ing wave-function amplitude. We show IPR for 100 different
configurations of the network (runs). There are two major
features that we can observe. As R increases and the net-
work becomes spatially more dense, IPR decreases in average.
This means that the corresponding wave functions become
in average less localized with increasing R. We have verified
that these wave functions corresponding to low values of IPR
spread over the whole network with random amplitudes at
each vertex, resembling chaotic wave functions encountered
in disordered tight-binding lattices [31,32]. Another major
feature that we can observe in Fig. 3 is persistent localized
states (PLS) appearing at various energies corresponding to
high values of IPR, forming persistent vertical lines for all
R. We can clearly distinguish PLS at energies E = −1, 0, 1,
which correspond to peaks in the DOS shown in Fig. 2. As
shown in the inset of Fig. 3 the number of these states are
reduced as R increases. We have found that the states at E = 0
are localized along the whole network, but only on vertices
which are not directly connected with an edge. Note that
these vertices should not be confused with isolated vertices
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completely disconnected from the large component of the net-
work, which have been removed from our calculations. All the
E = 0 states are localized on the same vertices albeit with dif-
ferent amplitudes. This is one main feature of the E = 0 states
for all R and differs from confined graphene systems with
zigzag edges which contain edge states at E = 0 concentrated
at the boundary of the system [24,25,28]. We can consider
that the PLS at E = 0 in the network, form a quantum phase
of zero-dimensional (0D) order, since the wave function lies
only on vertices that are not directly connected with an edge.
However, we have found that the PLS at E = −1, 1 localize
mostly on pairs of vertices connected with an edge (bonds).
These states concentrate at the spatial boundary of the net-
work, i.e., they consist primarily of bonds connected to the
periphery of the network with one vertex, resembling dangling
bonds. This bond-ordered localized phase disappears for large
R indicating a phase transition at some critical value of R.
However, the E = 0 states persist even for large R as shown by
the peaks in the DOS in Fig. 2. Other cases of PLS appear also
at other energies, for example, at E = −φ, 1 − φ,−1 + φ, φ,

where φ = (1+√
5)

2 is the so-called golden ratio. The wave
functions of these states are localized primarily on lines of
vertices (1D clusters) with fixed length, for example, lines
of four vertices for the energies related to the golden ratio,
instead of bonds, and disappear for large R as for the PLS
at E = −1, 1. All the phases except those at E = 0 can be
considered as quantum phases of one-dimensional (1D) order.
We have found that the energies of these 1D ordered states are
coming from tight-binding chains whose length is determined
by the length of the 1D clusters contained in the 1D ordered
phases. The dispersion of a tight-binding chain with N sites
and a hard-wall boundary condition at its ends is given by

E = 2 cos
nπ

N + 1
, n = 1, 2, . . . , N. (11)

The networks contain mostly eigenvalues of the above equa-
tion for low N corresponding to short chains. For example,
some of the E = −1, 1 eigenvalues in the network come from
Eq. (11) for N = 2 (chain with two sites) and the correspond-
ing wave functions are localized along bonds of vertices. The
case N = 4 gives the energies related to the golden ratio.
In general, the wave functions of the states in the network
coming from energies described by Eq. (11), apart from those
at E = 0, are localized along lines of vertices of length N and
lie at the spatial boundary (periphery) of the network, con-
nected to one vertex, resembling dangling bonds. In this sense,
these 1D ordered states at energies coming from Eq. (11) bear
similarity to the edge states appearing in confined graphene
systems, like flakes and ribbons, which are concentrated along
the zigzag edges of these systems [24,25,28] and persist even
with disorder[32].The main difference with the networks is
that the edge states in graphene appear at the Dirac point,
at energy E = 0, for example, along flat bands for zigzag
nanoribbons [24] or near E = 0 for flakes, depending on
their boundary morphology [28]. Also, a large contribution to
the eigenvalues Eq. (11) in the network comes from isolated
chains of length N .

FIG. 4. Some examples of small networks demonstrating the
partial bipartite symmetry. Red vertices form a sublattice of discon-
nected vertices (A), not directly connected with an edge, while the
rest of the vertices form another sublattice (B). The difference in the
number of vertices (sites) between the two sublattices nA − nB leads
to an equal number of E = 0 states. The wave function of these states
is zero on the B sublattice which has the least number of vertices.

V. PARTIAL BIPARTITE SYMMETRY

The appearance of the E = 0 wave functions only on ver-
tices of the network that are not directly connected with an
edge can be explained as a consequence of a partial bipar-
tite symmetry of the random networks [33–35]. The random
network if seen as a lattice can always be split into two
sublattices, say A and B, with nA and nB sublattice sites,
respectively. Additionally, it can always be split in such a
way that there are no edges between the sites in one of the
sublattices, say A. A few examples are shown in Fig. 4. Then
the Hamiltonian of the system can be simplified if written in
the basis of A and B sites, as

H =
[

0 HAB

H†
AB HBB

]
. (12)

We can write the Schrödinger difference equations centered
on A and B sites as

E�A,i =
∑

j

�B, j,

E�B,i =
∑

j

�A, j +
∑

j

�B, j . (13)

By setting E = 0 we can see that the upper equation in
Eq. (13) transforms to

∑
j �B, j = 0 which is a set of nA

equations with nB unknowns. If nA > nB, then this set of equa-
tions can only be satisfied by setting �B, j = 0 since there are
more equations than unknowns, i.e., the system of equations is
overdetermined. Then the amplitudes on A sublattice �A, j can
be calculated by the lower equation in Eq. (13), which is a
system of nB equations with nA unknowns and gives nA − nB

linearly independent solutions. Consequently, if the random
network is split in two sublattices A and B, with one of them
having no edges between its vertices, say A, whose number
of vertices is larger than the number of vertices for the other
sublattice B, then there will always exist at least nA − nB

states at E = 0. In addition, the wave function of these states
will have zero amplitudes on the sublattice with the smallest
number of vertices, sublattice B. We remark that for periodic
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lattices like the square lattice which satisfy the full bipartite
symmetry the value nA − nB will depend on the shape of the
boundary. For example, for a square sample of square lattice
we will always have nA − nB = 1 [33], for odd side lengths,
whereas in graphene flakes nA − nB depends on the size of the
system [35]. Depending on the network configuration (run)
there exist in general many different choices of the sublattice
whose vertices are disconnected, corresponding to different
partial bipartite symmetries. Note that in rare cases and more
frequently in small networks with a low number of vertices
and edges, some of equations for the sublattice A might be
identical reducing the total number of equations for A. If the
number of these equations becomes smaller than the number
of B sites, then the argument presented above breaks down and
the wave functions spreads on both sublattices for the E = 0
states. Nevertheless, the partial bipartite symmetry is present
for any type of random network and will lead to E = 0 states
with the properties described above in most cases of networks
with low spatial density corresponding to low ratio of edges
over vertices R.

VI. SPATIAL DIMENSION

In this section we calculate the spatial dimension D of the
random network, by examining how the connected vertices fill
an ambient space. This dimension is related to the dimension
of the ambient space in which the network can be embedded
so that it contains no crossing edges. The values of D can
be integer or noninteger. One example of this process can be
seen schematically in Fig. 5(a). At each step in the scaling
characterized by L we count the number of vertices that are
connected directly with edges to the previous layer for L − 1.
This number is added in the overall number V , which counts
the total number of vertices after the Lth step, which can be
thought also as the number of vertices contained in a topo-
logical sphere of radius L. Note that the circles in Fig. 5(a)
are for demonstration purpose only, with each circle simply
denoting the Lth step in the procedure of the calculation of D.
Therefore, by calculating the growth (scaling) of V with L we
can calculate the dimension D of the network via

V ∼ LD. (14)

We note that the above procedure bears similarity to the clus-
tering growth method used to calculate the fractal (fractional)
dimension of an object which is already embedded in an am-
bient space with an integer topological dimension. This fractal
dimension is not an integer in general and depends on the
embedding space, i.e., on how the vertices have been arranged
inside the coordinate system determined by the ambient space
[36]. This is unlike our case where the dimension is deter-
mined solely by the connections (edges) between the vertices
without a predetermined embedding. Also, similar methods
have been used in emergent space and geometry approaches
[9,10,16]. In the calculation of D we have considered only
the largest component in the network, excluding the smaller
disconnected ones. Some results of this process for different
R can be seen in Fig. 5(b). In addition, in Fig. 5(c) we plot the
average 〈D〉 for 1000 runs (configurations of the random net-
work). For R = 0.67 the network is almost planar as D ≈ 2,
fitting approximately into a 2D plane without any crossing

FIG. 5. (a) The process of calculating the spatial dimension D of
the network by counting how the number of vertices V contained
into a topological sphere of radius L grows with L. The number
of vertices added at each Lth step, represented schematically by
the circles, is determined by the edges (connections) between the
vertices (the central site for L = 0 is not included in V ). (b) The
linear scaling of ln(V ) with ln(L) gives the value of the dimension D
from the relation ln(V ) = β + Dln(L), where β is a fitting parameter.
(c) The mean value of D (open circles) for 1000 configurations of
the network versus the ratio R. Integer and noninteger values like
D ≈ 4 are reached. The dimension grows logarithmically with R as
D = γ + δln(R = <d (i)>

2 ) represented by the red solid curve with
fitting parameters γ , δ. (d) The probability distribution of D follows
the normal (Gaussian) distribution. As shown in the inset the variance
σ 2 decreases with increasing R and is minimized at R = 2 where
D ≈ 4.

edges. This is one of the reasons that the sparse networks
resemble graphene(honeycomb) lattices and have similar elec-
tronic properties, as we have shown in the previous sections by
the comparison between the DOS of the two systems. As the
network becomes spatially more dense due to the increased
connectivity, D grows logarithmically with R represented by
the fitting red solid curve in Fig. 5(c). Noninteger and integer
dimensions like D ≈ 4 are reached. However, the electronic
properties of the networks, as we have shown in the previous
sections, do not resemble the respective regular lattices of
integer dimension D, like the hypercubic lattices, whose DOS
approaches a Gaussian distribution as D increases. Instead the
DOS of the random networks as D increases approaches the
Wigner semicircle, resembling disordered systems described
by random Hamiltonians as in RMT. A linear dependence
of the spatial dimension on the connectivity is followed by
regular lattices like the chain, square, cube, and hypercube.
The connectivity d (i) at each site in these lattices is two,
four, six, and eight giving the linear dependence d (i) = 2D ⇒
D = d (i)

2 . Since R = 〈d (i)〉
2 our result in Fig. 5(c) shows that

the dimension of the random network depends logarithmically
on its average connectivity at each vertex, as D ∼ ln(〈d (i)〉),
unlike the regular lattices. Also, this result implies an expo-
nential dependence of the average connectivity in the network
to D. Note that we expect large k-complete graphs to reach
an infinite dimension, since every vertex will be connected
to all other vertices. In Fig. 5(d) the probability distribution
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of D is shown along with its variance σ 2(fluctuations) in the
inset. All the distributions can be fitted by normal (Gaussian)
functions represented by the solid curves in Fig. 5(d). As
can be seen in the inset, the dimensional fluctuations are
reduced as R increases, corresponding to higher dimension
and spatially denser networks and are minimized at R = 2
where D ≈ 4.

VII. EMERGENT SPACETIME, RELATIVITY
AND GRAVITY

In this section we discuss briefly the relation of our model
with the notion of emergent spacetime and relevant relativistic
and gravitational effects. A natural way, in the sense of being
the most structureless, lacking an inherent spatial dimension,
would be to consider spacetime or space as a collection of
random relations between abstract objects, sometimes called
atoms of space [3–11,13–15], with various constraints. These
relations can be naturally modeled by random networks,
with the abstract objects(relations) represented by the ver-
tices(edges), and the constraint in our case being the fixed
ratio R defined as the number of edges over the number of
vertices. Essentially, space could be represented as a quantum
mechanical superposition of the different realizations of the
random networks for fixed R. Then one of the main issues
would be if the network can be reduced to a continuous
manifold at a limit of large number of vertices and whether
geometry can emerge in such a system. For instance, when
R = 0.67 in the random network that we studied, its spa-
tial dimension is D ≈ 2 resembling a 2D plane. Moreover,
its electronic properties, as indicated by the DOS, resemble
those of graphene, which is a 2D honeycomb lattice with
the electrons following the Dirac equation near low energies
E = 0, at the Dirac points. At this energy, electrons behave
relativistically as massless particles with the speed of light c
being replaced by the Fermi velocity of the electrons v f , with
a linear energy dispersion E = h̄v f k. The similarities of the
electronic properties between graphene and spatially sparse
random networks, pose an intriguing question, whether rela-
tivistic effects are also encountered in those random networks.
As we have shown in the previous sections the effective speed

of light in the networks is vnt = 1
h̄

√
2

πα
, where α is determined

by the DOS near E = 0 from ρ(E ) = α|E |. The value of vnt

could represent an upper limit for the transmission speed of
information inside the network in the same way that c sets an
upper limit for velocities in our universe.

Remarkably, if we replace the parameters in the tight-
binding lattice formed by the random network with funda-
mental constants, for example, the hopping energy t with the

Planck energy Ep (t = Ep =
√

h̄c5

G ) and the lattice constant a

(edge length) with the Planck length lp (a = lp =
√

h̄G
c3 ), then

by taking account of the resemblance to graphene near E =
0, we can estimate the order of magnitude of the network
velocity, as vnt ∼ at

h̄ = lpEp

h̄ = c. Consequently, by replacing
the tight-binding parameters in the network with fundamental
Planck constants, we get a network velocity that has the same
order of magnitude as the speed of light (108 m/s).

We remark also that D ≈ 4 is reached at R = 2, when the
number of edges is double the number of vertices, where the
dimensional fluctuations are minimized. This result would
be tempting to relate to the 4D spacetime manifold in the
models describing our universe, like in the Einstein field equa-
tions (EFE). In addition, such a universe would be physically
more stable, if its dimensional fluctuations were minimized,
which we observe at D ≈ 4. We note that time in network
and graph models can be integrated either in the network
itself [6–8] or can be treated as an external updating rule
[9,10]. For example, time in our model could be integrated
as discrete evolution steps of updating the network, by adding
an additional edge at each step. In this approach time could be
represented by R and would imply that the dimensionality of
space could evolve with time.

In addition, gravitational effects could potentially emerge
in a random network approach to space. Various definitions of
the curvature at each vertex in the network exist [37–42], the
simplest one being for tree and grid graphs,

K (i) = 1 − d (i)

2
, (15)

where d (i) is the number of connected neighbors at vertex i in
the network (degree). In the above definition triangles, tetra-
hedra and other higher n-dimensional cell complexes formed
in the network structure are ignored. Since the average degree
for a uniform network is 〈d (i)〉 = 2 m

n , using Eq. (15), we have
〈K〉 = 1 − m

n for the curvature averaged over all the vertices
in the network. We notice that 〈K〉 transitions from a positive
to negative value at m

n = R = 1, where the dimension of the
network is close to D = 3 and 〈K〉 = 0. This implies that if
space is modeled with uniform random networks, having a
zero or a slightly positive or negative curvature, which is the
case for our current universe, would require a dimensionality
close to D = 3. Moreover, the Ricci curvature tensor can be
calculated in graph and network models [37,39]. In addition,
geodesics can be defined in the network as simply the path
between two vertices that has the least number of edges. Again
an intriguing question arises, whether the curvature in the
network can be related to the Riemannian curvature used in
Einstein field equations (EFE) to describe how the geome-
try of spacetime, influenced by the mass-energy distribution,
gives rise to gravitational effects. Collections of vertices in the
network could represent mass while edges can be related to
the energy [9,10]. In this sense, the PLS that we have found in
the networks at various energies, composed of lines of vertices
(1D order), can be thought as emergent particles (excitations),
whose mass is determined by the number of vertices in these
1D structures.

Finally, a random network approach to space wields a
vertex density, which can be connected to the cosmological
constant � in EFE. The constant �, related to the energy
density of the vacuum ρvacuum = 5.96 × 10−27 kg

m3 in SI units,
can be interpreted as an intrinsic property of space as it
emerges from a random network model, like the uniform
network that we have considered in the current paper.
Since we have shown that the number of vertices V in
the network grows approximately as V = ε + ζLD then
the density of vertices ρnt = V

LD is simply ρnt = εL−D + ζ .
The constants ε and ζ can be related to � or ρvacuum, for
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FIG. 6. (a) The largest component of the network with n = 3000
and m = 2750 corresponding to R = 0.92. (b) The number of ver-
tices scales as V = ε + ζL3 with L, with two fitting parameters
ε and ζ . (c) The fluctuations of the dimension D for the largest
network component for 1000 runs. (d) The fluctuations of the fitting
parameter ζ .

example, near R = 1, where D ≈ 3, with the necessary
substitutions of fundamental constants such as the Planck
length lp = 1.616 × 10−35 m in SI units. For example, in
Fig. 6 we show the scaling of V versus L along with the
fluctuations of D and ζ for a network with R = 0.92, where
〈D〉 = 3.03242. We have derived the value 〈ζ 〉 = 1.5855 for
this case. To make a comparison with the energy density of
the vacuum we consider its experimental value in kilograms
(kg) per cubic meter (m3), ρvacuum = 5.96 × 10−27 kg

m3 . In
addition, we assume that the L in the scaling of the density
of vertices ρnt = εL−3 + ζ is expressed in units of the Planck
length lp = 1.616 × 10−35 m. The first term εL−3 can be
ignored due to the large number of steps L required to reach
one cubic meter. Then by assigning a nominal mass mv to
each vertex in the network, we get the total mass per cubic
meter ρnt mv

l3
p

= ζmv0.237 × 10105 1
m3 . By taking account of

〈ζ 〉 = 1.5855 for R = 0.92, we can derive the value of mv

by 〈ζ 〉mv0.237 × 10105 1
m3 = ρvacuum = 5.96 × 10−27 kg

m3 ⇒
mv = 1.59 × 10−131 kg = 8.88 × 10−102 MeV

c2 . We note that
the network model approach for space followed above
contains essentially only two free parameters ζ and mv

through the relation,

ζmv

l3
p

= ρvacuum. (16)

Particularly the value of ζ can be tuned so that D = 3 for
different types of random networks, other than uniform, that
contain scaling relations like V = ε + ζLD.

The general question of how geometry arises from dis-
crete mathematical models is a fundamental issue in both
mathematics and physics. Another related problem is how
to construct mathematics and physical theories in noninteger
(fractional) spatial dimensions or in the complete absence

of them, like the approach that we follow in the current
manuscript, by using random networks.

VIII. SUMMARY AND CONCLUSIONS

We have studied the quantum statistical electronic proper-
ties of random networks which inherently lack a fixed spatial
dimension. We have found that the electronic properties of the
networks contain features from graphene(honeycomb) lattice
systems and disordered systems described by random Hamil-
tonians from random matrix theory (RMT). The similarities
to graphene occur for spatially sparse networks with low ratio
of edges over vertices R and include features like a linear
energy dispersion relation at the band center at energy E = 0
and various persistent localized states (PLS). The PLS appear
at various energies, for example, at E = −1, 0, 1 and others
related, for example, to the golden ratio, and are localized
either at single unconnected vertices (0D order) or along lines
of vertices of fixed length which determines their energy (1D
order). The 1D ordered PLS concentrate at the spatial bound-
ary (periphery) of the network, resembling the edge states in
graphene systems with zigzag edges. As R increases and the
network becomes spatially more dense, its electronic prop-
erties, indicated, for example, by the DOS start to resemble
disordered systems described by random Hamiltonians whose
distribution of eigenvalues follows the Wigner semicircle, as
for uncorrelated random graphs. The PLS gradually disappear
as R increases, although those at E = 0 persist even for large
R. Finally, we have calculated the spatial dimension D of the
network. We have found a logarithmic growth of D with R,
reaching integer and noninteger values, implying an exponen-
tial dependence of the average connectivity in the network
to D, unlike regular lattices. In summary we have studied
quantum mechanics in physical systems lacking a fixed spatial
dimension, demonstrating various unconventional electronic
properties. These properties could be universal for quantum
mechanical systems irrespectively of their spatial dimension.
Finally, we have discussed the relation of our results to space-
time, relativistic and gravitational effects that could emerge
from discrete mathematical models, like the random networks
that we considered. In conclusion, we have offered an original
approach that describes the emergence of different physical
systems through the connectivity properties of quantum ran-
dom networks.

ACKNOWLEDGMENTS

We acknowledge resources and financial support provided
by the National Center for Theoretical Sciences of R.O.C. Tai-
wan and the Department of Physics of Ben-Gurion University
of the Negev in Israel. Also, we acknowledge support by the
Project HPC-EUROPA3 (INFRAIA-2016-1-730897), funded
by the EC Research Innovation Action under the H2020
Programme. In particular, we gratefully acknowledge the
computer resources and technical support provided by ARIS-
GRNET and the hospitality of the Department of Physics at
the University of Ioannina in Greece.

024141-8



PHYSICS IN NONFIXED SPATIAL DIMENSIONS VIA … PHYSICAL REVIEW E 105, 024141 (2022)

[1] S. Mukhi, Class. Quantum Grav. 28, 153001 (2011).
[2] K. R. Dienes, Phys. Rept. 287, 447 (1997).
[3] C. Rovelli, Class. Quantum Grav. 28, 153002 (2011).
[4] C. Rovelli, Living Rev. Relativ. 11, 5 (2008).
[5] L. Bombelli, J. Lee, D. Meyer, and R. D. Sorkin, Phys. Rev.

Lett. 59, 521 (1987).
[6] F. Dowker, Ann. N.Y. Acad. Sci. 1326, 18 (2014).
[7] F. Dowker and S. Zalel, C. R. Physique 18, 246 (2017).
[8] S. Surya, Living Rev. Rel. 22, 5 (2019).
[9] S. Wolfram, Complex Syst. 29, 107 (2020).

[10] J. Gorard, Complex Systems 29, 599 (2020).
[11] T. Konopka, F. Markopoulou, and S. Severini, Phys. Rev. D 77,

104029 (2008).
[12] R. B. Laughlin, Int. J. Mod. Phys. A 18, 831 (2003).
[13] J. Lombard, Phys. Rev. D 95, 024001 (2017).
[14] E. J. Verlinde, High Energ. Phys. 29, 04 (2011).
[15] C. A. Trugenberger, J. High Energ. Phys. 09 (2017) 45.
[16] C. Kelly, C. Trugenberger, and F. Biancalana, Class. Quantum

Grav. 38, 075008 (2021).
[17] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys. Rev.

Lett. 92, 187902 (2004).
[18] M. Walschaers, Jorge Fernandez-de-Cossio Diaz, R. Mulet, and

A. Buchleitner, Phys. Rev. Lett. 111, 180601 (2013).
[19] A. Ortega, T. Stegmann, and L. Benet, Phys. Rev. E 94, 042102

(2016).
[20] I. Kleftogiannis and I. Amanatidis, J. Stat. Mech. (2020)

083108.
[21] I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek, Phys.

Rev. E 64, 026704 (2001).
[22] M. E. J. Newman, Networks: An Introduction (Oxford Univer-

sity Press, Oxford, UK, 2010).
[23] A. Frieze and M. Karonski, Introduction to Random Graphs

(Cambridge University Press, Cambridge, UK, 2015).

[24] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B 54, 17954 (1996).

[25] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev.
B 59, 8271 (1999).

[26] K. S. Novoselov et al., Science 306, 666 (2004).
[27] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[28] H. P. Heiskanen, M. Manninen, and J. Akola, New J. Phys. 10,

103015 (2008).
[29] Z.-Q. Zhang and P. Sheng, Phys. Rev. B 49, 83 (1994).
[30] M. Kollar, Int. J. Mod. Phys. B 16, 3491 (2002).
[31] I. Amanatidis and S. N. Evangelou, Phys. Rev. B 79, 205420

(2009).
[32] I. Kleftogiannis and I. Amanatidis, Eur. Phys. J. B 87, 16

(2014).
[33] M. Inui, S. A. Trugman, and E. Abrahams, Phys. Rev. B 49,

3190 (1994).
[34] I. Kleftogiannis and S. N. Evangelou, arXiv:1304.5968 (2013).
[35] I. Kleftogiannis and I. Amanatidis, J. Phys.: Condens. Matter

28, 045305 (2016).
[36] L. Daqing, K. Kosmidis, A. Bunde et al., Nat. Phys. 7, 481

(2011).
[37] R. Forman, Discrete Comput. Geom. 29, 323 (2003).
[38] P. van der Hoorn, W. J. Cunningham, G. Lippner, C.

Trugenberger, and D. Krioukov, Phys. Rev. Research 3, 013211
(2020).

[39] Y. Ollivier, in Analysis and Geometry of Metric Measure Spaces,
CRM Proc. Lecture Notes Vol. 56 (American Mathematical
Society, Providence, RI, 2013), pp. 197–220.

[40] A. Samal, R. P. Sreejith, J. Gu, S. Liu, E. Saucan, and J. Jost,
Sci. Rep. 8, 8650 (2018).

[41] O. Knill, Elemente Mathematik 67, 1 (2012).
[42] I. Kleftogiannis and I. Amanatidis, Eur. Phys. J. B 92, 198

(2019).

024141-9

https://doi.org/10.1088/0264-9381/28/15/153001
https://doi.org/10.1016/S0370-1573(97)00009-4
https://doi.org/10.1088/0264-9381/28/15/153002
https://doi.org/10.12942/lrr-2008-5
https://doi.org/10.1103/PhysRevLett.59.521
https://doi.org/10.1111/nyas.12542
https://doi.org/10.1016/j.crhy.2017.03.002
https://doi.org/10.1007/s41114-019-0023-1
https://doi.org/10.25088/ComplexSystems.29.1.2
https://doi.org/10.25088/ComplexSystems.29.2.599
https://doi.org/10.1103/PhysRevD.77.104029
https://doi.org/10.1142/S0217751X03014071
https://doi.org/10.1103/PhysRevD.95.024001
https://doi.org/10.1007/JHEP09(2017)045
https://doi.org/10.1088/1361-6382/abe2d8
https://doi.org/10.1103/PhysRevLett.92.187902
https://doi.org/10.1103/PhysRevLett.111.180601
https://doi.org/10.1103/PhysRevE.94.042102
https://doi.org/10.1088/1742-5468/aba9d5
https://doi.org/10.1103/PhysRevE.64.026704
https://doi.org/10.1103/PhysRevB.54.17954
https://doi.org/10.1103/PhysRevB.59.8271
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nmat1849
https://doi.org/10.1088/1367-2630/10/10/103015
https://doi.org/10.1103/PhysRevB.49.83
https://doi.org/10.1142/S0217979202011937
https://doi.org/10.1103/PhysRevB.79.205420
https://doi.org/10.1140/epjb/e2013-40756-0
https://doi.org/10.1103/PhysRevB.49.3190
http://arxiv.org/abs/arXiv:1304.5968
https://doi.org/10.1088/0953-8984/28/4/045305
https://doi.org/10.1038/nphys1932
https://doi.org/10.1007/s00454-002-0743-x
https://doi.org/10.1103/PhysRevResearch.3.013211
https://doi.org/10.1038/s41598-018-27001-3
https://doi.org/10.4171/EM/188
https://doi.org/10.1140/epjb/e2019-100142-x

