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Heat transport in nonlinear lattices free from the umklapp process
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We construct one-dimensional nonlinear lattices having the special property such that the umklapp process
vanishes and only the normal processes are included in the potential functions. These lattices have long-range
quartic nonlinear and nearest-neighbor harmonic interactions with/without harmonic onsite potential. We study
heat transport in two cases of the lattices with and without harmonic onsite potential by nonequilibrium molecular
dynamics simulation. It is shown that the ballistic heat transport occurs in both cases, i.e., the scaling law κ ∝ N
holds between the thermal conductivity κ and the lattice size N . This result directly validates Peierls’s hypothesis
that only the umklapp processes can cause the thermal resistance while the normal ones do not.
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I. INTRODUCTION

Heat transport is ubiquitous in nature. In macroscopic-
scale materials, it is well described by the Fourier’s law J =
−κ∇T , where J and ∇T are the heat flux and the temperature
gradient, respectively, and κ is a constant called the ther-
mal conductivity, whose value is determined by the material.
Consider a one-dimensional shaped material with length L
which is kept with different temperatures at the both ends.
The Fourier’s law implies that the heat flux J is attenuated
as J ∝ L−1 with increasing L, under a given temperature
difference. This attenuation indicates the existence of thermal
resistance. In microscopic scale, the value of κ depends on
both the material and its length [1], but the heat flux is still
attenuated as the length increases, i.e., the thermal resistance
still emerges. It has been a long-standing unsolved problem to
clarify the origin of thermal resistance based on the dynamics
of atoms.

A simple microscopic model for solids is one-dimensional
lattice, and it has been used for studying heat transport via
atomic vibrations [2,3]. Nonlinearity of the lattice, which is
necessary for the phonon interactions, is essential to explain
the emergence of thermal resistance. There are two types of
the phonon interaction processes, which are called the normal
and the umklapp processes. Peierls posed the hypothesis that
only the umklapp processes can cause the thermal resistance
while the normal ones do not [4,5], and this hypothesis has
been widely believed so far. However, at least in the classical
physics regime, the hypothesis does not have a firm theoret-
ical basis. To the best of our knowledge, only the existing
basis is that in a lattice with periodic boundary conditions
the harmonic part of its total heat flux is conserved if there
is no umklapp process, provided that the lattice has no disper-
sion [5–7]. The assumption of no dispersion is never satisfied
in one-dimensional lattices, and this is not a satisfactory basis
for the hypothesis.

The above hypothesis has not yet been verified even by
numerical simulations. The crucial reason is a lack of a non-
linear lattice model that is free from the umklapp process. In
the present paper, we construct a class of nonlinear lattices
without the umklapp process, which we call the umklapp-free
lattices (UFLs). The UFLs have long-range quartic nonlinear
and nearest-neighbor harmonic interactions with/without har-
monic onsite potential. They closely relate with the pairwise
interaction symmetric lattice (PISL) [8,9], which is a special
lattice model recently constructed and having a hidden sym-
metry in its potential function to enhance the mobility of a
localized mode called the discrete breather [10–13].

The UFL enables one to directly verify Peierls’s hypothe-
sis. We numerically study heat transport in two types of UFLs,
which are with and without harmonic onsite potential, and
show that the ballistic heat transport occurs in both of the
UFLs, i.e., κ ∝ N holds between the thermal conductivity κ

and the lattice size N . Our results justify Peierls’s hypothesis
at least in the present lattice models.

We mention known results about heat transport in the
PISL, as it is a model closely related to the UFL. A near
ballistic transport, κ ∝ Nα with α � 1, has been reported in
some works [14–17], whereas a different value α � 0.71 in
Ref. [18]. It is still unclear whether the PISL exhibits the bal-
listic transport or nonballistic but anomalous one. However,
at least, the PISL seems to have α significantly larger than
nonlinear lattices which are known to exhibit anomalous heat
transport such as the FPUT-α or β lattices (0.3 � α � 0.4).

We emphasize a significance of our model from the point
of view of future studies. The UFL is expected to be a good
starting point to study the mechanism of emerging of thermal
resistance. It is possible to gradually introduce the umklapp
processes into the UFL by perturbing its potential functions.
Therefore, the mechanism may be clarified by numerically
observing what kind of elementary process is occurring in the
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perturbed UFL, i.e., by identifying the scatterer and scattering
process of phonons.

This paper is organized as follows. In Sec. II, we describe
the UFL model. In Sec. III, we describe details of our numer-
ical simulation of heat transport in the UFL. In Sec. IV, we
show numerical results of the simulation. Finally, conclusions
are drawn in Sec. V.

II. UMKLAPP-FREE LATTICE MODEL

The model we constructed is a class of infinite lattices with
long-range nonlinear interactions which is described by the
Hamiltonian

H =
∞∑

n=−∞

1

2
p2

n +
∞∑

n=−∞

[μ0

2
q2

n + μ1

2
(qn+1 − qn)2

]

+β

∞∑
n=−∞

∞∑
r=1

1

4r2
{qn+r − (−1)rqn}4

. (1)

This model corresponds to a one-dimensional chain of unit-
mass particles, where nth particle has its position xn = an +
qn given by the lattice spacing constant a and the relative
displacement qn. In Eq. (1), pn is the momentum of nth par-
ticle, μ0 and μ1 are coefficients of the harmonic onsite and
interaction potentials, and β > 0 is the nonlinearity strength.
Arbitrary nonnegative values are possible for μ0 and μ1.
The coupling strength between the rth neighboring particles
is proportional to 1/r2. We call this lattice the UFL. Note
that the UFL should be regarded as only a mathematically
idealized model since the nonlinear interaction term in Eq. (1)
is physically unnatural due to the factor (−1)r .

The equations of motion derived from the Hamiltonian
Eq. (1) are given by

q̈n = −μ0qn + μ1(qn+1 − 2qn + qn−1)

+β

∞∑
r=1

1

r2
[{(−1)rqn+r − qn}3 − {qn − (−1)rqn−r}3],

(2)

where n ∈ Z. Note that the total momentum
∑∞

n=−∞ pn is not
conserved by Eq. (2) regardless of the value of μ0, as shown
in Appendix A.

Define the normal mode coordinates U (k) via the discrete
Fourier transformation

U (k) = 1√
2π

∞∑
n=−∞

qne−ikn, (3)

where we restrict the range of wave number k to the first
Brillouin zone, i.e., k ∈ T ≡ (−π, π ]. If we rewrite Eq. (2)
in terms of U (k), then we can obtain the equation

Ü (k) + ν2
kU (k) = 4β

π

∫
T 3

dk1dk2dk3φ0(k1, k2, k3, k)

×U (k1)U (k2)U (k3)δ(k1 + k2 + k3 − k),

(4)

where U (k) depends on time t , φ0 is a time-independent
function of (k1, k2, k3, k), δ is Dirac delta function, and ν2

k is

given by

ν2
k = μ0 + 4μ1 sin2(k/2). (5)

Details of the derivation of Eq. (4) are described in Ap-
pendix B.

Ordinary one-dimensional lattices with quartic potentials
have the mode couplings specified by both k1 + k2 + k3 −
k = 0 and ±2π (cf. Appendix B1). The former k1 + k2 +
k3 − k = 0 is called the normal process while the latter k1 +
k2 + k3 − k = ±2π the umklapp process. Equation (4) shows
that four normal modes are coupled only when their wave
numbers satisfy the condition k1 + k2 + k3 − k = 0 while the
couplings of ±2π are not allowed. This mode coupling rule
is a peculiarity of the UFL, and it indicates the nonexistence
of the umklapp process. As mentioned in Sec. I, the UFL
closely relates with the PISL. Their relation is described in
Appendix C.

III. SIMULATION SETUP

To study the heat transport by nonequilibrium molecular
dynamics simulation, we introduce an approximate version
of the UFL which has truncated long-range interactions up
to length M, which we call the truncated UFL. This lattice
is not exactly free from the umklapp processes: the mode
coupling terms specified by k1 + k2 + k3 − k = ±2π appear
in its equation of motion in the normal mode coordinates
U (k). Those umklapp terms become smaller and vanish as
M → +∞. Thus, the truncated UFL satisfies the condition of
nonexistence of the umklapp process in good approximation
when M is large enough.

In numerical simulations, we use a finite-size truncated
UFL equipped with stochastic Langevin thermostats in its
both ends. The equations of motion of our simulation model
are given as follows:

q̈n = λ(qn+1 − 2qn + qn−1) − γ q̇n + ζn(t ) (6)

for n ∈ IH ∪ IL and

q̈n = −μ0qn + μ1(qn+1 − 2qn + qn−1)

+ β

M∑
r=1

1

r2
[{(−1)rqn+r − qn}3− {qn − (−1)rqn−r}3]

(7)

for n ∈ I , where IH = {1, 2, . . . , n0} and IL = {N + n0 +
1, . . . , N + 2n0} are the sets of indices of particles equipped
with high and low temperature thermostats, respectively, and
I = {n0 + 1, . . . , n0 + N} is the set of indices for the trun-
cated UFL. The constant λ can be different from μ1, but
we assume λ = μ1 in the present simulation for simplicity.
The range of nonlinear interactions is truncated up to M in
the model. In addition, the sum in Eq. (7) is taken only for
the terms {(−1)rqn+r − qn}3 satisfying n + r � n0 + N and
the terms {qn − (−1)rqn−r}3 satisfying n − r � n0 + 1. This
implies that the nearest-neighbor harmonic coupling is as-
sumed between n0 and n0 + 1 particles and between n0 + N
and n0 + N + 1 particles, which are connections between
the truncated UFL and the heat baths. As for the boundary
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FIG. 1. Illustration of simulation model. Green dotted line repre-
sents the long-range interaction, where M = 2 case is illustrated.

conditions, we assume q0 = qN+2n0+1 = 0. Figure 1 illustrates
the simulation model.

In Eq. (6), −γ q̇n + ζn(t ) represents the Langevin thermo-
stat, where γ > 0 is a constant and ζn(t ) is the white Gaussian
noise having the properties

〈ζn(t )〉 = 0, (8)

〈ζn(t )ζm(s)〉 = 2γ T δn,mδ(t − s), (9)

where 〈·〉 denotes the averaging over realizations of ζn(t ),
δn,m is Kronecker delta, and δ is Dirac delta function. The
parameter T represents the thermostat temperature, which is
set as T = TH and TL for the high and low temperature sides,
respectively.

The heat flux can be measured via a simple expression
at the boundaries of the truncated UFL, i.e., n = n0 + 1 and
n0 + N particles. Each of these two particles is coupled with
its nearest-neighbor thermostated particle via harmonic inter-
action force only. Noting this fact, we obtain the expression
for the heat flux J1, which is the energy transported from n0th
particle to (n0 + 1)th one per unit time, as follows:

J1 = −〈 q̇n0+1 · μ1(qn0+1 − qn0 ) 〉τ , (10)

where 〈·〉τ represents averaging over a long time τ , i.e.,
〈X 〉τ = τ−1

∫ τ

0 X (t )dt for an arbitrary quantity X (t ). Simi-
larly, we can obtain the heat flux J2 at (n0 + N )th particle as
follows:

J2 = −〈q̇n0+N · μ1(qn0+N+1 − qn0+N )〉τ . (11)

If we measure the heat flux at an inner particle of the truncated
UFL with n ∈ {n0 + 2, . . . , n0 + N − 1}, then we will have a
more complex expression of heat flux due to the long-range
interactions. So, we chose the two boundary particles. In the
simulation, we compute the heat flux J by the average of J1

and J2, i.e.,

J = 1
2 (J1 + J2). (12)

The thermal conductivity κ is defined by

κ = J

(TH − TL )/N
. (13)

We will focus on the N-dependence of κ . It is well known
that one-dimensional lattices exhibit the power law κ ∝ Nα

with 0 � α � 1 [7]. The heat transport is called normal when
α = 0 while it is called anomalous when α > 0. In particular,
it is called the ballistic heat transport when α = 1, and this
implies the state of vanishing thermal resistance.

We introduce spectral energy flux to study the heat trans-
port process in detail. If we neglect the nonlinear forces and

only consider the harmonic one in Eq. (2), then we can define
the harmonic part of the total heat flux as follows:

JH,tot = −μ1

2

n0+N−1∑
n=n0+1

(q̇n+1 + q̇n) (qn+1 − qn). (14)

Let uk ∈ C, k = −N/2 + 1, . . . , N/2 be the mode amplitudes
defined by the transformation

qn0+n = 1√
N

N/2∑
k=−N/2+1

uk exp

[
−i

2πk

N
n

]
, n = 1, 2, . . . , N,

(15)

where u−k = ūk holds since qn0+n ∈ R. ūk stands for the com-
plex conjugate of uk . In terms of uk , we can decompose JH,tot

into the form JH,tot = ∑N/2−1
k=1 JH (k) with

JH (k) = 2ωkvk Im[u̇k ūk], k = 0, 1, . . . , N/2, (16)

where ωk and vk are defined by ωk = 2
√

μ1 | sin(πk/N )| and
vk = √

μ1 sgn(k) cos(πk/N ). This quantity JH (k) is the har-
monic part of the net energy flux carried by two modes with
wave numbers ±k. The derivation of Eq. (16) is described in
Appendix D.

IV. SIMULATION RESULTS

We numerically solved Eqs. (6) and (7) to compute the
thermal conductivity κ for different lattice sizes N , by using
the Verlet scheme with time step �t = 0.05. Computation
of the long-range nonlinear interaction forces in Eq. (7) is
time-consuming for large values of M. To overcome this
difficulty, we utilized GPU ( NVIDIA GeForce RTX3080 )
for high-speed computation. The parameter values used in
the simulation are λ = 1, γ = 0.2, TH = 1.2, TL = 0.8, and
n0 = 10.

Figures 2(a) and 2(b) show the logarithmic plots of κ as a
function of N for μ0 = 0 and μ0 = 1 cases, i.e., the lattices
without and with harmonic onsite potential, respectively. The
weakly nonlinear case of μ1 = 1 and β = 0.1 is assumed.
The numerical results are shown for different values of the
coupling length M from M = 1 to 512.

In the simulations, we monitored the heat flux J given by
Eq. (12) as a function of τ , which tends to converge to a
constant as the averaging period τ increases. We used the con-
vergence of J (τ ) as a criterion for the system to have reached
a steady state. In addition, we also monitored convergence of
the spatial temperature profile (cf. Fig. 3).

In Fig. 2(a), the scaling of κ with respect to N precisely
coincides with the ballistic one κ ∝ N over the whole range
of simulation, i.e., up to N = 220, in the case of M = 512.
For smaller values of M, the scaling is close to κ ∝ N as
N increases up to a certain value Nc, but it deviates from
κ ∝ N as N further increases. The values of Nc are approx-
imately found as Nc � 219, 214, and 211 for M = 256, 64, and
16, respectively. Nc decreases as M decreases. In Fig. 2(b),
qualitatively the same behavior of κ is observed. The ballistic
transport is clearly observed for M = 512 also in Fig. 2(b).

We are interested in the asymptotic scaling of κ in the limit
N → +∞, although numerical results are available only for
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FIG. 2. Thermal conductivity κ vs lattice size N for truncated
UFL (μ1 = 1, β = 0.1) (a) without onsite potential (μ0 = 0) and
(b) with onsite potential (μ0 = 1). Results are shown by filled circles
for different values of M. Temperatures are TH = 1.2 and TL = 0.8.
Black dashed line represents the ballistic power law κ ∝ N . Colored
dashed lines are the fitting curves by experimental formula Eq. (17).

finite N values. An experimental formula is useful to infer the
asymptotic scaling, and we have found it in the form

κ = aN

1 + bN/M2
, (17)

where a and b are the fitting parameters and their values are
obtained as a = 0.1032, b = 0.009904 for μ0 = 0 and a =
0.06314, b = 0.004169 for μ0 = 1, respectively. In Figs. 2(a)
and 2(b), the curves of Eq. (17) with these values of (a, b)
are also shown. A good agreement between Eq. (17) and the
numerical results is confirmed in each figure, except for the
small M cases of M = 1 and 4. This agreement suggests that
it is a reasonable experimental formula at least for values of
M not too small. Once we accept Eq. (17), we can infer the
behavior of κ in the limit N → +∞. Equation (17) indicates
that the asymptotic scaling κ ∝ N holds if we take the limit
N → +∞ keeping the ratio M/N as a constant.

As shown in Figs. 2(a) and 2(b), the truncated UFLs with
M = 512, where the nonexistence of the umklapp process
holds in good approximation, exhibit the ballistic heat trans-
port regardless of harmonic onsite potential. In contrast, in the
cases of nonnegligible umklapp process, i.e., smaller M cases,
the ballistic heat transport breaks down for N > Nc. Based on
these numerical observations and the inference via Eq. (17), it

FIG. 3. Temperature profile plotted vs n/N for the truncated UFL
(μ1 = 1, β = 0.1) (a) without onsite potential (μ0 = 0) and (b) with
onsite potential (μ0 = 1). Profiles are shown for M = 64, 256, and
1024. Parameters are N = 220, TH = 1.2, and TL = 0.8.

may be concluded that the thermal resistance is never caused
by the normal processes but only by the umklapp ones. That
is, we have validated Peierls’s hypothesis. We remark that it is
not clear here whether all the umklapp processes are resistive
or only some of them are so.

One might expect the possibility that the ballistic transport
in the UFL is caused simply by instantaneous energy transport
over long distances via the long-range interaction forces. This
issue has been studied for some nonlinear lattices with the
long-range coupling coefficient 1/rc [19]. It has been shown
that for c > 1 such long-distance transport is nondominant.
This result is suggestive that the ballistic transport in UFL is
being caused by the lack of umklapp process.

The ballistic transport observed in the UFL is somewhat
surprising from the fact that the total momentum is not con-
served by Eq. (2). Table I summarizes known results for
the type of heat transport and the total momentum conser-
vation property in several one-dimensional nonlinear lattices.
A common belief is that momentum nonconserving lattices
belong to the class of normal heat transport, and this belief has
been corroborated in various such lattices [20–26]. As Table I
shows, all the momentum nonconserving lattices studied so
far exhibit the normal heat transport, except for an example
mentioned below. We emphasize that the UFL is a counterex-
ample against this common belief.

024140-4



HEAT TRANSPORT IN NONLINEAR LATTICES FREE … PHYSICAL REVIEW E 105, 024140 (2022)

TABLE I. Classification of nonlinear lattice models by the type
of heat transport and the total momentum conservation property.

Nonconserving Conserving

Ding-a-ling [20,21]
Coupled rotators

Ding-dong [22]
Normal [27]

Frenkel-Kontrova [23]
α = 0 Modified

φ4 chain [24,25]
ding-a-ling [28]

Toda+harmonic onsite [26]

FPUT-α [29]
Anomalous

FPUT-β [30,31]
0 < α < 1

Diatomic Toda [32]

Ballistic
UFL Toda [33]

α = 1

In Table I, we listed only nonlinear lattices of the natural
Hamiltonian type, i.e., H = ∑

p2
n/2 + V (q1, . . . , qN ). Other

than this type, the ballistic transport has been reported for
the Izergin-Korepin discrete sine-Gordon model, which is an
integrable and momentum nonconserving model [34]. We also
mention that there is a momentum-conserving coupled map
lattice which exhibits the normal transport [35]. This model
was derived from a Hamiltonian system with periodic impul-
sive kicks.

The PISL is momentum nonconserving when it has a har-
monic onsite potential, otherwise it is momentum conserving.
Its heat transport property has been studied for the momentum
conserving PISL in Refs. [14,15,17,18] while for both types
of PISLs in Ref. [16]. Scaling laws close to the ballistic trans-
port, i.e., κ ∝ Nα with α � 1, are obtained in Refs. [14–17],
whereas a different value α � 0.71 is reported in Ref. [18].
Reasons for this discrepancy in α are discussed in Ref. [17].
At this point, a definitive conclusion has not been settled in
about the value of α, and it is unclear whether the PISLs
exhibit the ballistic transport or nonballistic but anomalous
one. So, we did not include the PISL in Table I.

Figures 3(a) and 3(b) show the spatial profile of tempera-
ture T as a function of n/N for μ0 = 0 and 1, respectively,
where N = 220, n is the site number, and the local tempera-
ture T is defined by the time average of kinetic energy, i.e.,
T = 〈p2

n〉τ . The results are shown for M = 64, 256, and 1024.
Apart from steep temperature variation in the regions close to
the heat baths, the temperature gradient becomes smaller as
M increases, and the flat profile is formed for M = 1024, in
each figure. This flat profile is one of the characteristics of the
ballistic heat transport.

The harmonic energy flux JH is plotted against k/N for
μ0 = 0 and 1 in Fig. 4 for different N , respectively, where
M = 512 is fixed. The other parameter values are the same
as in Fig. 2. This figure indicates that contribution of the
nonlinearity in heat transport is substantial since the profiles
of JH are much different between the truncated UFLs and the
harmonic lattices. This fact confirms that the ballistic transport
observed in Fig. 2 is not due to a predominance of the linearity.
The curves of JH (k/N ) for different N values coincide with
each other in both cases of μ0 = 0 and 1. The total amount
of JH over the interval k/N ∈ [0, 0.5], which is defined by

FIG. 4. Spectrum of harmonic energy flux JH plotted vs k/N .
Results are shown for truncated UFLs (μ1 = 1, β = 0.1) without
onsite potential (μ0 = 0) and with onsite potential (μ0 = 1), where
M = 512, TH = 1.2, and TL = 0.8. Results are shown for N = 212,
214, 216, 218, and 220. JH for harmonic lattices (μ1 = 1, β = 0) with
μ0 = 0 and 1 are shown by black line for comparison.

J̄H = ∫ 0.5
0 JH (s) ds with s = k/N , is almost independent of N .

This fact is consistent with the ballistic scaling κ ∝ N . We
note that J̄H does not coincides with JH,tot: they relate with
each other as J̄H � JH,tot/N . Comparing the profiles of curves
of JH (k/N ) between μ0 = 0 and 1 cases, there is a significant
difference. This fact suggests that in our simulation the heat
transport state is in actual influenced by the onsite potential,
although only similar results are observed in Figs. 2 and 3
between μ0 = 0 and 1 cases.

Figure 4 shows that the normal modes over a broad range of
k/N , especially over an intermediate range from k/N � 0.1 to
0.45, make nonnegligible contributions to the heat transport.
This shows that the heat transport mechanism of the UFL is
quite different from that of the FPUT lattice, which exhibits
the nonballistic anomalous heat transport. In the FPUT lattice,
only the normal modes with small k make a dominant contri-
bution while JH is strongly suppressed for the other larger k
as N increases [31]. This suggests that those small k modes
form solitons and they induce the anomalous heat transport in
the FPUT lattice. In contrast, JH is small for k � 0, and this
suggests that solitons are not formed and the normal modes,
i.e., phonons, are the main heat carriers in the UFL. The
heat transport by phonon is the situation supposed in Peierls’s
hypothesis.

To identify the thermal energy carriers precisely, we com-
puted the space-time Fourier spectrum defined by

S(k, ω) = 1√
τ

∫ τ

0
uk (t )e−iωt dt, (18)

where uk is the mode amplitude defined by Eq. (15) and
τ is a time interval taken sufficiently long. Figure 5 shows
the magnitude of |S(k, ω)|2 by color. There clearly appears
a narrow striplike curve indicated by bright red color, which
represents large values, above the harmonic dispersion curve.

Equation (2) has the traveling wave solutions

qn(t ) = A cos(kn − ωt ), n ∈ Z, (19)
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FIG. 5. Space-time Fourier spectrum of the steady heat transport
state. |S(k, ω)|2 is presented by color. Parameters are N = 4096,
μ0 = 0, μ1 = 1, and β = 0.1. Dispersion curve of the harmonic
lattice (β = 0) and that of Eq. (20) are shown by green and blues
lines, respectively.

where ω depends on (k, A), and it is given by the nonlinear
dispersion relation

ω =
√

ν 2
k + (3/2) π (π − |k|) βA2, (20)

where ν 2
k is given by Eq. (5). We call this traveling wave the

nonlinear phonon. The solution given by Eq. (19) is proved
to be an exact one for k ∈ [π/3, π ] in a similar manner to
the proof in Ref. [15], while it is an approximate one for k ∈
[0, π/3).

The curve of Eq. (20) fitted to the numerical result by
adjusting A is shown by blue line in Fig. 5, and it is in
good agreement with the narrow striplike curve. A further
numerical evidence is given in Appendix E. Based on this
agreement, we may conclude that the thermal energy is carried
by the nonlinear phonons. Moreover, Fig. 5 indicates that the
nonlinear phonons propagate with subsonic velocities, since
their maximal group velocity maxk∈[0,π] ∂ω/∂k, which can be
estimated from the curve of Eq. (20) in Fig. 5, is smaller
than the sound velocity ∂νk/∂k|k=+0. We note that each of
the nonlinear phonons does not propagate independently, but
they exchange their energy via the normal processes during
propagation, because superpositions of Eq. (19) are no longer
exact or approximate solutions of Eq. (2).

V. CONCLUSIONS

We constructed nonlinear lattices having a special type of
long-range quartic interaction potential such that the umk-
lapp process vanishes and only the normal processes exist,
which we call the UFL. It is possible by using the UFL
to directly verify Peierls’s hypothesis that only the umklapp
processes can cause the thermal resistance while the normal
ones do not. Considering two types of the UFLs with and
without the harmonic onsite potential, we studied their heat
transport property by nonequilibrium molecular dynamics
simulation. The numerical results and the experimental for-
mula have shown that the ballistic heat transport, i.e., κ ∝ N ,
occurs in the UFLs, and justify Peierls’s hypothesis. More-
over, we pointed out the existence of the nonlinear phonons
and showed that they are the thermal energy carriers which

propagate with subsonic velocities. Finally, we emphasize that
the UFL can be a good starting point to study the mechanism
of emerging of the thermal resistance based on dynamics. It
may be possible to clarify how the thermal resistance emerges
via the umklapp processes by perturbing the UFL.
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APPENDIX A: PROOF OF NONCONSERVATION
OF TOTAL MOMENTUM

We show nonconservation of the total momentum in
Eq. (2). Precisely speaking, the total momentum

∑∞
n=−∞ pn

of the infinite UFL does not necessarily have a finite value
but may diverge. So, we employ its counterpart which is
defined by a finite sum. Fix an arbitrary N ∈ N, and impose
the spatial periodicity condition qn+N = qn, n ∈ Z to Eq. (2).
This is equivalent to considering a finite UFL consisting of N
particles under the periodic boundary condition, instead of the
infinite UFL.

Let MN = ∑N
n=1 pn. We prove nonconservation of MN .

It can be checked that Eq. (2) has a solution of the form
qn(t ) = φ(t ), n ∈ Z, in which all the variables qn have the
same displacement φ. This solution apparently satisfies the
spatial periodicity condition qn+N = qn. If we substitute this
form into Eq. (2), then we have the equation

φ̈ = −μ0φ − σφ3, (A1)

where σ = 16β
∑∞

m=1(2m − 1)−2. Equation (A1) is regarded
as that of a Hamiltonian oscillator with the potential V (φ) =
μ0φ

2/2 + σφ4/4, which is a single-well potential due to
μ0 � 0 and σ > 0. It is clear that this equation has a family of
nonconstant periodic solutions. Choose an arbitrary solution
from the family. Along this solution, φ̇(t ) is a nonconstant
periodic function of t . This fact implies that MN = N φ̇(t ) is
not conserved. Thus, it has been proved that Eq. (2) does
not conserve the total momentum in the sense that MN is not
conserved for any N ∈ N.

APPENDIX B: DERIVATION OF EQUATION OF MOTION
IN NORMAL MODE COORDINATES

We describe derivation of Eq. (4) in the main text via two
steps. In the first step, we consider a class of lattices with
general quartic nonlinear interaction potentials, and derive its
equation of motion in normal mode coordinates. In the second
step, we assume the case of UFL and derive Eq. (4).

1. Normal mode equation for general nonlinear lattices

Consider a class of infinite lattices described by the Hamil-
tonian

Hgen =
∞∑

n=−∞

1

2
p2

n +
∞∑

n=−∞

[μ0

2
q2

n + μ1

2
(qn+1 − qn)2

]

+ β

4

∞∑
n=−∞

∞∑
r=1

br (qn+r − εrqn)4
, (B1)
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where μ0 and μ1 are nonnegative constants, β > 0 is the
nonlinearity strength, br is the coupling strength between the
rth neighboring particles, and ε ∈ {−1, 1}. This is a slightly
generalized version of Hamiltonian Eq. (1), and it describes
general nonlinear lattices with quartic two-body interactions.
For instance, Hamiltonian Eq. (B1) describes the UFL when
br = 1/r2 and ε = −1, while it describes the FPUT-β lattice
when br = δr,1, ε = 1, and μ0 = 0, where δr,1 is Kronecker
delta.

The equations of motion derived from the Hamiltonian
Eq. (B1) are given by

q̈n = −μ0qn + μ1(qn+1 − 2qn + qn−1)

+β

∞∑
r=1

br[(εrqn+r − qn)3 − (qn − εrqn−r )3], (B2)

where n ∈ Z.
The normal mode coordinates U (k) are defined by the

discrete Fourier transformation as follows:

U (k) = 1√
2π

∞∑
n=−∞

qne−ikn, k ∈ (−π, π ], (B3)

where k is restricted in the first Brillouin zone T = (−π, π ].
The inverse transformation is given by

qn = 1√
2π

∫
T

U (k)eikndk, n ∈ Z. (B4)

Performing the discrete Fourier transformation to both sides
of Eq. (B2), we have

Ü (k) + ν2
kU (k) = β√

2π

∞∑
n=−∞

e−ikn

×
∞∑

r=1

br[(εrqn+r − qn)3 − (qn − εrqn−r )3], (B5)

where ν2
k = μ0 + 4μ1 sin2(k/2). Using Eq. (B4), we have

εrqn+r − qn = εr

√
2

π

∫
T

U (k)eikneirk/2gr (k)dk, (B6)

qn − εrqn−r =
√

2

π

∫
T

U (k)eikne−irk/2gr (k)dk, (B7)

where gr (k) is given by

gr (k) = 1

2
(eirk/2 − εre−irk/2). (B8)

Substituting Eqs. (B6) and (B7) into the right-hand side of
Eq. (B5), we have

Ü (k) + ν2
kU (k) = β√

2π

∞∑
n=−∞

e−ikn
∞∑

r=1

br

[
3∏

j=1

{
εr

√
2

π

∫
T

U (k j )e
ik j neirk j/2gr (k j )dk j

}

−
3∏

j=1

{√
2

π

∫
T

U (k j )e
ik j ne−irk j/2gr (k j )dk j

}]

= 2β

π2

∞∑
n=−∞

∞∑
r=1

br

∫
T 3

dk1dk2dk3U (k1)U (k2)U (k3){εrei(k1+k2+k3−k)r/2eirk/2 − e−i(k1+k2+k3−k)r/2e−irk/2}

× Gr (k1, k2, k3) ei(k1+k2+k3−k)n, (B9)

where Gr is defined by

Gr (k1, k2, k3) = gr (k1)gr (k2)gr (k3). (B10)

As for the sum over n in Eq. (B9), recall the formula

∞∑
n=−∞

eincx = 2π

c

∞∑
m=−∞

δ(x − 2πm/c), (B11)

where c, x ∈ R are constants. We can calculate the sum over n in Eq. (B9) by applying Eq. (B11) with c = 1 and x = k1 + k2 +
k3 − k. Then, we obtain

∞∑
n=−∞

ei(k1+k2+k3−k)n = 2π

∞∑
m=−∞

δ(k1 + k2 + k3 − k − 2πm). (B12)

Using this and denoting λ = k1 + k2 + k3 − k, we can rewrite Eq. (B9) as follows:

Ü (k) + ν2
kU (k) = 4β

π

∞∑
r=1

br

∫
T 3

dk1dk2dk3U (k1)U (k2)U (k3){εrei(λ+k)r/2 − e−i(λ+k)r/2}Gr (k1, k2, k3)
∞∑

m=−∞
δ(λ − 2πm).

(B13)
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Since −π < k j � π and −π � −k < π , we have −4π < λ < 4π . Thus, there are only three possible values of λ, i.e., λ =
0,±2π , which correspond to m = 0,±1, respectively. Taking into account this fact, we can rewrite Eq. (B13) as

Ü (k) + ν2
kU (k) = 4β

π

∫
T 3

dk1dk2dk3U (k1)U (k2)U (k3)
1∑

m=−1

δ(λ − 2πm)φm(k1, k2, k3, k), (B14)

where φm is defined by

φm(k1, k2, k3, k) =
∞∑

r=1

br{εreiπmreirk/2 − e−iπmre−irk/2}Gr (k1, k2, k3). (B15)

2. Normal mode equation for UFL

Hereafter, we assume the case of UFL, i.e., br = 1/r2 and ε = −1, and derive Eq. (4). If we use eiπmr = e−iπmr , which follows
from m = 0,±1, and denote k′ = −k, then we have

φm(k1, k2, k3,−k′) =
∞∑

r=1

1

r2
{(−1)re−ik′r/2 − eik′r/2}eiπmrGr (k1, k2, k3). (B16)

Let a = k1/2, b = k2/2, c = k3/2, and d = k′/2. If we divide the sum in Eq. (B16) into two parts and use Eqs. (B8) and (B10),
then we obtain

φm(k1, k2, k3,−k′) = Ko(m) + Ke(m), (B17)

where Ko(m) and Ke(m) are given by

Ko(m) = −2
∑

r=odd

(−1)m

r2
cos(ra) cos(rb) cos(rc) cos(rd ), (B18)

Ke(m) = −2
∑

r=even

1

r2
sin(ra) sin(rb) sin(rc) sin(rd ). (B19)

The sums in Eqs. (B18) and (B19) are taken over all odd and even r ∈ N, respectively.
We want to show φm(k1, k2, k3,−k′) = 0 under the condition k1 + k2 + k3 + k′ = 2πm for m = ±1. It is easy to see that φm

has the property

φm(k1, k2, k3,−k′) = φ−m(−k1,−k2,−k3, k′). (B20)

Because of this property, if φm(k1, k2, k3,−k′) = 0 holds for any (k1, k2, k3, k′) satisfying k1 + k2 + k3 + k′ = 2πm, then
φ−m(k1, k2, k3,−k′) = 0 also holds for any (k1, k2, k3, k′) satisfying k1 + k2 + k3 + k′ = −2πm. Thus, it is enough to consider
one of the m = ±1 cases. In what follows, we show φ1(k1, k2, k3,−k′) = 0.

A simple calculation using Eqs. (B18) and (B19) leads to

Ko(m) = −1

4

∑
r=odd

(−1)m

r2
{cos(r(a + b + c + d )) + cos(r(a − b + c + d )) + cos(r(a + b − c + d )) + cos(r(a + b + c − d ))

+ cos(r(a + b − c − d )) + cos(r(a − b + c − d )) + cos(r(a − b − c + d )) + cos(r(a − b − c − d ))}, (B21)

Ke(m) = −1

4

∑
r=even

1

r2
{cos(r(a + b + c + d )) − cos(r(a − b + c + d )) − cos(r(a + b − c + d )) − cos(r(a + b + c − d ))

+ cos(r(a + b − c − d )) + cos(r(a − b + c − d )) + cos(r(a − b − c + d )) − cos(r(a − b − c − d ))}. (B22)

Assuming m = 1 and substituting Eqs. (B21) and (B22) into Eq. (B17), we obtain

φ1(k1, k2, k3,−k′) = 1

4

∞∑
r=1

(−1)r−1

r2
{cos(r(a + b + c + d )) + cos(r(a + b − c − d ))

+ cos(r(a − b + c − d )) + cos(r(a − b − c + d ))}

+ 1

4

∞∑
r=1

1

r2
{cos(r(a − b − c − d )) + cos(r(a − b + c + d ))

+ cos(r(a + b − c + d )) + cos(r(a + b + c − d ))}. (B23)
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Recall that a, b, c ∈ (−π/2, π/2] and d ∈ [−π/2, π/2),
which follow from their definitions. We show φ1 = 0 for
the wider range a, b, c, d ∈ [−π/2, π/2]. Since φ1 is in-
variant for any permutation of a, b, c, d , we can assume
π/2 � a � b � c � d � −π/2. Recall that a + b + c + d =
π holds when m = 1. Note that (i) a, b > 0 and (ii) c � 0
have to hold, because if b � 0, then a � a + b + c + d = π

and this contradict with π/2 � a, and if c < 0, then a + b >

a + b + c + d = π and this contradict with π � a + b. In
addition, note that the sum of any pair taken from {a, b, c, d} is
nonnegative, i.e., (iii) x + y � 0 for x, y ∈ {a, b, c, d} such
that x 
= y, because if x + y < 0, then z + w > x + y + z +
w = a + b + c + d = π being in contradiction with π � z +
w, where w and z are the elements other than x and y.

Noting the properties (i)–(iii), we can evaluate the ranges
of arguments of cosine functions in Eq. (B23) as follows:

In the first sum,

a + b + c + d = π,

0 � a + b − c − d = a + b − (c + d ) � a + b � π

(∵ a � c, b � d; c + d � 0),

0 � a − b + c − d = a + c − (b + d ) � a + c � π

(∵ a � b, c � d; b + d � 0),

−π � −(b + c) � a − b − c + d � a + d � π

(∵ a + d � 0; b + c � 0);

in the second sum,

0 � −(a − b − c − d ) = b + c + d − a = π − 2a � π

(∵ 0 � 2a � π ),

0 � a − b + c + d = a + c + d − b = π − 2b � π

(∵ 0 � 2b � π ),

0 � a + b − c + d = a + b + d − c = π − 2c � π

(∵ 0 � 2c � π ),

0 � a + b + c − d = π − 2d � π + 2|d| � 2π

(∵ −π � 2d � π ).

To compute the two sums in Eq. (B23), recall the following
formula:

∞∑
r=1

cos rx

r2
= 1

4
(ϕ(x) − π )2 − π2

12
, (B24)

where ϕ(x) is the function given by

ϕ(x) = x − 2π l for x ∈ (2π l, 2π (l + 1)], l ∈ Z. (B25)

If we replace x with x + π in Eq. (B24), then we can modify
the above formula as follows:

∞∑
r=1

(−1)r−1

r2
cos rx = π2

12
− x2

4
, x ∈ [−π, π ]. (B26)

If we apply Eqs. (B24) and (B26) to Eq. (B23) with noting the
ranges of arguments of cosine functions, which were shown

above, then we have

φ1(k1, k2, k3,−k′)

= 1

4
·
[
π2

12
− π2

4
+ π2

12
− (a + b − c − d )2

4

+π2

12
− (a − b + c − d )2

4
+ π2

12
− (a − b − c + d )2

4

+{(b + c + d − a) − π}2

4
− π2

12

+{(a − b + c + d ) − π}2

4
− π2

12

+{(a + b − c + d ) − π}2

4
− π2

12

+{(a + b + c − d ) − π}2

4
− π2

12

]

= 1

16
(a + b + c + d )2 − π

4
(a + b + c + d ) + 3

16
π2

= 0, (B27)

where we used a + b + c + d = π . Since it has been proved
that φ±1(k1, k2, k3,−k′) = 0 when k1 + k2 + k3 + k′ = ±2π ,
Eq. (B14) reduces to

Ü (k) + ν2
kU (k) = 4β

π

∫
T 3

dk1dk2dk3φ0(k1, k2, k3, k)

×U (k1)U (k2)U (k3)δ(k1 + k2 + k3 − k).

(B28)

This equals to Eq. (4).

APPENDIX C: RELATION BETWEEN UFL AND PISL

The PISL was originally constructed as a finite-size lattice
with the periodic boundary condition [8,9]. Its extension to
the infinite-size one is described by the Hamiltonian

H =
∞∑

n=−∞

1

2
p2

n +
∞∑

n=−∞

[μ0

2
q2

n + μ1

2
(qn+1 − qn)2

]

+β

∞∑
n=−∞

∞∑
r=1

1

4r2
(qn+r − qn)4, (C1)

which corresponds to the case of br = 1/r2 and ε = 1 in
Eq. (B1). The equations of motion are given by

q̈n = −μ0qn + μ1(qn+1 − 2qn + qn−1)

+β

∞∑
r=1

1

r2
[(qn+r − qn)3 − (qn − qn−r )3], (C2)

where n ∈ Z. If we fix an arbitrary even N ∈ N and impose
the periodicity condition qn+mN = qn, m ∈ Z in Eq. (C2),
then it reduces to the equations of motion of the finite-size
periodic PISL in Refs. [8,9].

Equations (1) and (C1) show that nonlinear potentials of
the UFL and the PISL are transformed to each other by the
staggered transformation qn → (−1)nqn. In this sense, these
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two lattices correspond to each other. This correspondence im-
plies that the two lattices have essentially the same dynamics
when μ0 = μ1 = 0, i.e., the homogeneous potential case.

Let us define Ũ (m) via the transformation

Ũ (m) = 1√
2π

∞∑
n=−∞

(−1)nqne−imn, m ∈ (−π, π ], (C3)

which is a composition of the staggered transformation and
the discrete Fourier transformation defined by Eq. (B3). If we
perform the above transformation to rewrite Eq. (C2) in terms
of Ũ (m), then its nonlinear force part can be computed in the
same manner as in the UFL. Noting the linear force part, we
obtain the equation

¨̃U (m) + ν̃2
mŨ (m)

= 4β

π

∫
T 3

dm1dm2dm3φ0(m1, m2, m3, m)

× Ũ (m1)Ũ (m2)Ũ (m3)δ(m1 + m2 + m3 − m), (C4)

where φ0 is a time-independent function of (m1, m2, m3, m)
and ν̃2

m is given by

ν̃2
m = μ0 + 4μ1 cos2(m/2). (C5)

Equation (C4) has the same form as Eq. (4), but note that the
dependence of ν̃2

m on m is different form that of ν2
k on k. In the

nonhomogeneous potential case, the UFL and the PISL have
different dynamics.

Equation (C4) shows that four normal modes are cou-
pled only when their wave numbers satisfy the condition
m1 + m2 + m3 − m = 0 while the couplings of ±2π are not
allowed. This mode coupling rule is a peculiarity of the PISL,
which is similar to that of the UFL.

APPENDIX D: DERIVATION OF THE SPECTRAL
ENERGY FLUX FORMULA

Consider the total harmonic heat flux JH,tot given by
Eq. (14). We approximate JH,tot as follows:

JH,tot � −μ1

2

n0+N∑
n=n0+1

(q̇n+1 + q̇n) (qn+1 − qn), (D1)

where qn0+N+1 = qn0+1. The sum is taken only up to n = n0 +
N − 1 in the definition of JH,tot. In this approximation, we
added the last term −μ1(q̇n0+1 + q̇n0+N ) (qn0+1 − qn0+N )/2.
Since we assume large values of N in our simulation, this last
term is much smaller than the sum of other terms in Eq. (D1),
and we can expect Eq. (D1) to be a good approximation.

If we substitute Eq. (15) into Eq. (D1), then we obtain

JH,tot

= − μ1

2N

N∑
n=1

{
N/2∑

m=−N/2+1

u̇m
(
e−iθm + 1

)
e−iθmn

}

×
{

N/2∑
k=−N/2+1

uk (e−iθk − 1)e−iθkn

}

= − μ1

2N

N/2∑
k,m=−N/2+1

×
[

N∑
n=1

u̇muk (e−iθm + 1)(e−iθk − 1)e−iθ (k+m)n

]
,

where θ = 2π/N . Calculating the sum with respect to n, we
have

JH,tot = − μ1

2N

N/2∑
k,m=−N/2+1

[u̇muk (e−iθm + 1)(e−iθk − 1)

× N (δk+m,0 + δk+m,N )], (D2)

where δk+m,0 and δk+m,N are Kronecker delta. The condition
k + m = N holds only for k = m = N/2, and we have e−iθm +
1 = 0 in this case. If we calculate the sum with respect to m
in Eq. (D2), taking account of this fact, then we have

JH,tot = −μ1

2

N/2−1∑
k=−N/2+1

uku̇−k (eiθk + 1)(e−iθk − 1)

= iμ1

N/2−1∑
k=−N/2+1

uku̇−k · 2 sin
πk

N
cos

πk

N

= i
N/2−1∑

k=−N/2+1

ωkvkuku̇−k, (D3)

where ωk = 2
√

μ1 | sin(πk/N )| and vk =√
μ1sgn(k) cos(πk/N ). Note that the term for k = 0 vanishes

due to ω0 = 0. Dividing the sum in Eq. (D3) into two parts,
we can rewrite JH,tot as follows:

JH,tot = i
N/2−1∑

k=1

ωkvkuku̇−k + i
N/2−1∑

k=1

ω−kv−ku−ku̇k

= 1

i

N/2−1∑
k=1

ωkvk (u̇ku−k − uku̇−k )

=
N/2−1∑

k=1

2 ωkvk Im[u̇k ūk]

=
N/2−1∑

k=1

JH (k), (D4)

where we used ω−kv−k = −ωkvk and u−k = ūk .

APPENDIX E: NUMERICAL EVIDENCE
FOR NONLINEAR PHONONS

In Fig. 5, the curve of |S(k, ω)|2 is not a sharp line but
exhibits nonsmall line width. In addition, there is slight dis-
crepancy between the dispersion curve of Eq. (20) and the
average profile of |S(k, ω)|2 curve, i.e., the middle line of
its striplike curve. Due to these facts, it might not be a fully
convincing scenario that the nonlinear phonons emerge and
carry the thermal energy in steady heat transport state. In this
section, we give an additional numerical evidence to ensure
this scenario.
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FIG. 6. Space-time Fourier spectrum of the steady heat transport-
ing state in the UFL of weak nonlinearity β = 0.01. |S(k, ω)|2 is
presented by color. Parameters are N = 4096, μ0 = 0, and μ1 = 1.
Dispersion curve of the harmonic lattice (β = 0) and that of Eq. (20)
are shown by green and blues lines, respectively.

We have assumed that the amplitude A of nonlinear
phonons is a constant independent of k when fitting Eq. (20)
to the numerical result of |S(k, ω)|2. However, in actual, it

may be expected that the value of A fluctuates in time and
moreover the temporal average of A depends on k, provided
that the nonlinear phonons emerge. If we take into account
these points, then we may write the amplitude A in the form

A = A0 + δA(k) + ε(k, t ), (E1)

where A0 is a constant, A0 + δA(k) represents the temporal
average of A for k, and ε(k, t ) represents the temporal fluc-
tuation in A for a given k. This form may explain differences
between the numerical result of |S(k, ω)|2 and the dispersion
curve of Eq. (20): ε(k, t ) causes the line width and δA(k)
causes a deviation of the average profile from Eq. (20) under
substitution of Eq. (E1) into Eq. (20).

The A-dependent term is in proportion to β in Eq. (20).
This fact suggests that the influences of δA(k) and ε(k, t ) are
small for small values of β, resulting in a better agreement
of |S(k, ω)|2 with Eq. (20) for a k-independent constant A.
Figure 6 shows |S(k, ω)|2 computed for the UFL of weak
nonlinearity β = 0.01, where the other parameters are the
same as in Fig. 5. An excellent agreement is clearly observed.
This agreement validates the above-mentioned scenario.
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