
PHYSICAL REVIEW E 105, 024139 (2022)

Maximum efficiency of low-dissipation heat pumps at given heating load
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We derive an analytical expression for maximum efficiency at fixed power of heat pumps operating along a
finite-time reverse Carnot cycle under the low-dissipation assumption. The result is cumbersome, but it implies
simple formulas for tight upper and lower bounds on the maximum efficiency and various analytically tractable
approximations. In general, our results qualitatively agree with those obtained earlier for endoreversible heat
pumps. In fact, we identify a special parameter regime when the performance of the low-dissipation and
endoreversible devices is the same. At maximum power, heat pumps operate as work to heat converters with
efficiency 1. Expressions for maximum efficiency at given power can be helpful in the identification of more
practical operation regimes.
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I. INTRODUCTION

Besides the uneasy transfer to carbon-free electricity gen-
eration, e.g., by using solar, wind, water, geothermal, fission,
and, soon hopefully also fusion power, a possibility to fight
global warming is to use more efficient devices. To this end,
practical heat engines can already operate at high efficiencies
differing from the reversible efficiency by less than a factor of
2 [1]. On the other hand, most state-of-the-art heat pumps can
easily decrease energy consumption for heating by a factor
of 3 [2], which is still far below their second law theoretical
maximum (Carnot) coefficient of performance (COP)

εC = Th/(Th − Tc). (1)

For example, a common situation in households with room
(target) temperature Th ≈ 293 K and heat source temperature
Tc ≈ 273 K corresponds to εC ≈ 14.7, i.e., one joule of elec-
tric energy can transfer 14.7 J of heat. The recent raised
interest in heat pumps [3–5] is thus fully deserved as already
their implementations with current COPs might help to reduce
CO2 emissions [6,7].

It is well known that the maximum COP (1) is attained
in heat pumps that operate quasistatically and, similarly as
for heat engines [8], their output power (called heating load)
is negligibly small. Heat pumps able to heat a household
thus have to operate outside the quasistatic limit, in a regime
described by finite-time thermodynamics. For heat engines
and refrigerators, similar considerations lead to a thorough
investigation of their efficiency at maximum power using a
variety of models [9–40]. However, idealized models of heat
pumps, e.g., based on the endoreversible thermodynamics
[41,42], imply diverging maximum power with COP 1. At
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maximum power, such heat pumps thus operate as pure work
to heat converters, which is a highly undesirable operation
regime.

As a result, efficiency at maximum power is for heat pumps
not a useful measure of performance. A more informative
figure of merit is the maximum efficiency at a given power,
which generalizes various trade-off measures between power
and efficiency [12,23,43–50]. Maximum efficiency at given
power was thoroughly studied for various models of heat
engines [30,51–58] and refrigerators [16,40,59]. However,
besides numerical studies [60], the only available analytical
results for heat pumps were obtained for endoreversible heat
pumps [42,61,62].

In this paper, we derive the analytical expression for
maximum COP at a given heating load for Carnot-type low-
dissipation (LD) heat pumps. In Secs. II and III, we introduce
the considered model and define the thermodynamic quanti-
ties of interest. In Sec. IV, we discuss the performance of the
LD heat pumps operating at maximum power. In Sec. V, we
present our main results. Specifically, the lower and upper
bounds on maximum COP at a given power for LD heat
pumps are derived in Sec. V A. And in Sec. V B, we derive
a general expression for the maximum COP together with an
analytically tractable approximation. In Sec. VI, we compare
the obtained results for maximum COP of LD heat pumps to
the known results for endoreversible heat pumps. We conclude
in Sec. VII.

II. MODEL

Consider a heat pump operating along the finite-time re-
verse Carnot cycle depicted in Fig. 1. The cycle consists of
two isotherms and two adiabats. During the cold isotherm,
the system extracts heat Qc from the cold bath at tempera-
ture Tc. Afterward, during the hot isotherm, it uses the input
work W to pump this heat into the hot bath at temperature
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FIG. 1. Bath temperature T -system entropy S diagram of the
considered Carnot heat pump cycle. The red (blue) horizontal line
denotes the hot (cold) isotherm. The black vertical lines depict
the adiabats. Per cycle, the input work W is consumed to pump the
heat Qc from the cold bath at temperature Tc and deliver the heat
Qh = Qc + W into the hot bath at temperature Th.

Th. The resulting heat delivered per cycle into the hot bath,
Qh = Qc + W , consists of the used work and the extracted
heat.

In the LD regime [14,63,64], Qi, i = c, h assume the forms

Qc = Tc�S − σc

tc
, (2)

Qh = Th�S + σh

th
, (3)

where the positive irreversibility parameters σi depend on the
details of system construction, and ti are durations of the two
isotherms. �S denotes the increase (decrease) in the entropy
of the system during the cold (hot) isotherm. The correspond-
ing contributions to Qc and Qh are reversible, i.e., they do not
contribute to the total entropy produced per cycle,

�Stot = −Qc

Tc
+ Qh

Th
= σc

tcTc
+ σh

thTh
� 0. (4)

�Stot is thus solely determined by the irreversible contri-
butions, proportional to the irreversibility parameters, and
vanishes both in the quasistatic limit, th → ∞ and tc → ∞,
and in the equilibrium limit, σc = σh = 0. The LD forms (2)
and (3) of the transferred heats can be quite generally consid-
ered as first-order expansions of the exact expressions in the
inverse durations of the isotherms [63,65–69]. In addition, the
LD model is exact for optimized overdamped Brownian heat
engines [1,27] and other specific scenarios [66,70].

We assume that durations of the adiabatic branches are
proportional to durations of the isotherms so that the cycle
time is given by tp = a(th + tc). Since the constant a � 1 only
affects the heating load of the pump [see Eq. (5)], we assume
in the rest of the paper that a = 1. This value corresponds to
infinitely fast adiabats [71] and thus maximum heating load as
a function of a.

III. HEATING LOAD AND COP

The performance of heat devices is described by their
power, P, and efficiency, ε. For heat pumps, P and ε are called

heating load and COP [60,72]. P measures the average heat
pumped into the hot bath per unit time, and ε shows how much
work is needed to pump 1 J of heat to the hot body.

Using Eqs. (2) and (3) together with the first law of ther-
modynamics, W = Qh − Qc, the heating load and COP of the
LD heat pump can be expressed as

P = Qh

tp
= Th�S

tp
+ σh

thtp
, (5)

ε = Qh

W
= εC

1 + TcεC�Stot/(Ptp)
. (6)

The maximum (Carnot) COP, ε = εC , is attained under re-
versible conditions (�Stot = 0). The minimum COP, ε = 1,
describes the situation when no heat is pumped from the cold
bath and thus the delivered heat, Qh, equals the input work,
W . In this regime, heat pumps are not better than work-to-
heat converters, such as resistance heating wires. In the next
section, we study COP at maximum heating load for LD heat
pumps.

IV. COP AT MAXIMUM HEATING LOAD

Most of the available expressions for maximum efficiency
at a fixed power for various models [16,30,40,51,54–59] are
given as functions of the dimensionless variable P/P∗, mea-
suring loss in power, P, with respect to the maximum power,
P∗. This normalization of power usually significantly sim-
plifies the resulting expressions. However, for endoreversible
heat pumps [41,42] the maximum power diverges, suggesting
that such a normalization might, in our case, not be possible.
Indeed, we show below that P∗ → ∞ also for LD heat pumps.

To introduce a meaningful dimensionless heating load, we
define the reduced heats and durations as

Q̃i = Qi

Th�S
, t̃i = Th�S

σh
ti, i = c, h. (7)

Using Eqs. (2) and (3), the reduced heats read

Q̃c = εC − 1

εC
− 1

σ (1 − α)t̃p
. (8)

Q̃h = 1 + 1

αt̃p
. (9)

Here, σ = σh/σc is the so-called irreversibility ratio, t̃p = t̃h +
t̃c denotes the reduced cycle duration, and α ≡ th/tp measures
the allocation of the cycle duration between the two isotherms.
We define the reduced heating load as the ratio of the reduced
heat to the reduced cycle duration:

P̃ = Q̃h

t̃p
= 1

t̃p
+ 1

αt̃2
p

= σh

(Th�S)2
P. (10)

The reduced heating load is a monotonically decreasing func-
tion of both α and t̃p. The inequality Qh > Qc > 0, following
from the requirement that the considered device pumps heat
from the cold to the hot bath, restricts the minimal reduced
cycle duration as

t̃p >
εC

σ (εC − 1)(1 − α)
. (11)
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The maximum reduced heating load, P̃∗, attained for the min-
imal allowed values of α and t̃p,

α∗ = 0, (12)

t̃∗
p = εC

σ (εC − 1)
, (13)

hence diverges. The corresponding COP is most easily ob-
tained from the formula ε = Q̃h/(Q̃h − Q̃c). Altogether, the
maximum reduced heating load and the corresponding COP
read

P̃∗ = ∞, (14)

ε∗ = 1. (15)

This performance is achieved whenever the hot isotherm is
much faster than the cold one and thus α = α∗ → 0. Note-
worthy, the COP at maximum power is the smallest possible,
corresponding to the negligible amount of heat pumped from
the cold bath compared to the input work, Q̃h = W̃ + Q̃c �
Q̃c. A heat pump operating at the maximum heating load thus
works as an electric heater transforming work in the form
of electric energy into heat. Practical heat pumps should not
operate anywhere close to this regime. In the next section, we
uncover more practical operation regimes of LD heat pumps
by deriving their maximum COP at a given heating load.

V. MAXIMUM COP AT GIVEN HEATING LOAD

Fixing the reduced heating load in Eq. (10) creates the
dependency

α = 1

t̃p(P̃t̃p − 1)
(16)

between α ∈ [0, 1] and t̃p. Substituting Eq. (16) into Eqs. (8)
and (9) and using the condition Q̃h > Q̃c > 0, we find the
inequality

t̃p >
1 + P̃t̃∗

p

2P̃
+

√√√√(
1 + P̃t̃∗

p

2P̃

)2

+ 1 − t̃∗
p

P̃
≡ t̃p,min. (17)

The minimum value of the reduced cycle duration for fixed
heating load, t̃p,min, thus depends on the irreversibility ratio σ

and the Carnot COP εC via t̃∗
p in Eq. (13). For maximum and

minimum values of σ , t̃p,min reads

t̃p,min =
{

1+
√

1+4P̃
2P̃

for σ → ∞
∞ for σ → 0.

(18)

The COP (6) can be written in terms of the reduced parameters
introduced above as

ε =
[

1 + P̃t̃p − 1

σ P̃t̃p
(
P̃t̃2

p − t̃p − 1
) − εC − 1

P̃t̃pεC

]−1

. (19)

Below we will find its maximum as a function of t̃p > t̃p,min.

A. Bounds

First, we determine the upper and lower bounds on the
maximum COP at a given heating load. Taking the derivative

FIG. 2. COP (19) as a function of t̃p/t̃p,min (17) for different
values of σ , P̃ = 1, and εC = 15. The figure shows that the upper
bound (21) on the optimal COP is obtained for σ → ∞.

of ε (19) with respect to σ , one finds that ∂ε/∂σ > 0 and thus
ε monotonically increases with σ . Physically, this is because
the COP in Eq. (6) is for a fixed P and σh (fixed by our
choice of time unit) a monotonically decreasing function of
the entropy production, �Stot, and thus σc. The lower bound
on COP (19) for a fixed P is thus attained if the irreversible
losses during the hot isotherm are negligible compared to
those during the cold one (σ = σh/σc → 0). The correspond-
ing COP equals 1. Note that due to the condition (17) the
reduced cycle duration t̃p in this regime diverges [cf. Eq. (18)].

The upper bound on COP (19) for a fixed P is attained
if irreversible losses during the cold isotherm are negligi-
ble compared to those during the hot one (σ → ∞). In this
regime, the COP,

ε =
(

1 − εC − 1

P̃t̃pεC

)−1

, (20)

monotonically decreases with t̃p and thus it attains its max-

imum for t̃p = t̃p,min = (1 +
√

1 + 4P̃)/(2P̃). Altogether, the
bounds on the maximum COP at given heating load, εopt =
εopt(P̃), are given by

1 � εopt � (1 +
√

1 + 4P̃)εC

2 − (1 −
√

1 + 4P̃)εC

≡ εopt
> . (21)

As expected, the upper bound, εopt
> , converges to εC for P̃ → 0

and to 1 for P̃ → ∞.

B. Arbitrary parameters

Outside the limiting regimes discussed in the previous
section, the optimization of COP (19) for a fixed P is more
complicated. In Fig. 2, we show ε as a function of t̃p/t̃p,min

for five values of σ . The black solid line for σ → ∞ indeed
monotonously decreases with t̃p. However, for an arbitrary
finite σ , the COP exhibits a global maximum for t̃opt

p > t̃p,min.
Its position follows from the condition ∂ε/∂ t̃p|t̃p=t̃opt

p
= 0,

which implies the quartic equation

t̃4
p + at̃3

p + bt̃2
p + ct̃p + c

2
= 0, t̃p = t̃opt

p , (22)
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with the coefficients⎛
⎝a

b
c

⎞
⎠ = 1

P̃2

⎛
⎜⎝

−2P̃ − 2P̃2t̃∗
p

1 − 2P̃ + 4P̃t̃∗
p

2 − 2t̃∗
p

⎞
⎟⎠. (23)

Equation (22) has four roots which can be determined ana-
lytically using Ferrari’s method. The optimal reduced cycle
duration is given by the largest real-valued root:

t̃opt
p (P̃, t̃∗

p ) = −a

4
+ F + 1

2

√
−2C − 4F 2 − D

F
, (24)

where

A = b2 + 3c(2 − a), (25)

B = 2b3 − 9bc(4 + a) + 27c

2
(a2 + 2c), (26)

C = b − 3a2

8
, (27)

D = a3

8
− ab

2
+ c, (28)

E = 3

√
B + √

B2 − 4A3

2
, (29)

F =
√

3

6

√
A

E
+ E − 2C. (30)

For a fixed P̃, the reduced optimal cycle duration only de-
pends on t̃∗

p in Eq. (13). Inserting t̃opt
p into Eq. (19) yields the

maximum COP at given heating load for the LD heat pump,
εopt = εopt(P̃, σ, εC ).

In Fig. 3, we show εopt, t̃opt
p , and αopt = [t̃opt

p (P̃t̃opt
p − 1)]−1

[see Eq. (16)] as functions of P̃ for five values of σ . The exact
theoretical results are depicted by solid lines. We checked
that they agree within numerical precision with the optimal
COP obtained by the direct numerical maximization of ε

in Eq. (19). In agreement with the inequalities (21), εopt in
Fig. 3(a) converges to 1 for P̃ → ∞ and to εC for P̃ → 0
(see the inset) for all σ . This panel also shows the monotonic
increase of εopt with σ discussed in Sec. V A. The increase of
the maximum COP with decreasing heating load for large P̃ is
very slow, showing that reasonably efficient heat pumps have
to operate at small values of P̃. In this respect, heat pumps
qualitatively differ from heat engines and refrigerators, which
exhibit large gains in efficiency when their power is slightly
decreased from its maximum value [16,58].

The σ - dependency of t̃opt
p in Fig. 3(b) is significant for

small values of σ but negligible for large σ . Even though the σ

dependency of αopt in Fig. 3(c) is always significant, the COP
in Eq. (19) no longer depends on α. This suggests that we
might obtain an analytically tractable approximation for εopt,
valid for intermediate and large values of σ , by expanding t̃opt

p

in powers of t̃∗
p ∼ 1/σ . Up to the leading order in t̃∗

p , we find

t̃opt
p ≈ 1 +

√
1 + 4P̃

2P̃
+

√
t̃∗
p

(1 + 4P̃)1/4
, (31)

εopt ≈ εopt
> −

8P̃
(
1 − ε−1

C

)
(εopt

> )2
√

t̃∗
p

(1 + 4P̃)1/4(1 +
√

1 + 4P̃)2
. (32)

FIG. 3. The optimal COP (a), the corresponding reduced cycle
duration (b), and its allocation between hot and cold isotherms (c) as
a function of P̃ for different values of σ and εC = 15. The circles
follow from the approximate expressions (31) and (32). The lines
were obtained using the exact result (24).

The corrections to these formulas are proportional to t̃∗
p . For

large values of t̃∗
p , the approximation (32) leads to negative

(thus unphysical) COP. Circles in Fig. 3 show the predic-
tions from the approximate formulas for σ > 1, when the
approximate εopt > 0. For large values of σ (small t̃∗

p ), the
approximate (circles) and exact (lines) results indeed perfectly
overlap.

VI. COMPARISON WITH ENDOREVERSIBLE
HEAT PUMPS

Let us now compare the obtained results on maximum COP
at a given heating load of LD heat pumps to the correspond-
ing known results for endoreversible heat pumps [42,61,62].
The endoreversible thermodynamics assumes that the working
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fluid of thermal devices operates reversibly. The only consid-
ered sources of entropy production are the finite-time heat
transfers between thermal reservoirs and the working fluid
[73–75]. LD models generally describe the thermodynamics
of slowly driven systems [14,63,64]. On the other hand, up
to a few exceptions [76–78], the endoreversible models are
usually phenomenological [10,11,75,79,80].

The works [42,61] on the maximum COP at a given heat-
ing load of endoreversible heat pumps assume that the heat
transfers between the working fluid and baths obey Newton’s
law of cooling. Denoting the temperatures of the working
fluid during the hot and cold isotherms by Thw and Tcw and
the corresponding heat conductivities as κh and κc, the heats
transferred during the isotherms are in this case given by

Qh = κhth(Thw − Th), (33)

Qc = κctc(Tc − Tcw ). (34)

More general heat transfer laws used in Ref. [62] lead to
qualitatively the same results as Newton’s law of cooling, to
which we stick in the following discussion.

In the endorevesible models, the COP εen = Qh/(Qh − Qc)
is maximized with respect to the temperatures of the work-
ing fluid Thw and Tcw. The ratio th/tc of the durations of
the two isotherms is determined by the endoreversibility re-
quirement Qh/Thw − Qc/Tcw = 0 and the total cycle duration
does not influence the resulting expressions. Performing the
maximization for a fixed heating load P = Qh/(th + tc) with
the definitions (33) and (34) yields the maximum COP [42,62]

εopt
en = 1 + εC − 1

1 + εCP(1 + √
r)2

/(κhTh)
, (35)

where r = κh/κc. The maximum COP at fixed heating load
thus behaves qualitatively in the same way as the correspond-
ing result for LD heat pumps: ε

opt
en converges to εC for P → 0

and to 1 for P → ∞. However, the precise functional forms
of the maximum COP for LD and endoreversible heat pumps
in general differ. The exception is the parameter regime

t̃∗
p = 1,

(1 + √
r)2

κh
= 4σh

Th�S2
, (36)

when the expressions for ε
opt
en and εopt are identical. In this

regime, one can thus find an exact mapping between the LD
and the endoreversible model. Note that for t̃∗

p = 1, Eq. (22)
reduces to a quadratic equation, and Eq. (13) implies σh/Th =
σc/Tc.

One way to show that the two models are equivalent only in
the parameter regime (36) is to compare the formulas for ε

opt
en

and εopt in the limiting regimes, where they become simple.
To this end, we expand the two maximum COPs as functions
of the heating load close to infinite and close to vanishing P.
Up to the leading order in P, the expansions read

εopt ≈ 1 + 1 − ε−1
C

4t̃∗
p

(Th�S)2

σhP
, (37)

εopt
en ≈ 1 + 1 − ε−1

C

(1 + √
r)2

κhTh

P
, (38)

10
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FIG. 4. The maximum COPs at fixed heating load for LD (εopt)
and endoreversible (εopt

en ) heat pumps as functions of P̃ for εC = 15
and σh/(Th�S)2 = 1/(κhTh ). The marked black solid lines show that
the condition (36) implies εopt = ε

opt
en . For the remaining lines, we

set σ = 5 and thus t̃∗
p = 3/14. The blue dotted line corresponds to r

obtained from Eq. (41). For the red dash-dotted line, we calculated r
using Eq. (42).

and

εopt ≈ εC − εC (εC − 1)(1 +
√

t̃∗
p )2 σhP

(Th�S)2
, (39)

εopt
en ≈ εC − εC (εC − 1)(1 + √

r)2 P

κhTh
. (40)

The corrections to Eqs. (37) and (38) are proportional to 1/P2

and those to (39) and (40) are proportional to P2. The LD and
endoreversible models for heat pumps can be mapped to each
other only if the two types of expansions agree, leading to the
conditions

(1 + √
r)2

κh
= σh

Th�S2
4t̃∗

p , (41)

(1 + √
r)2

κh
= σh

Th�S2
(1 +

√
t̃∗
p )2. (42)

The first equality follows from Eqs. (37) and (38) and the
second one from Eqs. (39) and (40). Requiring validity of both
yields the condition (36) (see Appendix A for more details).
In Fig. 4, we show εopt and ε

opt
en as functions of the reduced

heating load P̃. The marked lines show the agreement of εopt

and ε
opt
en when Eq. (36) holds and thus t̃∗

p = 1. The remaining

lines show εopt (green dashed line) and ε
opt
en for parameters

obeying solely Eq. (41) (blue dotted line) and (42) (red dash-
dotted line) for t̃∗

p = 3/14. As expected, the green dashed line
only agrees with the blue dotted line for large values of P̃ and
with the red dash-dotted line for small values of P̃.

We tested that also the LD and endoreversible models for
heat engines and refrigerators lead to identical results when
Eq. (36) holds (data not shown). In addition, an equivalent
condition was derived in the linear response regime for heat
engines operating at maximum power [52,53].
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VII. CONCLUSION AND OUTLOOK

Like endoreversible heat pumps, Carnot-type LD heat
pumps operate at maximum power as work to heat converters
such as standard electric heaters. Practical heat pumps thus
should not operate in this regime. To provide a tool to decide
a suitable regime of operation for a given application, we
derived an analytical expression for maximum efficiency at a
given heating load for LD heat pumps. In addition, we derived
upper and lower bounds on this quantity. Qualitatively, our
results agree with the corresponding findings obtained earlier
for endoreversible heat pumps. Unlike the phenomenological
endoreversible models, LD models represent a general first-
order finite-time correction to the reversible operation and
thus their parameters can be either calculated using a pertur-
bation analysis or measured in experiments. Furthermore, the
derived upper bound on the maximum efficiency can be con-
sidered as a loose upper bound on the efficiency of heat pumps
in general. By adding the result for heat pumps to the known
formulas for LD heat engines and refrigerators [16,58,59], the
present paper completes the collection of results for maximum
efficiency at a given power for LD thermal devices.

The presented result for maximum efficiency at a given
heating load depends on the reduced heating load P̃ in
Eq. (10). Therefore, the heating load can be further opti-
mized for the chosen unit of energy flux without affecting
the corresponding maximum efficiency. Such optimization
tasks performed for LD heat engines and refrigerators are
described in Refs. [81,82]. In addition, it would be interesting
to investigate the operation regime of maximum efficiency at
given power for LD thermal devices concerning its dynamical
stability [15,83–85]. Finally, it would be worthy to investigate
maximum efficiency at given power for heat devices operating
between finite-sized heat sources [19,86–90] and compare
the results to those derived using the idealized LD models.
For heat engines working with two finite-sized reservoirs,
the maximum efficiency at given power has been derived in
Ref. [90].
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APPENDIX: HEAT FLOWS IN THE
PARAMETER REGIME (36)

In this Appendix, we investigate the physical significance
of the parameter regime (36), leading to the same expressions

for ε
opt
en and εopt for the endoreversible and LD models. As the

average heat flows Qh/tp are for the two models fixed to be
the same value of power P, we focus on the structure of the
average heat flows Qc/tp.

For the endoreversible heat pump, combining Eqs. (33) and
(34), together with the endoreversibility condition Qen

h /Thw −
Qen

c /Tcw = 0 yields (here and below we use the superscript
“en” to distinguish between the heats for the endoreversible
and LD models)

Qen
c

tp
= TcP[P + κh(Th − Thw )]

rP(Th − Thw ) + Thw[P + κh(Th − Thw )]
. (A1)

For the LD heat pump, inserting Eq. (16) into Eq. (8) implies

Qc

tp
= TcTh�S2

σh

P̃t̃2
p − t̃p(1 + P̃t̃∗

p ) + t̃∗
p − 1

t̃p
(
P̃t̃2

p − t̃p − 1
) . (A2)

Imposing the condition (36) and returning to dimensional
power (10), the heat flow for the LD model changes to

Qc

tp
= 4κhTc

(
√

r + 1)2

P(
√

r + 1)2(t̃p − 1) − 4κhTh

P(
√

r + 1)2t̃2
p − 4κhTh(t̃p + 1)

. (A3)

Interestingly, the functional forms of the heat flows (A1) and
(A3) in terms of power P and the parameter to be optimized
(Thw for the endoreversible and t̃p for the LD model) are
different, even though the analysis in the main text proves that
they must be the same functions of power when Thw and tp are
substituted by the values

Thw = Th + (1 + √
r)P

κh
, (A4)

t̃p = 2 + 4κhTh

(
√

r + 1)2P
, (A5)

maximizing the two heat flows and thus, for fixed power,
also the COP (6). The formulas for the two heat flows
remain different even after the substitutions Thw = (1 +√

r)T/κh and t̃p = 2 + 4κhTh/[(
√

r + 1)2T ], which lead to
expressions Q̃en

c (T, P)/tp and Q̃c(T, P)/tp exhibiting the same
maximum,

Q̃en
c

tp
= Q̃c

tp
= κhTcP

κhTh + P(1 + √
r)2

, (A6)

for the same value of T = P. The expressions Q̃en
c (T, P)/tp

and Q̃c(T, P)/tp are thus different unless T = P. We conclude
that there is no deep physical reason why the performances of
the optimized endoreversible and LD models are the same in
the parameter regime (36).
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