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Internal energy and information flows mediate input and output power
in bipartite molecular machines
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Microscopic biological systems operate far from equilibrium, are subject to strong fluctuations, and are
composed of many coupled components with interactions varying in nature and strength. Researchers are actively
investigating the general design principles governing how biomolecular machines achieve effective free-energy
transduction in light of these challenges. We use a model of two strongly coupled stochastic rotary motors to
explore the effect of coupling strength between components of a molecular machine. We observe prominent
thermodynamic characteristics at intermediate coupling strength, near that which maximizes output power:
a maximum in power and information transduced from the upstream to the downstream system, and equal
subsystem entropy production rates. These observations are unified through a bound on the machine’s input
and output power, which accounts for both the energy and information transduced between subsystems.
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I. INTRODUCTION

Living things must stay out of thermal equilibrium in order
to persist [1]. Molecular machines play an important role
in maintaining the far-from-equilibrium conditions and make
use of the same conditions to perform various tasks [2–4].
Molecular machines transduce between different nonequi-
librium stores of free energy such as out-of-equilibrium
concentrations of chemical reactants and products, spatial
concentration gradients, and elastic mechanical energy. They
perform these functions in a crowded cellular environment
subject to constant stochastic fluctuations, and they typically
consist of many coupled components with interactions that
vary in nature and strength. How they effectively transduce
energy among their relatively flexibly linked degrees of free-
dom when they experience strong fluctuations is not well
understood.

FOF1-ATP synthase [5] is an experimentally heavily
studied motor that synthesizes adenosine triphosphate (ATP),
the most widespread energy currency within the cell. The FO

part of the motor harnesses a proton gradient across a mem-
brane to rotate a central crankshaft, inducing a conformational
change in the F1 part, which then catalyzes the synthesis of
ATP [6–8]. As a multipart motor with different parts driven by
different chemical reservoirs, linked by a particularly simple
mechanical coupling, capable of achieving high efficiency [9]
and high speed [10] despite slip [11,12] due to somewhat
flexible coupling [13,14], ATP synthase forms a model system
for biomolecular energy and information transmission.

Inspired by the example of ATP synthase and its partic-
ularly simple coarse-grained architecture, we use a model
(originally formulated in Ref. [15]) of two coupled sub-
systems to study the connections between functional output
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and the internal energy and information flows between dif-
ferent components of a strongly fluctuating microscopic
system. Previously, we found that intermediate-strength cou-
pling maximizes output power (in many contexts a primary
function of the system) while the efficiency is maximized
at tight coupling [15]. In this paper, we reveal apparently
coinciding phenomena at intermediate-strength coupling of
maximal output power, maximal transduced capacity (energy
plus information flow), and equal subsystem entropy produc-
tion rates. The coinciding features are unified by local second
laws revealing that the transduced capacity lower bounds the
input power and upper bounds the output power, with subsys-
tem entropy production rates quantifying the dissipations and
hence the capacity losses in each subsystem.

II. MODEL

Two machine components X and Y (e.g., representing FO

and F1) are modeled as energetically coupled subsystems,
each performing a biased random walk on a periodic en-
ergy landscape (representing a single mechanochemical cycle)
driven by a constant chemical driving force due to the chemi-
cal species (e.g., protons or ATP and its hydrolysis products)
that are externally maintained at constant out-of-equilibrium
concentrations by other cellular machinery. A sketch of the
system is shown in Fig. 1. The two-dimensional energy land-
scape of the joint system has a contribution for each individual
subsystem and a contribution due to mechanical coupling
(e.g., ATP synthase’s crankshaft) between subsystems:

V (x, y) = VX(x) + VY(y) + Vcouple(x, y) (1a)

= − 1
2 E‡ cos 3x − 1

2 E‡ cos 3y

− 1
2 Ecouple cos (x − y). (1b)

Here x and y are the respective states of the subsystems, each
with periodic boundary conditions (x, y ∈ [0, 2π )); E‡ is the
barrier height of each (untilted) subsystem-specific landscape;
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FIG. 1. Effective energy landscapes experienced by each sub-
system. Each subsystem diffuses on a periodic effective energy
landscape and is coupled (depicted by a connecting spring) to the
other subsystem. The tilt of each landscape reflects the effect of its
respective chemical driving force. Figure adapted from Ref. [15].

and Ecouple is the strength of the coupling between subsystems.
The cosine potentials with three metastable states incorporate
straightforward periodic boundary conditions.

The upstream system X is driven by a constant chemical
driving force μX, and the downstream system Y is pushed by
constant chemical driving force μY. Chemical driving forces
are constrained to be in opposition (μX > 0, μY < 0), so X is
pushed clockwise and Y is pushed counterclockwise. Without
loss of generality, the upstream X subsystem is more strongly
driven (|μX| > |μY|). The two subsystems thus together form
an isothermal work-to-work converter, transducing between
different stores of free energy each connected to a single
subsystem.

In the absence of coupling (βEcouple = 0), X is only sub-
ject to its subsystem-specific effective landscape Veff (x) ≡
VX(x) − μXx, the energy landscape VX(x) tilted by the
chemical driving force μX applied to it (and similarly for Y).
The coupling between X and Y favors the subsystems to be
close together, thereby favoring movement in the same direc-
tion. Each subsystem can on average move in either direction,
with the sign depending on the strength of driving forces
and coupling. If the subsystems move in the same direction
(on average) while being pushed in opposite directions by
the applied driving forces, the system as a whole transduces
energy from one work reservoir to the other.

The joint probability distribution p(x, y; t ) describing the
overdamped, stochastic system evolves according to the
Smoluchowski equation [[16], Ch. VIII],

∂

∂t
p(x, y; t ) = −∂JX(x, y)

∂x
− ∂JY(x, y)

∂y
, (2)

with probability currents

JX(x, y) = 1

ζ

[(
∂V

∂x
− μX

)
+ 1

β

∂

∂x

]
p(x, y; t ), (3a)

JY(x, y) = 1

ζ

[(
∂V

∂y
− μY

)
+ 1

β

∂

∂y

]
p(x, y; t ), (3b)

friction coefficient ζ , and β ≡ 1/(kBT ) for temperature T and
Boltzmann’s constant kB. The diagonal diffusion matrix em-
bodied in the second terms within the square brackets means
that each subsystem is subject to independent noise and thus

FIG. 2. Energy flows in and out of the subsystems. Arrows indi-
cate the directions of positive flow.

the dynamics are bipartite [17], simplifying the identification
of thermodynamic flows.

The system is initialized with the equilibrium Boltzmann
distribution for no chemical driving forces (μX = 0 = μY),

p(x, y; t = 0) ∝ exp [−βV (x, y)]. (4)

The probability distribution is dynamically evolved us-
ing a custom forward-time centered-space [18] finite-
difference code [19] to approximate Eq. (2) until it reaches
steady state. (Appendix A provides computational details.)
The resulting steady-state probability distribution determines
the steady-state probability currents (3), which in turn dictate
the system’s energy flows.

The subsystems are strongly coupled in the sense that
there is a (significant) energy associated with the interaction
between the subsystems; this is in contrast with thermody-
namically large systems where the energy at the interface
between the system and environment can generally be safely
neglected. The subsystems are tightly coupled when the cou-
pling potential is so strong that they move in lockstep and can
be described by a single coordinate (in this model, only the
case when βEcouple � 1).

III. THERMODYNAMICS

Unlike tight coupling between subsystems which we do
not generally obtain in our model, we do (by construction)
assume tight coupling between the chemical reservoirs and
mechanical motion of the respective subsystems, i.e., that each
mechanical movement dx (dy) of subunit X (Y) is accompa-
nied by transfer of energy μX dx (μY dy) from the respective
chemical reservoir. This effectively consolidates all interfaces
of finite coupling strength across the whole system into the
single coupling between X and Y. Thus the input power PX

and output power PY are each the integrated probability cur-
rent multiplied by its respective chemical driving force,

PX = μX

∫
dx

∫
dyJX(x, y), (5a)

PY = μY

∫
dx

∫
dyJY(x, y). (5b)

Figure 2 illustrates all internal and external energy flows.
The bipartite dynamics encapsulated in Eq. (3) identifies

the heat flow Q̇ associated with the dynamics of a particular
subsystem as the change in the system potential energy due to
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the dynamics of that particular subsystem, less the associated
power:

Q̇X =
∫

dx
∫

dyJX(x, y) ∂xV (x, y)

−μX

∫
dx

∫
dyJX(x, y), (6a)

Q̇Y =
∫

dx
∫

dyJY(x, y) ∂yV (x, y)

−μY

∫
dx

∫
dyJY(x, y). (6b)

The transduced powers (rates of control work in Ref. [20])
are the respective changes in energy due to the dynamics of
each subsystem,

PX→Y =
∫

dx
∫

dyJX(x, y) ∂xV (x, y), (7a)

PY→X =
∫

dx
∫

dyJY(x, y) ∂yV (x, y). (7b)

At steady state (where average system energy change van-
ishes, d

dt

∫
dx dy p(x, y; t )V (x, y) = 0), the average rates of

work (average powers) done by one subsystem on the other
are equal magnitude and opposite sign, PX→Y = −PY→X,
giving ensemble-average first laws for each subsystem:

PX + Q̇X − PX→Y = 0, (8a)

PY + Q̇Y + PX→Y = 0. (8b)

The subsystem-specific entropy production rates (EPRs) in a
bipartite system are [21]

�̇X = dt H (X ) + �̇res
X − İX, (9a)

�̇Y = dt H (Y ) + �̇res
Y − İY, (9b)

for marginal Shannon entropy H (X ) ≡ − ∫
dx p(x) log p(x)

and similarly for Y [22]. Eqs. (9a) and (9b) sum to the total
system entropy production rate. In our system, the change in
entropy due to contact with environmental reservoirs is due
to contact with a thermal reservoir, hence �̇res

X = −βQ̇X and
�̇res

Y = −βQ̇Y.
The last component of the EPR is the information flow

[23] (also known as the learning rate [24,25]), quantifying the
change in mutual information between the subsystems due to
changes in one subsystem,

İX = ∂τ I[X (t + τ );Y (t )]|τ→0, (10a)

İY = ∂τ I[X (t );Y (t + τ )]|τ→0. (10b)

The mutual information I[X,Y ] ≡ H (X ) + H (Y ) −
H (X,Y ) = H (Y ) − H (Y |X ) = H (X ) − H (X |Y ) between
random variables X and Y (for joint entropy H (X,Y ) and
conditional entropies H (X |Y ) and H (Y |X )) quantifies the
expected reduction in the uncertainty of one variable upon
learning the other variable [22]. It can be written in terms of
the marginal distributions p(x) and p(y) and joint distribution
p(x, y) as

I[X; Y] =
∫

dx
∫

dy p(x, y) log
p(x, y)

p(x)p(y)
. (11)

The information-flow definition (10) can be manipulated [21]
to a form that highlights the similarity to the transduced
power (7):

İX =
∫

dx
∫

dyJX(x, y)∂x log p(y|x), (12a)

İY =
∫

dx
∫

dyJY(x, y)∂y log p(x|y). (12b)

At steady state, each subsystem’s Shannon entropy does not
change (dt H (X ) = 0 = dt H (Y )) and the joint system entropy
does not change (dt H (X,Y ) = 0), so İX = −İY. Each subsys-
tem separately obeys the second law (each subsystem entropy
production is nonnegative), hence at steady state

0 � �̇X = −βQ̇X − İX, (13a)

0 � �̇Y = −βQ̇Y + İX. (13b)

IV. RESULTS

A. Energy flows

Figure 3 shows steady-state energy flows through the
system as a function of coupling strength Ecouple for a
barrierless system and a system with energy barriers. (Systems
with barriers hold more intrinsic interest, but barrierless
systems help isolate the contribution of subunit coupling.) At
low coupling strength, the subsystem’s dynamics is dominated
by its intrinsic energy landscape and associated driving force:
each subsystem on average moves in the direction of its
respective driving force, so energy is not transduced from one
subsystem to the other, but rather is all dissipated as heat to
the environment, indicated by the relatively high values of
−Q̇X and −Q̇Y. As the coupling strength increases, energy
is increasingly transduced from the stronger-driven upstream
subsystem X to the weaker-driven downstream subsystem Y
(PX→Y increases), decreasing the dissipated heat from each
subsystem and changing the sign of the output power PY.

When energy barriers are present, it is harder to take
advantage of stochastic fluctuations to carry subsystem X
forward because it has to be carried over an energy barrier.
This produces a peak in output power at intermediate-strength
coupling as already described in Ref. [15]. The peak is due
to a trade-off as coupling strength increases, between min-
imizing slip and reducing flexibility for the subsystems to
cross the energy barriers one subsystem at a time rather than
simultaneously. By contrast, in the barrierless system the heat
and power all monotonically change as the coupling strength
increases, and notably the maximum output power occurs at
tight coupling. Energy barriers consistently slow down the full
system, lowering input power, output power, and transduced
power compared to the barrierless system.

How do these trends in transduced power relate to the inter-
nal energy and information flows within this multi-subsystem
system? One might naively expect that the transduced power
between subsystems bounds the output power. This would be
true if the upstream subsystems dynamics were independent
of the downstream system, such as when the upstream sub-
system is deterministically manipulated by an experimentalist
[26], or when the coupling energy is negligible compared to
the subsystem-specific energetics (weak coupling) [27]. But
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FIG. 3. (a) Input power βPX and heat flow βQ̇X due to the
dynamics of X, and (b) output power βPY, heat flow βQ̇Y due to
the dynamics of Y, and transduced power βPX→Y, all as functions
of coupling strength. Dashed curves: barrierless system (βE ‡ =
0). Solid curves: system with n = 3 barriers of height βE ‡ = 2.
Chemical driving forces are βμX = 4 rad−1 and βμY = −2 rad−1.

in autonomous systems where the subsystems are strongly
coupled, it turns out to be more complicated because there
is capacity transduced through both energetics as well as
correlations [27]: joint entropy also influences the system’s
capacity to output work.

B. Bound on input and output powers

For bipartite dynamics (3), the separate subsystem-
specific second laws express non-negativity constraints on the
subsystem-specific entropy productions. Specifically, apply-
ing at steady state the local first laws (8) to the local second
laws (13) substitutes powers for heats, giving

0 � �̇X = βPX − βPX→Y − İX, (14a)

0 � �̇Y = βPX→Y + İX + βPY. (14b)

Rearranging these non-negativity constraints reveals that the
output power and input power are each bounded (on opposite

FIG. 4. (a) Input power βPX, output power −βPY, and trans-
duced capacity βPX→Y + İX as functions of coupling strength.
Input and output power are each bounded by transduced capacity.
(b) Entropy production rates for subsystems X and Y, �̇X and �̇Y,
respectively, as functions of coupling strength. Dashed curves: barri-
erless system. Solid curves: system with barriers. Parameters are the
same as Fig. 3.

sides) by the same quantity:

βPX � βPX→Y + İX � −βPY. (15)

This is the same bound identified in Ref. [20] for a bipartite
Markov process at steady state.

This bounding quantity can be no greater than the input
power, and places an upper bound on the output power, so
we call it the transduced capacity. The transduced capac-
ityaccounts for the energy and information flows between
the subsystems: the transduced power PX→Y quantifies the
change in energy of the combined system due to the dynamics
of subsystem X, and the information flow İX quantifies the
change in mutual information between subsystems (which
impacts the joint system entropy) due to the dynamics of
X. At steady state, transduced capacity generalizes the trans-
duced additional free energy rate [27] to the context where the
downstream subsystem experiences its own chemical driving
force. Figure 4(a) shows the input and output powers, and the
transduced capacity falling in between the two.
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FIG. 5. (a) Information flow −İX (10) as a function of coupling
strength. (b)–(d) Conditional steady-state probability distribution
pss(y|x) of the state of Y given the state of X, for (b) small (βEcouple =
2), (c) intermediate (16), and (d) large (128) coupling (indicated by
vertical dashed lines in (a). (e)–(g) pss(y|x) at fixed x = 1

4 rotation
(red) and x = 5

12 rotation (orange), indicated by vertical lines in
(b)–(d). Parameters are the same as Fig. 3.

Equations (14) also show that the subsystem entropy pro-
duction rates each equal the difference between the transduced
capacity and the respective power, so as expected they repre-
sent the respective losses in capacity at each stage, i.e., due to
the dynamics of each subsystem. The bound is tightest at tight
coupling, and it lies halfway between the input and output
powers at the coupling strength that leads to equal EPRs.

C. Information flow

The information flow is relatively abstract and generally
less familiar than energy flows, so to clarify its meaning in
our system, Fig. 5(a) shows the information flow as a func-
tion of coupling strength for a system with energy barriers.
(Barrierless systems have zero information flow, as derived
in Appendix B 2.) The general trend in the information flow
is straightforward to understand: at low coupling, each sub-
system’s motion is independent of the other, leading to a
vanishing information flow; by contrast, at high coupling the
subsystems’ positions are so highly correlated that ongoing

dynamics has scarcely any opportunity to provide further in-
formation. Only intermediate coupling combines dependence
of the subsystem states on each other, and new information
generation during subsystem dynamics.

The information flow İX [Eqs. (12)] can be thought of as
the change in uncertainty as X evolves about the state of Y
given the state of X. If the conditional probability distribution
p(y|x) does not change shape with the conditioning variable
x, then the uncertainty of one variable ygiven the other xdoes
not change and the information flow is zero. Figures 5(b)–5(g)
show that at low coupling [Figs. 5(b) and 5(e)], p(y|x) does
not vary with x; at tight coupling (approximated in [Figs. 5(d)
and 5(g)], p(y|x) shifts location but does not change shape.
Both of these extreme cases have unvarying shape of p(y|x)
and hence vanishing information flow. Only for intermediate
coupling strength [Figs. 5(c) and 5(f)], where the shape of
p(y|x) depends on x, is a nonzero information flow possible.
In barrierless systems, p(y|x) is determined only by the cou-
pling part of the system energy (and constant driving forces),
making p(y|x) only a function of difference coordinate x − y,
and hence the shape of p(y|x) does not vary with x and the
information flow is always zero.

Note that for successful energy transduction, İX is negative
and hence İY is positive: X must be more responsive to its
driving force than to the coupling with Y, hence in general its
dynamics reduce information between X and Y; by contrast,
Y must be more responsive to the coupling than to its driving
force, so its dynamics increase information.

D. Intermediate-coupling features

Unsurprisingly, the transduced capacity that upper bounds
the output power also peaks at intermediate coupling strength;
more surprisingly, the entropy productions are also equal at
intermediate coupling strength, near where output power is
maximized. Figure 4(b) shows the subsystem entropy produc-
tion rates as functions of coupling strength. For a barrierless
system, the EPR at low coupling is proportional to the square
of the driving force applied to each subsystem, and at tight
coupling it is proportional to the square of the average force
applied to the system, (μX + μY)/2. With energy barriers, the
proportionalities are no longer exact. The barriers suppress the
subsystem’s motion and lower the EPRs.

In the barrierless case, the EPRs are only equal in the
tight-coupling limit, which is also where the output power is
greatest. Appendix B 3 shows analytically that equal EPRs in
the barrierless system can be achieved at thermal equilibrium
or at tight coupling. For the system with barriers, the EPRs
cross at intermediate coupling, before approaching each other
again in the tight-coupling limit.

Figures 3 and 4 both show interesting features at
intermediate-strength coupling: at around the same cou-
pling strength, the output power PY and transduced capacity
βPX→Y + İX are all peaked and the EPRs are equal. To more
precisely quantify these observations, Fig. 6 shows the (quite
strong) correlation (across different driving forces) between
the coupling strength that maximizes the output power and
either the coupling strength that maximizes the transduced
capacity or the coupling strength that equalizes the EPRs. Ap-
pendix C shows the full dependence of these thermodynamic
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FIG. 6. Scatterplots of the coupling strength that maximizes
output power and the coupling strength that (a) maximizes the trans-
duced capacity or (b) equalizes subsystem EPRs. Different colors
(blue, purple, red) represent different upstream chemical driving
forces, βμX = {2, 4, 8} rad−1. Different symbols (circle, diamond,
square) represent different driving-force ratios, −μX/μY = {2, 4, 8}.
Error bars show confidence intervals (between simulated parameter
values flanking the maximizing value). Blue symbols and error bars
are enlarged to ease viewing of overlapping data.

quantities (output power, transduced capacity, and difference
of EPRs) on coupling strength.

V. DISCUSSION

In this paper we used a simple model, capturing the
essential physics of two strongly coupled stochastic rotary
motors, to investigate the effect of coupling strength on
internal energy and information flows within a molecular
machine and their relation to output power. In a barrierless
system, tight coupling maximizes the output power and trans-
duced power, while the information flow in such a system
is zero and the entropy production rates are equal only at
tight coupling. On the other hand, in a system with energy
barriers, intermediate coupling strength maximizes output

power PY and transduced capacity βPX→Y + İX (summing
the transduced power and information flow from upstream
to downstream subsystem) and equalizes subsystem EPRs
(quantifying subsystem-specific capacity losses), roughly the
same coupling strength in all cases. These findings are
rationalized by local subsystem-specific second laws demon-
strating that the transduced capacity forms a lower bound for
the input power and an upper bound for the output power.

Equal EPRs correspond to dissipation equally distributed
over the subsystems. Symmetric modeling of the two
subsystems—the same energy landscapes with equal num-
bers of metastable states, equal friction coefficients, equal
barrier heights, and coupling that is symmetric around the
relative coordinate x − y—likely play a role in the coinciding
phenomena such as maximum output power and equal EPRs.
In the absence of these symmetries, EPRs need not be equal
at any coupling strength, even at tight coupling. It would be
interesting to find a condition on subsystem EPRs coinciding
with maximal output power in more general models.

While our model is unique to our knowledge in combining
both energy barriers and varying coupling strength in a work-
to-work converter, model systems similar to the barrierless
special case of our model are quite popular as it can be thought
of as diffusion in a tilted periodic potential [28–31], which
allows for semiexact solutions (exact expressions that must be
evaluated numerically). Similarly, semiexact solutions can be
found in the tight-coupling limit. For our most general model
with arbitrary coupling strength and energy barrier heights,
we have only found numerical solution methods.

In this work, we focus on systems where each subsys-
tem has n = 3 metastable states and an identical number of
barriers. Preliminary studies suggest that our findings here
are qualitatively preserved for smaller and larger n [[32],
Sec. 6.4], though systematic study of varying n and differing n
among the two subsystems would be an interesting extension.

Reference [33] explores a heat engine with a very similar
energy landscape. References [34,35] investigate dimer dif-
fusion on a similar landscape, with the main difference being
that the particles are subject to the same constant driving force
so the system does not function as an engine. Reference [36]
studies thermodynamic uncertainty relations in an identical
system to the one presented here, deriving bounds on the
EPR and the efficiency and studying the trade-off between
dissipation and precision, but they do not comment on the role
of coupling strength.

Allosteric interactions, where activity at one location (e.g.,
ligand binding or conformational rearrangement) affects ac-
tivity at another spatially separated location, are ubiquitous
in molecular motors and many other proteins and protein
complexes [37,38]. Such coupling of distinct functionalities at
spatially separated sites is effectively similar to our mechani-
cal coupling, suggesting that our model and its implications
may apply to a wide class of energy- and information-
transducing systems.
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APPENDIX A: COMPUTATIONAL DETAILS

1. Convergence to steady state

Convergence to the steady state is quantified by the total
variation distance not changing (to floating-point precision),

1

2

∫
dx

∫
dy |p(x, y; t + �t ) − p(x, y; t )| < 10−16, (A1)

over a time step of �t = 10−3.

2. Setting the simulation timescale

The numerical-simulation time scale is converted to a
physical time scale by comparison with the time scale in anal-
ogous experiments. Crudely approximating ATP synthase as
a sphere of radius r = 15 nm rotating around an axis through
its center, in water with viscosity η = 10−9 pN × s × nm−2,
gives a rotational drag coefficient [41]

ζr = 8πηr3 (A2a)

= 2.1 × 10−5 kBT × s × rad−2, (A2b)

and via the Einstein relation a rotational diffusion coefficient

Dphys = kBT

ζr
(A3a)

= 4.8 × 104 rad2 × s−1. (A3b)

The simulation diffusion coefficient is set to Dsim =
10−3 rad2 × τ−1. Setting equal the physical and simulation
diffusion coefficients, Dphys = Dsim, sets the simulation time
scale to

τ = 2.1 × 10−8 s. (A4)

APPENDIX B: DERIVATIONS

1. Transformation of entropy production rates

In this section, we facilitate calculations in Appendices
B 2 and B 3 by deriving the entropy production rates for the
transformed coordinates of the center-of-mass and relative
coordinate. In the barrierless system with coupling energy
that depends only on the relative coordinate x − y, a simple
linear transformation decouples the coordinates x and y into
two independent coordinates. Consequently, the probability
current and the entropy production rate also split into two
independent terms.

We start from the definition of the entropy production rate
for a bipartite system [21],

�̇ ≡ �̇X + �̇Y (B1a)

=
∫

dx
∫

dy
J 2

X (x, y) + J 2
Y (x, y)

p(x, y)
, (B1b)

where the probability current is

J j (x, y) = − 1

ζ
[p(x, y)∂ jVeff (x, y) + β−1∂ j p(x, y)]. (B2)

The subscript j refers to the probability current for either
subsystem X or Y, and similarly ∂ j refers to the related deriva-
tive with respect to either x or y. p(x, y) is the joint probability
distribution, and Veff (x, y) is the effective energy landscape
that depends on both subsystem coordinates and chemical
driving forces.

We apply a coordinate transformation from x and y to the
center-of-mass x̄ and relative coordinate �x:

x̄ ≡ 1
2 (x + y), �x ≡ x − y, (B3a)

x = x̄ + 1
2�x, y = x̄ − 1

2�x. (B3b)

This transforms the probability distribution,

p(x, y) = p(x̄)p(�x), (B4)

and the spatial derivatives,

∂ j p = (∂ j x̄)∂x̄ p + (∂ j�x)∂�x p (B5a)

= 1
2∂x̄ p ± ∂�x p. (B5b)

The plus sign refers to the derivative with respect to x, and the
minus sign to the derivative with respect to y.

The probability currents can then be written in terms of the
new coordinates,

ζJ j (x, y) = −p(x̄)p(�x) ( 1
2∂x̄ ± ∂�x )Veff (�x)

−β−1( 1
2∂x̄ ± ∂�x )p(x̄)p(�x) (B6a)

= [∓p(�x)∂�xVeff (�x) ∓ ∂�x p(�x)]p(x̄)

+ 1
2 [−p(x̄)∂x̄Veff (x̄) − ∂x̄ p(x̄)]p(�x) (B6b)

= ±ζJ�X(�x)p(x̄) + 1
2ζJX̄(x̄)p(�x), (B6c)

where

JX̄(x̄) = −p(x̄)∂x̄Veff (x̄) − ∂x̄ p(x̄), (B7a)

J�X(�x) = −p(�x)∂�xVeff (�x) − ∂�x p(�x) (B7b)

are the two independent probability currents. Squaring
Eq. (B6c) for each of JX and JY expresses the sum of the
squared probability currents as

J 2
X (x, y) + J 2

Y (x, y) = 2J 2
�X(�x)p2(x̄) + 1

2J
2

X̄ (x̄)p2(�x).
(B8)

Finally, this is used to calculate the total entropy
production rate

�̇ =
∫

dx̄
∫

d�x
2J 2

�X(�x)p2(x̄) + 1
2J 2

X̄ (x̄)p2(�x)

p(x̄)p(�x)

(B9a)

=
∫

dx̄
∫

d�x
2J 2

�X(�x)p(x̄)

p(�x)

+
∫

dx̄
∫

d�x
1
2J 2

X̄
(x̄)p(�x)

p(x̄)
(B9b)

= 2
∫

d�x
J 2

�X(�x)

p(�x)
+ 1

2

∫
dx̄

J 2
X̄

(x̄)

p(x̄)
(B9c)

= 2�̇�X + 1
2 �̇X̄. (B9d)
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FIG. 7. Entropy production rate as a function of coupling
strength for the center-of-mass x̄ and difference �x coordinates.
Dashed curves are for a barrierless system, and solid curves for 2 kBT
barriers. Parameters are the same as Fig. 3.

Figure 7 shows the entropy production rates for the trans-
formed coordinates x̄ and �x as a function of the coupling
strength. In the tight-coupling limit, the entropy production
rate due to the difference coordinate �x vanishes, and all
of the entropy production is due to the center-of-mass co-
ordinate, regardless of barrier height. This is because the
probability current through the difference coordinate van-
ishes as the coupling strength approaches tight coupling. This
means that in this limit the center-of-mass coordinate is the
only coordinate needed to describe the system; it is the reac-
tion coordinate, and the difference coordinate is a bath mode
[42]. Finally, note that the EPR in the barrierless case (dashed
curves) due to the center-of-mass coordinate x̄ is independent
of the coupling strength because the coordinates x̄ and �x
decouple completely after the coordinate transformation.

2. Calculating information flow

Here we show that for our model [with joint energy from
Eq. (1)] the information flow is zero (as claimed in Sec. IV C)
when there are no barriers (VX(x) = VY(y) = 0) and the cou-
pling energy is only a function of the relative coordinate
�x ≡ x − y,

V (x, y) = Vcouple(x, y) = Vcouple(x − y). (B10)

We start from a convenient steady-state expression for the
information flow, derived from Eq. (11) in Ref. [23],

İX = −
∫

dx dy log p(y|x) ∂xJX(x, y). (B11)

We rewrite the probability current,

JX(x, y) = − 1

ζ
[p(x, y)∂xVeff (x, y) + β−1∂x p(x, y)], (B12)

using the coordinate transformation (B3)–(B5) from
Appendix B 1 to decouple the system dynamics into the

probability currents of x̄ and �x,

ζJX(x̄,�x) = ζ
[
p(x̄)J�X(�x) + 1

2 p(�x)JX̄(x̄)
]
. (B13)

Each of the coordinates’ dynamics can be described by a 1D
Smoluchowski equation [[16], Ch. VIII]. We assume that each
of the coordinates, x̄ and �x, reach a steady state, where
the gradient of the probability currents have to equal zero.
Consequently, the probability current associated with each of
these coordinates has to be uniform(independent of the system
coordinates),

JX̄(x̄) = CX̄, (B14a)

J�X(�x) = C�X. (B14b)

This simplifies the probability current,

JX(x̄,�x) = p(x̄)C�X + 1
2 p(�x)CX̄. (B15)

The spatial derivative of the probability current is

∂xJX(x̄,�x) = 1
2C�X∂x p(�x) + CX̄∂x p(x̄) (B16a)

= (
1
2∂x̄ + ∂�x

)[
1
2CX̄ p(�x) + C�X p(x̄)

]
(B16b)

= 1
2 [CX̄∂�x p(�x) + C�X∂x̄ p(x̄)]. (B16c)

In the second line we changed coordinates of the partial
derivative using Eq. (B5). Substituting this into Eq. (B11), and
transforming the integrals to go over the center-of-mass and
relative coordinates, the information flow is

İX = −1

2

∫
dx dy log p(y|x)[CX̄∂�x p(�x) + C�X∂x̄ p(x̄)]

(B17a)

= 1

2

∫
dx̄ d�x log p(�x)[CX̄∂�x p(�x) + C�X∂x̄ p(x̄)]

(B17b)

= πCX̄

∫
d�x log p(�x) ∂�x p(�x)

+ 1

2
C�X

∫
d�x log p(�x)

∫
dx̄ ∂x̄ p(x̄) (B17c)

= πCX̄{p(�x)[log p(�x) − 1]}�x=π
�x=−π

+ 1

2
C�X p(x̄)|x̄=2π

x̄=0

∫ π

�x=−π

d�x log p(�x) (B17d)

= 0. (B17e)

As long as the shape of the conditional probability dis-
tribution does not change with the coordinates x or y, the
information flow will be zero. This result applies to the bar-
rierless system with periodic boundary conditions, in which
case the conditional probability distribution is a function of
the relative coordinate x − y.

3. Equal entropy production rates

Here we derive two conditions (as mentioned in Sec. IV D)
in the barrierless system for equality of entropy production
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FIG. 8. Output power (top row), transduced capacity (middle
row), and difference in EPRs (bottom row), each as a function of
coupling strength βEcouple, for different driving forces βμX (left to
right columns) and different driving-force ratios −μX/μY (different
colors). Colored bars: confidence intervals for the coupling strength
that maximizes the output power.

rates (EPRs),

�̇X =
∫

dx
∫

dy
J 2

X (x, y)

p(x, y)
, (B18a)

�̇Y =
∫

dx
∫

dy
J 2

Y (x, y)

p(x, y)
. (B18b)

A sufficient, but not necessary, condition for these to be
equal is that the square of the probability currents are equal

for all x and y. In the barrierless system, the coordinates
can be decoupled into two independent coordinates, as in
Appendix B 1. Additionally, when the coordinates are in-
dependent, the steady-state probability current through each
coordinate must be uniform (B14). Using this to rewrite the
probability current (B6c) where there is nonzero probability
gives

J 2
X (x, y) = J 2

Y (x, y), (B19a)[
p(x̄)C�X + 1

2 p(�x)CX̄

]2 = [−p(x̄)C�X + 1
2 p(�x)CX̄

]2
,

(B19b)

p(x̄)p(�x)CX̄C�X = −p(x̄)p(�x)CX̄C�X, (B19c)

CX̄C�X = −CX̄C�X. (B19d)

This can only be true if both sides equal zero, so one or both
of the constants must be zero. CX̄ = 0 implies no probability
current through the center-of-mass coordinate; a sufficient
condition for this is the center of mass being at thermal equi-
librium. Alternatively, C�X = 0 implies no probability current
through the relative coordinate; a sufficient condition for this
is the tight-coupling limit. Thus tight coupling or thermal
equilibrium are sufficient, but not necessary, conditions for
equal EPRs.

APPENDIX C: VARIATION OF CENTRAL
THERMODYNAMIC QUANTITIES WITH COUPLING

STRENGTH

Figure 6 shows the coupling strength βEcouple at which the
output power PY and the transduced capacity (sum of trans-
duced power PX→Y and information flow İX) are maximized,
and at which the subsystem-specific entropy production rates
are equal. Figure 8 shows these quantities’ full dependence on
coupling strength βEcouple.
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