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Effect of solvent gradient inside the entropic trap on polymer migration
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By employing the exact enumeration technique on the lattice model of a polymer, we study the migration
of the polymer chain across an entropic trap in a quasiequilibrium condition and explore the effect of solvent
gradient present in the entropic trap which acts both parallel and perpendicular to the direction of migration.
The Fokker-Planck formalism utilizes the free energy landscape of a polymer chain across the channel in the
presence of the entropic trap to calculate the migration time. It is revealed that the migration is fast when the
solvent gradient acts along the migration axis (i.e., x axis) inside the channel in comparison to the channel having
the entropic trap. We report here for the first time that the entropic trap makes the migration faster at a certain
value of solvent gradient. We also study the effect of transverse solvent gradient (along the y axis) inside the
trap and investigate the structural changes of the polymer during migration through the channel. We observe the
nonmonotonic dependence of migration time on the solvent gradient.
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I. INTRODUCTION

Length scales of living cells and organelles and their
operations in a confined environment motivate biologists
and physicists to study biopolymers in finite length systems
[1–3]. The advent of single-molecule manipulation tech-
niques, such as magnetic tweezers, optical tweezers, atomic
force microscopy (AFM), etc. lead to new insights in polymer
translocation processes in a confined geometry [4–6]. For
example, a nanopore that connects a viral capsid to a cell
membrane allows viral DNA to translocate through it, and
finally be injected into the cell [7,8]. Also, the movement of
proteins through the cell membrane, RNA transport through
nuclear pore complexes, and transport of polymers across a
gel in electrophoresis are among the other potential applica-
tions involved in migration processes [9,10].

Single-molecule studies revealed that the migration pro-
cess is delayed due to microfluidic channels which enhances
the readability of the sequence [11,12]. The migration pro-
cesses of polymers are often hindered for various reasons. One
can classify them into two broad categories: (i) geometrical
trapping arising due to confinement effects and (ii) field medi-
ated migration. In geometrical trapping, biopolymers face free
energy barriers due to the nanopore geometry or the entropic
trap arrays during migration [13]. The basic concept is that
whenever the dimension of confinement is smaller than the
length of the polymer, the number of accessible configura-
tions of the polymer is considerably reduced. This explains
the formation of free energy barriers and the reduction in
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associated configurational entropy [14,15]. In contrast, field
induced polymer migrations are mostly dominated by the
applied electric field or chemical gradient across the pore
[16,17]. Wong and Muthukumar [18] experimentally observed
that the translocation process of RNA inside an α-hemolysin
protein pore was affected by the pH-gradient across the
pore. The presence of pH gradient (or solvent gradient)
arises due to the protonation of charged amino acid residues
inside the pore. Buyukdagli [19] showed that inclusion of a
pressure gradient in a driven polymer migration results in
extended migration time. Tsutsui et al. [20] experimentally
observed that a transverse electric field in a silicon dioxide
nanochannel slowed down the biopolymer migration velocity.
Lam et al. [21] proposed the use of ultrathin nanoporous sil-
icon nitride membranes as entropic traps to confine polymers
for long times within a nanochannel.

Migrations induced by chemical gradients along the mi-
gration axis often form globules on the poor solvent side
and these globules acts as ratchets to attract more segments
from the good solvent side [22,23]. The manipulation of the
solvent quality in the presence of a patchy channel makes
the translocation fast, which helps in drug delivery through
dendritic carrier molecules [24]. A noteworthy and complex
phenomenon happens when a solvent gradient or dielectric
constant gradient is introduced in transverse fashion within
the nanopore such that the solvent quality differs along the
perpendicular direction of the migration axis. Ajdari and Prost
[25] theoretically predicted that DNA confined in a geomet-
rical trap with a transverse gradient field in addition to a
uniform field along the flow may confine DNA within the trap.
Regtmeier et al. [26] experimentally verified the findings of
Ajdari and Prost [25] by taking an inhomogeneous field along
with a constant field, which results in slow migration. This
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FIG. 1. Schematic representations of polymer chain migration through an inhomogeneous channel. The channel has three different regions
(I, II, and III) of a certain length (l1 = 14, l2 = 10 lattice units), width (h = 12 lattice units) and different solvent quality (good, poor, and
solvent gradient): (a) Model A: Channel without entropic trap and solvent interaction gradient (in region II) is along the x direction. (b) Model
B: Channel with entropic trap of depth d = 10 lattice units and solvent interaction gradient (in region II) is along the x direction. The red
dashed line shows the nonbonded nearest neighbor pairs (within the region where solvent gradient is present) along x and y directions, and
corresponding Boltzmann weights are represented by τx and τy. (c) Model C is the same as model B, but the solvent interaction gradient inside
an entropic trap (region II) acts along the transverse direction (y axis). (d) Model D is the same as the model C, but the solvent interaction
gradient has the reverse sign compared to model C.

helps in understanding DNA separation with good selectivity,
which is essential for human genome mapping [25].

A chemical gradient inside the nanopore channel in ei-
ther the horizontal or transverse direction may have different
effects on polymer migration and be involved in differ-
ent biological implications [13,18,25,26]. Motivated by this,
we study the polymer migration through an entropic trap
in the presence of the gradient in the horizontal as well as
transverse directions. In order to model the horizontal and
transverse gradient fields, we consider a varying nonbonded
nearest neighbor attraction among the monomers (ε). Here,
we focus mostly on the issues where the effective change
in nonbonded nearest neighbor interaction (gradient field)
hinders the uniform migration in the framework of quasiequi-
librium statistical mechanics.

A large number of theoretical and simulation studies de-
scribing the complexity of the migration process rely on the
quasiequilibrium approach [27–31]. In theoretical quasistatic
migration studies, where the time taken by each success-
ful migration step is greater than the relaxation time of the
polymer, one can use the Fokker-Planck equation [32–35] to
calculate the migration time. In such an approach the mi-
gration is usually unidirectional. It is further assumed that

the movement of the polymer is slow enough so that the
diffusion coefficient of the polymer can be considered as a
constant parameter throughout the process [34]. The aim of
this paper is to illustrate the role of the solvent interaction
gradient (�ε) in the presence of an entropic trap on the
migration.

The paper is organized as follows. In Sec. II, we briefly
describe the model and method used to study the migration of
polymer through the channel in the presence of an entropic
trap. In Sec. III, we obtain the free-energy landscape and
calculate the associated migration time. We have calculated
the x and y components of the radius of gyration to study the
configurational properties of the polymer during the migration
in Sec. IV. A brief discussion and future perspective of the
present work are found in Sec. V.

II. MODEL AND METHOD

In this study, we model a polymer chain migrating through
a nonuniform channel with and without an entropic trap. The
solvent interaction gradients varying along x and y directions
are shown in Figs. 1(a)–1(b) and 1(c)–1(d) respectively. First,
we model the polymer chain as a self-attracting–self-avoiding
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walk (SASAW) on a square lattice [36–40]. Monomers are
sites occupied by the polymers, and interactions are among
nonbonded nearest neighbor monomers. The thermodynamic
properties of a polymer chain in a solvent of uniform quality
are expressed in the form of averages of the physical ob-
servables derived from the partition function. The canonical
partition function for the polymer chain of length N in a
homogeneous system can be written as

Z =
∑

all walks

τNp . (1)

The summation is over all the possible walks and τ =
exp(−βε) is the Boltzmann weight corresponding to the
nonbonded nearest neighbor. Here, β = 1

KBT , where KB is
the Boltzmann constant and T is the temperature. Np is the
number of nearest neighbor pairs, where each pair has energy
ε. In this work, we have taken the chain length N = 28. We
also set KB = 1 and −1 � ε � 0 from here onward.

In order to study the effect of free energy barriers arising
due to inhomogeneity inside the channel, we introduce three
different regions (I, II, and III) of different dimensions and
solvent quality (good or poor) in the presence (or absence) of
an entropic trap as shown in Figs. 1(a)–1(d). For the sake of
simplicity, we introduce four different models, namely, mod-
els A, B, C, and D depending on the solvent gradient (along
the channel or perpendicular to the channel) and entropic
trap [Figs. 1(a)–1(d)]. Here, we study migration properties
in the absence [Fig. 1(a): model A] and in the presence [Fig
1(b): model B] of an entropic trap having the solvent interac-
tion gradient along x axis while the other parameters remain
constant.

In models A and B [Figs. 1(a) and 1(b)], regions I and III
have the dimensions length (l1) and width (h) of 14 and 12
lattice units, respectively. The middle region II of model A has
dimensions length (l2) and width (h) of 10 and 12 lattice units,
respectively. Model B has an entropic trap of dimension length
(l2) 10 and depth (d) 10 lattice units. The interest here is to
study the migration of a polymer chain from region I to region
III and delineate the role of an entropic trap on the free energy
barriers and the migration time. Here, we introduce a solvent
interaction gradient (�ε = ε

l2
) along the channel direction

(x axis). The strength of the interaction associated with nearest
neighbor pairs in this region (indicated by thin and thick
lines in Fig. 1) may be defined as ε(l i

2) = l i
2�ε(l2), where

i = 1, 2, 3, . . . , 10. It may be noted here that the first layer
of region II has the value of ε(l1

2 = 1) = 0 (good), whereas
the last layer of region II has the value of ε(l10

2 = 10) = −1
(poor) for �ε = −0.1. Region II is the interface between the
two regions I and III as the solvent of region III follows
the solvent quality of the last layer of region II depending
on the value of �ε. It is pertinent to mention here that for
�ε = 0.0 the solvent quality remains good across all regions
of the channel in both models A and B. Here, we show that
this simple form of solvent gradient captures the essential
physics of migration by considering different nearest neighbor
interactions arising in the x and y directions [41].

In regions I and III the Boltzmann weight for the non-
bonded nearest neighbor interaction is τ = exp(−βε). In

region II, the nonbonded nearest neighbor interaction is uni-
form along the y direction and has weight

τy(x) = exp[−βε(x)]. (2)

However, for the nonbonded nearest neighbor involved in
between x and (x ± 1) layers, the Boltzmann weight can be
expressed as

τx(x) = exp

(
− β

2
[ε(x) + ε(x ± 1)]

)
. (3)

Model B is similar to model A, except it has an entropic trap
(l2 = 10 lattice units and d = 10 lattice units) in region II, as
shown in Fig. 1(b).

In this work, the canonical partition function of the model
systems can be expressed as

Zx =
∑

(Np1,Np3,Nx
p2,N

y
p2,x)

C
(
Np1, Np3, Nx

p2, Ny
p2, x

)

× τ
Nx

p2
x τ

Ny
p2

y τNp1τNp3 . (4)

Where Np1 and Np3 are the numbers of nonbonded pairs
formed in regions I and III respectively. Nx

p2 and Ny
p2 are the the

nonbonded nearest neighbor contacts along x and y directions,
respectively, in region II.

The solvent quality inside the channel is good and poor
in models C and D [Figs. 1(c) and 1(d)], respectively. How-
ever, the solvent gradient interaction is perpendicular to the
direction of migration [25,26]. In model C, the solvent gradi-
ent interaction decreases with the depth of the entropic trap,
whereas in model D it increases with the depth of the entropic
trap. This is analogous to the situation where the quality of
the solvent is relatively poor (low temperature regime) at the
bottom layer of model C. On contrast to model C, the entropic
trap of model D has relatively good solvent (ε = 0) at the
bottom, i.e., the bottom layer is at high temperature. In both
models C and model D the gradient (�ε = ε

d ) is defined in
such a way that the nonbonded pair at the bottom layer con-
tributes −1 < ε < 0. For these cases, interactions at any layer
inside the entropic trap may be defined as ε(di) = ε + di�ε,
where i = 1, 2, 3, . . . , 10. The value of �ε lies between 0 and
−0.1 for model C and 0 to 0.1 for model D.

The nonbonded nearest neighbor interaction inside the en-
tropic trap remains constant along the x direction, and its
Boltzmann weight is given by

τx(y) = exp[−βε(y)]. (5)

Whereas if any pair occurs between the yth and (y ± 1)th
layers, then we express the Boltzmann weight as

τy(y) = exp

(
− β

2
[ε(y) + ε(y ± 1)]

)
. (6)

In the equilibrium framework of statistical mechanics, it
is difficult to study the migration of a polymer chain. How-
ever, if the process is slowed in such a way that the system
achieves quasistatic equilibrium at a given instant of time, it
is possible to study the dynamics of the system by using the
Fokker-Planck equation. The basic ingredient of the Fokker-
Planck equation is the free energy of the system at any instant
of time for a given value of x. For this, we assume that the
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FIG. 2. Variation of the free energy with anchoring coordinate
(x) for different solvent interaction gradients (�ε): (a) for model A;
(b) for model B.

polymer is migrating from region I to region III and the free
energy of the system may be obtained by progressively fixing
one end of the polymer from x = 0 to x = 38, whereas other
end of the polymer is free to be anywhere inside the channel.
All the possible conformations are enumerated at each x co-
ordinate (x = 0 to x = 38) along the direction of migration.
For models B, C, and D, the y coordinate of the polymer is
fixed at y = 0 whenever the polymer is outside of the trap
(x = 0 to x = 13 and x = 24 to x = 38). When the polymer is
migrating through the entropic trap (x = 14 to x = 23), the y
coordinate is fixed at the bottom (y = −10). We used the exact
enumeration technique [36] to calculate the partition function
for a given value x by using the following equation:

Zx =
∑

(Np1,Nx
p2,N

y
p2,x)

C
(
Np1, Nx

p2, Ny
p2, x

)
τ

Nx
p2

x τ
Ny

p2
y τNp1, (7)

where Nx
p2 and Ny

p2 are the numbers of nearest neighbor con-
tacts along the x direction and y directions, respectively, inside
the entropic trap. C(Np1, Nx

p2, Ny
p2, x) is the number of distinct

configurations having Np1 contacts in the channel and Np2(=
Nx

p2 + Ny
p2) contacts in the entropic trap. The free energy of

the system for a given value of x is given by

F x = −T log(Zx ). (8)

III. FREE ENERGY LANDSCAPE

The migration process may be understood if one has com-
plete information of the free energy associated with each
region of the channel. In order to have a better understanding
the effect of the entropic confinement on the migration pro-
cess, we systematically calculate the free energy of the system
as a function of x, where one end of the chain is anchored. It
may be noted that in both models A and B, region I has a good
solvent (ε = 0) and the gradient acts along the x direction, and
they differ only in terms of the entropic trap. For model A,
when �ε = 0.0, the free energy remains constant throughout
the channel [Fig. 2(a)]. This implies that monomer-monomer
attractions remain absent (ε = 0) throughout the channel for
regions I, II, and III. Now we systematically vary the nearest
neighbor attraction among the monomers at the interval of
0.1 in the region III. This gives rise to the solvent interaction
gradient in region II. As �ε decreases, one end of region II
(near the poor side) becomes poorer compared to the side

which is close to the good solvent. As a result, the polymer
prefers to move towards region II as free energy decreases and
approaches the free energy of region III. The migration seen
in model A closely resembles the characteristics of voltage
driven translocation [42–44]. The presence of the entropic trap
(model B) shows some interesting behavior which can be seen
in Fig. 2(b). The appearance of the free energy barrier for
low �ε and the change in slope in the free energy curve at
the interfaces of regions I and II and regions II and III are
some notable observations which may influence the migration
behavior inside the channel. For �ε = 0.0, where the solvent
quality throughout the channel remains good, the appearance
of the free energy barrier at the interfaces of regions I and II
and regions II and III is solely due to the entropic trap. As
�ε decreases, the solvent quality of region II becomes more
poorer compared to region I. The decrease in �ε makes the
migration process easier. The free energy decreases gradually
from region I to region II and approaches the free energy of
region III.

For both models the gradient enhances the migration
process; however, the entropic trap reduces the process in
comparison to model A. To substantiate this, one can cal-
culate the average time involved in migration between the
initial (region I) and final (region III) stages. Since the free
energy of the polymeric system is known, one can employ the
Fokker-Planck formalism to obtain the migration time from
region I to region III. The governing equation is

∂

∂t
p(x, t ) = L(x)p(x, t ), (9)

where p(x, t ) is the probability distribution. L(x) is the
Fokker-Planck operator described by

L(x) = 1

b2

∂

∂x
D(x) exp[−F (x)]

∂

∂x
exp[F (x)], (10)

where F (x) is the free energy of the polymer. D(x)
is the diffusion coefficient and b is the bond length. Following
the method developed in Ref. [29], we set D(x) = 1. Since the
present study is confined on the lattice, we assigned the bond
length to be unity and the migration time has been expressed
in the following discrete form:

τ(x=0;x=38) =
38∑

x′=0,1,2,...,38

�x′ exp[F (x′)]

×
x′∑

x′′=0

�x′′ exp[−F (x′′)]. (11)

Here, the first summation adds the contribution of free ener-
gies from x′ = 0, 1, 2, . . . , 38 to x′ = 38, whereas the second
summation sums up the free energy contributions from x′′ = 0
to x′. Here, we have taken �x′′ = �x′ = 1 in lattice units.

The migration times required to reach region III from re-
gion I for models A and B are shown in Fig. 3 as a function of
�ε. It is evident from the plots that for �ε = 0 the free energy
barrier arising due to the entropic trap (model B) offers slow
migration in comparison to model A. This is in accordance
with experimental observation where the entropic trap slows
down the migration of biopolymers through microchannels
[13,21,45]. The decrease in �ε corresponds to the reduction in
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FIG. 3. Variation of the migration time (τm) with �ε for model A
and model B. In the inset we show the region where migration time
for model B exceeds that of model A.

the free energy which in turn expedites the migration towards
region III. One of the interesting observations is that for both
models the migration time (τm) decreases; however, around
�ε ∼ −0.057, the migration time for model A exceeds that
of model B. This may be explained on the basis of subtle
competition between the increase in entropy and the solvent
interaction gradient. We may substantiate this result with the
argument that due to the entropic trap polymer exposure in
the gradient (region II) also increases, which eventually drives
the polymer towards region III. As a result one observes lower
migration time for model B compared to model A for �ε <

−0.057. As the anchor sites move away from the entropic trap,
the migration time approaches monotonically towards that of
model A.

It would be interesting to study the effect of transverse
gradient which may be present in the entropic trap. In this
context two situations may arise: (i) the channel has a good
solvent (ε = 0), while the entropic trap contains a relatively
poor solvent (model C); (ii) the channel contains a poor sol-
vent (ε = −1), whereas the entropic trap has a relatively good
solvent (model D). In both cases we assigned the transverse
nearest neighbor interaction gradient by substituting −0.1 �
�ε � 0 for model C and 0 � �ε � 0.1 for model D. As a
result the nearest neighbor attraction at the bottom layer of the
entropic trap will have the value −1 � ε � 0 for model C and
−1 � ε � 0 for model D. This ensures a decrease in solvent
gradient with the depth of the trap for model C and an increase
in solvent gradient with the depth of the entropic trap for
model D. This is analogous to the situation where the bottom
layer of the entropic trap is at lower temperature compare to
the temperature of the channel. In contrast to model C, the
channel of model D has a lower temperature compared to
the entropic trap. Our model system is analogous to earlier
studies [25,26] where a transverse field is used inside the
entropic trap.

Figure 4(a) shows the free energy landscape (for model C)
as a function of x where one end of the polymer is anchored.
For �ε = 0.0, the solvent quality remains uniform in the
entropic trap as well as across the channel. One can observe
the barrier in the free energy landscape which arises due to
the confinement imposed by the entropic trap. Because of the
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FIG. 4. The free energy landscape for different values of �ε:
(a) for model C; (b) for model D. The arrows shown in Fig. (a) indi-
cate the free energy barrier and free energy well.

entropic trap, there is a significant decrease in the configura-
tional entropy of the polymer chain which gives rise to the
barrier. As �ε decreases, the solvent quality of the trap turns
out to be poorer compare to the solvent quality of the channel.
As a result, there is a decrease in the free energy arising due
to the solvent gradient which overcomes the entropic barrier.
A further decrease in �ε transforms the free energy barrier
to a well. It would be interesting to note that both the free
energy barrier and well hinder the polymer movement across
the channel. The time involved in the migration process from
region I to region III is minimum around �ε ∼ −0.03. This
corresponds to a net balance between entropic barrier and
solvent interaction gradient to the free energy.

Since the channel in model D contains poor solvent all
across the channel for �ε = 0, one can see a free energy
barrier similar to that seen in model C. However, as solvent
quality in the entropic trap becomes good (�ε > 0) the barrier
height increases across the trap. Unlike model C, here the
barrier height always increases. As a result one expects larger
migration time. The migration time for models C and D is
shown in Fig. 5. Model C shows nonmonotonic dependence
on �ε [Fig. 5(a)]. When �ε decreases (�ε < 0), a free energy
well is formed across the trap. Here, the polymer acquires
the configuration of the globule state and remains confined
in the trap. As a result the time required for the migration
is found to be large. As �ε increases, the solvent quality of
the trap tends towards the good solvent and thus the globule
gets destabilized due to increase in configurational entropy.
In contrast to model C, model D shows the migration time
monotonically increasing with �ε [Fig. 5(b)]. This may be

FIG. 5. Variation of the migration time with �ε: (a) for model C;
(b) for model D. The inset of (a) shows the minimum of migration
time for model C.
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FIG. 6. The average number of monomers inside the trap (〈NT 〉)
for different �ε: (a) for model C; (b) for model D.

understood by making the solvent quality good inside the
trap and leads to the conformation of the polymer chain in
the swollen state. As �ε increases, the trap becomes more
repulsive and the free energy barrier increases. An increase in
barrier height further enhances the migration time.

It is interesting to note that the migration times are nearly
equal for �ε = 0 for both models C and D. This indicates
that for the good solvent channel (model C with �ε = 0) and
poor solvent channel (model D with �ε = 0), the polymer
takes almost the same time. This is because the appearance of
the free energy barrier at �ε = 0 is solely entropic and hence
the same for both models. The presence of gradient (�ε > 0)
inside the entropic trap makes the migration process slow.

IV. CONFIGURATIONAL PROPERTIES OF POLYMER
DURING MIGRATION

It would be interesting to investigate how the config-
urational properties of the polymer change due to the
solvent interaction gradient in the entropic trap. For this,
we first calculate the average number of monomers (〈NT 〉)
inside the trap as a function of x. It may be pointed out here
that the trap coordinates lie within 13 < x < 24. Fig. 6(a)
shows the fraction of monomers inside the trap (model C) as
a function of x, which is almost negligible when the anchored
sites are far away from the trap. As the anchor site approaches
the trap, 〈NT 〉 starts increasing. As �ε decreases, a part of
the polymer favors being inside the trap and tends to acquire
the globule state. This behavior is also evident from the free
energy curve [Fig. 4(a)] where the free energy decreases be-
fore the anchor site reaches near the trap. This corresponds
to a fraction of segments remaining in the swollen state due
to the anchor site; however, the remaining segment inside the
trap forms the globule. Figure 6(b) shows the variation of 〈NT 〉
with x for model D. Here, we focus on when the polymer is
mostly confined in region II, i.e., inside the trap. Here, the
polymer remains in the globule state around the anchor sites
(outside the trap) and does not experience any effect of solvent
in the trap. When the anchor site is forced to be inside the trap,
a part of the polymer segment remains in the swollen state
(inside the trap) whereas the remaining part will be outside
the trap, but in the globule state. When �ε → 0 (i.e., solvent
in the channel and inside the trap remain the same), it acquires
the globule state inside the trap.

The variations in shape of the polymer in terms of the ra-
dius of gyration (〈R2

g〉) as a function of anchoring coordinates

(x) for models C and D are shown in Figs. 7(a) and 7(d),
respectively. For both models, we observe slight increase in
〈R2

g〉 near the edge of the trap compared to the middle of
the trap. This is because near the edge the polymer has the
option to spread along the y- direction and that maximizes
the monomer density at the edge. As one moves towards the
center of the trap, polymer can spread in all directions and
thus 〈R2

g〉 decreases for model C and increases for model D
[Figs. 7(a) and 7(d)]. �ε ≈ −0.03, which corresponds to the
minimum migration time, also shows the least variation in
〈R2

g〉 all across the channel for model C. As �ε decreases,
the quality of the solvent becomes poorer for model C and
hence 〈R2

g〉 decreases. As a result the migration time also
increases. On the other hand, in model D the solvent quality
tends towards a good solvent with �ε, and thus 〈R2

g〉 tends to
its swollen state value.

Since the microscopic variation in shape arising due to
confinement is not quite apparent from Figs. 7(a) and 7(d),
we study the variation of polymer shape in terms of the x
and y components of the radius of gyration as a function of
x. The variations in 〈R2

gx〉 and 〈R2
gy〉 are shown in Figs. 7(b),

7(c) and Figs. 7(e), 7(f) for models C and D respectively. One
can notice from the plots that the entropic trap in presence
of the solvent interaction gradient affects 〈R2

gy〉, whereas 〈R2
gx〉

remains almost the same. It may be noted that the model C
has relatively poor solvent inside the trap, and thus there is a
natural tendency to minimize its free energy, even if the
anchor site is outside the trap. This may be seen in the
variation of both 〈R2

gx〉 and 〈R2
gy〉, when the anchor sites

are outside the trap. The most interesting observation is
the increase in 〈R2

gy〉 as a function of x and then sud-
den decrease for �ε < −0.03. This may be understood
as the bottom surface of the trap having a poor solvent
(lower temperature) and thus a major fraction of the poly-
mer chain prefers to stay in the globule state, whereas its
anchor site is outside the trap. As a result, the polymer is
forced to acquire the conformation along the side of the trap
(y axis) and thus 〈R2

gy〉 increases. In contrast to model C, model
D shows [Figs. 7(c) and 7(f)] gradual decrease in 〈R2

gx〉 and
increase in 〈R2

gy〉 as a function of x inside the trap for a given
chain length. When �ε = 0, the solvent all across the channel
is poor and the polymer remains in the globule state inside the
trap, as well as outside the trap. This is evident from Figs. 7(c)
and 7(f) where both components of 〈R2

g〉 remain almost the
same. As �ε increases, the solvent inside the trap becomes
good and the y component of 〈R2

g〉 increases. In this situation,
the polymer acquires a “mushroom” shape in such a way that
the major fraction of the polymer prefers to be outside the trap
in the globule form [46]. This in turn reduces 〈R2

gx〉, which
approaches 1 as shown in inset of Fig. 7(e)

V. CONCLUSION

In this work, we have studied the effects of solvent inter-
action gradient inside an entropic trap on the migration of
a polymer. Employing the exact enumeration technique and
by varying the anchoring sites of one end of the anchored
polymer, we have studied the migration of the polymer from
one side (region I) to the other (region III) by assuming that
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FIG. 7. (a) Variation of the radius of gyration (〈R2
g〉) with x for different �ε for model C. (b) Variation of the x component of the radius of

gyration (〈R2
gx〉) with x for different �ε for model C. (c) Variation of the y component of the radius of gyration (〈R2

gy〉) with x for different �ε

for model C. (d)–(f) Same as (a)–(c) but for model D.

the system remains in a quasistatic equilibrium condition. We
have considered the solvent interaction gradient both parallel
and perpendicular to the migration direction in region II. The
free energy landscapes of model A (without entropic trap)
and model B (with entropic trap) differ significantly and show
the influence of the entropic trap. Using the Fokker-Planck
equation we obtain the migration time, which shows that as
�ε decreases the migration time decreases. The exact calcula-
tion based on the short chain revealed that, for a certain value
of �ε, the entropic trap may reduce the migration time.

In contrast to models A and B where the gradient is taken
along the x axis, we have explored the effect of transverse gra-
dient (y axis) in the presence of an entropic trap in models C
and D. We have considered two possibilities: the channel has
a good solvent (high temperature) and the solvent confined in
an entropic trap is poor (low temperature), and vice versa. We
have imposed a linear solvent interaction gradient and studied
the migration behavior of the polymer chain from region I to
region III in the presence of an entropic trap. In this case, the
migration time shows a nonmonotonic behavior as a function
of solvent interaction gradient for model C, whereas it shows a
monotonic increase in the case of model D. At �ε ≈ −0.023,
the free energy barrier/well vanishes and at this value the
migration time is found to be the minimum. Our exact calcu-
lations reveal that with increasing length or decreasing solvent
quality inside trap the nonmonotonic trend in migration time
becomes more apparent. A future experiment will be able to

observe it for a longer chain. Interestingly, model D has a free
energy barrier which increases with �ε and hence migration
time increases monotonically. It is pertinent to mention here
that the applicability of the Fokker-Planck formalism depends
on the condition where migration time at each step is greater
than the relaxation time of the polymer (slow migration)
[29,30,39], which is the case studied here.

We have also explored the variation in the shape of the
polymer inside the trap for models C and D. We observed that
the entropic trap has significant impact on the y component
of 〈R2

g〉, whereas the x component remains almost the same.
Our studies suggest that the entropic trap having good solvent
(model D) may give rise to a “mushroom” type shape of
polymer, which has potential application for the formation of
micelles.
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