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We consider high-dimensional random optimization problems where the dynamical variables are subjected to
nonconvex excluded volume constraints. We focus on the case in which the cost function is a simple quadratic
cost and the excluded volume constraints are modeled by a perceptron constraint satisfaction problem. We show
that depending on the density of constraints, one can have different situations. If the number of constraints is
small, one typically has a phase where the ground state of the cost function is unique and sits on the boundary of
the island of configurations allowed by the constraints. In this case, there is a hypostatic number of marginally
satisfied constraints. If the number of constraints is increased one enters a glassy phase where the cost function
has many local minima sitting again on the boundary of the regions of allowed configurations. At the phase
transition point, the total number of marginally satisfied constraints becomes equal to the number of degrees of
freedom in the problem and therefore we say that these minima are isostatic. We conjecture that by increasing
further the constraints the system stays isostatic up to the point where the volume of available phase space
shrinks to zero. We derive our results using the replica method and we also analyze a dynamical algorithm, the
Karush-Kuhn-Tucker algorithm, through dynamical mean-field theory and we show how to recover the results
of the replica approach in the replica symmetric phase.
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I. INTRODUCTION

Several complex systems can be described by a large num-
ber of variables whose dynamics is trying to optimize some
cost function under a set of constraints. In the most general
setting, the cost function is arbitrary and the constraints may
be either inequalities or equalities. In this work, we consider
the generic situation in which there is a set of N real variables
x = {x1, . . . , xN } and a set of M = αN inequality constraints

C = {gμ(x) � 0, μ = 1, . . . , M = αN}, (1)

each characterized by a function gμ(x) and we consider a cost
function H (x).

An example of this situation is found in classification prob-
lems in machine learning. In the simplest setting of binary
classification, one has a set of inequalities that enforce the
correct separation of the training set into two classes. The
parameters of the machine (which correspond to the variables
xi here) must be adjusted to correctly satisfy these constraints.
Therefore, the supervised learning task is recast into a contin-
uous constraint satisfaction problem (CCSP). In many cases
one wants to enforce that, once a solution of the problem is
found, it satisfies some requirements. For example, in order
to prevent numerical instabilities, one would like to have the
parameters of the network be quantities that are of the good
order of magnitude and do not explode to infinity. To achieve
this, one typically uses regularization schemes as, for exam-
ple, Ridge regularization. In other cases, one is interested in
finding sparse networks in which many of the parameters are

zero. This can also be achieved by imposing an appropriate
cost function on the parameters [1].

In all these cases, the machine performing the classification
task is defined by the form of the functions gμ(x) and the
regularizing cost function is given by H (x), which introduces
some penalty to prevent that the parameters of the network
behave in a way that is not the desired one. In this work, we
will be rather generic and we will not focus on any practical
application. We will rather focus on the characterization of the
landscape of the cost function H subjected to the constraints
C. In particular, we want to find the ground state of the cost
function defined by

x∗ = argmin
x:gμ(x)�0 ∀μ

H (x). (2)

In order to have a well-posed problem, we will assume that
there exists a region of the phase space of x such that all con-
straints are satisfied. We will call this region the SAT region
(the terminology comes from constraint satisfaction problems
in computer science [2]). Examples of optimization problems
as Eq. (2) can be easily constructed and classified according
to the properties of the corresponding cost function. We list
here just a set of general cases in which the cost function is

(i) Separable: This means that each degree of freedom
tries to optimize a cost function that is independent of the
configuration of the other degrees of freedom. An example
in this class is

H (x) = 1

2

N∑
i=1

(xi − 1)2 (3)
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but other nonconvex potentials with local minima may be
chosen.

(ii) Nonseparable and convex: The cost function of each
degree of freedom depends on the configuration of part or
the whole system and the global cost is a convex function
when it is considered in the whole phase space (in absence
of the excluded volume constraints). As an example one can
consider:

H (x) = 1

P

P∑
μ=1

xiη
μ
i η

μ
j x j (4)

being ημ i.i.d. random vectors. Another example is the fol-
lowing. Consider the vector x to be unconstrained. Then one
wants to minimize the volume of the phase space of the vector
x, for example by minimizing |x|2, such that there is a config-
uration that satisfies all constraints. This problem is related to
the packing problem and has been analyzed in Refs. [2–9], see
also Ref. [10] for a review with the corresponding connection
to deep learning.

(iii) Nonseparable and nonconvex: We have again a non-
separable cost, which is also nonconvex. As an example, one
can think of high-dimensional random Gaussian functions
[11]

H (x) = 1

N

∑
i< j<k

Ji jkxix jxk (5)

and the coupling constants are Gaussian variables of the order
of 1/N . In other words, one can superimpose a spin glass land-
scape on top of a continuous constraint satisfaction problem
(CCSP) identified by the set of constraints.

This class of optimization problems is quite vast. In the
following, we will consider the simplest case of having a
simple separable convex optimization cost and the simplest set
of nonconvex excluded volume constraints. We will show that
the nonconvexity in the constraints brings about glassiness
and marginal stability even when the cost function is convex
by itself.

II. A TOY MODEL

To be concrete we consider a simple toy model. We assume
that each variable xi wants to minimize a simple convex cost
function but it is constrained to be in a possibly nonconvex
region of phase space. We consider the simplest cost function
that is

H (x) = 1

2

N∑
i=1

(xi − 1)2 (6)

and we want to minimize it under the constraints that

gμ(x) � 0, ∀μ = 1, . . . , M = αN (7)

with

gμ(x) = 1√
N

ξμ · x − σ, (8)

where ξμ = {ξμ
1 , . . . , ξ

μ
N } is a random vector whose com-

ponents are Gaussian random variables with zero mean and
unit variance. Furthermore, we constrain x to be on the N-
dimensional sphere |x|2 = N . The constraints in Eqs. (7) and

(8) define the perceptron continuous constraint satisfaction
problem (CCSP). Equations (6), (7), and (8) define a quadratic
programming problem with inequality constraints [12]. How-
ever, as we will see, the topology of the phase space and the
nature of the constraints are such that the global optimization
problem can become nonconvex.

In Refs. [2,3,13–15] the properties of the space of solutions
of this CCSP have been extensively studied. As a function of
σ , one has a critical value αJ (σ ) of the density of constraints
below which the CCSP is SAT, meaning that with probability
one (for N → ∞) the phase space defined by the constraints
has a finite positive volume, and above which the problem
is UNSAT, meaning that there is no configuration of x that
satisfies all constraints.

In Ref. [2] the UNSAT phase of the perceptron has been
studied by associating a harmonic energy cost to the unsatis-
fied constraints. In Ref. [3] the SAT phase of the perceptron
CCSP has been characterized. The present setting, instead,
is quite different: we still consider the SAT phase of the
perceptron CCSP, corresponding to α < αJ (σ ), but on top of
it we want to optimize the cost function H (x) of Eq. (6). It is
therefore a problem of constrained optimization.

The nature of the constraints changes completely when σ

passes from being positive, where the CCSP is convex [3], to
a negative value, where the solution of the CCSP lies at the
intersection of nonconvex domains, which may be in general
nonconvex.

In order to study the properties of the landscape of this op-
timization problem, we consider the partition function defined
as

Z =
∫

dx exp [−βH (x)]

[
M∏

μ=1

θ (gμ(x))

]
, (9)

where β = 1/T is the inverse of the temperature T and θ (x) is
the Heaviside step function. Given the partition function, one
constructs the average free energy as

f = − 1

βN
ln Z, (10)

where the overline denotes the average over the random vec-
tors ξs. To compute the properties of the landscape of the cost
function, we need to study the behavior of the free energy in
the zero-temperature limit β → ∞.

The average of the logarithm of the partition function can
be computed using the replica method [16]

f = − 1

βN
lim
n→0

∂nZn. (11)

The average over the nth power of the partition function can
be obtained by considering n to be integer and then taking the
analytic continuation down to n → 0. Performing the integral
over the random vectors ξs (the details are essentially very
close to what is reported in Ref. [2] and we will omit them)
we obtain

Zn =
∫

dQ̂ exp[NA(Q̂)], (12)
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where A(Q̂) is an action and Q̂ is an (n + 1) × (n + 1) inte-
gration matrix. For N → ∞ we can evaluate the integral by
saddle point. The expression of the function A(Q̂) is given by

A(Q̂) = 1
2 ln det Q̂ − β(1 − m) + α lnZ, (13)

where we have assumed that Q̂1a = Q̂a1 = m independently
on a.1 At the saddle point we have the following interpretation
for the overlap matrix Q̂:

Q̂ab = 1

N
xa · xb a, b > 1

Q̂1a = Q̂a1 = 1

N

N∑
i=1

[xa]i = m a > 1. (14)

Therefore Q̂1a = Q̂a1 = m is an order parameter that quan-
tifies the overlap between the configuration xa and the
minimum [1, 1, . . . , 1] of H (x), while Q̂ab = 1

N xa · xb, for
a, b > 1, is the overlap between the configurations of different
replicas of the system. Note that the spherical constraint on x
imposes that Q̂aa = 1. The local partition function Z is given
by

Z = exp

[
1

2

n∑
a,b=1

Q̂ab
∂2

∂ha∂hb

]
n∏

c=1

θ [hc − σ ]

∣∣∣∣∣
h=0

, (15)

where we have defined Q̂ as the matrix obtained from Q̂ by
removing the first row and column. The saddle point equations
for the matrix Q̂ can be obtained in full generality following
the same steps as in Ref. [2]. Here we will not repeat the com-
putation and we will consider the replica symmetric solution
and its stability.

A. Replica symmetric solution and its stability

The replica symmetric ansatz to the solution of the saddle
point equations amounts to have Q̂a �=b = q for all a �= b. The
order parameters m and q are then given by the following
saddle point equations:

q − m2

(1 − q)2
= α

∫
dhP(q, h)[ f ′(q, h)]2

m

1 − q
= β, (16)

where

f (q, h) = ln γ1−q 
 θ (h)

P(q, h) = γq(h + σ ) (17)

and we used the notation according to which the prime is the
derivative with respect to (w.r.t.) h, 
 denotes a convolution
operation while

γA(h) = 1√
2πA

e−h2/(2A). (18)

1The fact that Q̂1a is independent on the replica index is a property
that holds at saddle point. Indeed one can show that at the saddle
point Q̂1a = 1

N

∑N
i=1 〈xi〉, which is therefore independent of a.

The stability condition of the replica symmetric solution is
given by studying the Hessian ∂2A(Q̂)

∂Q̂ab∂Q̂cd
of the function A(Q̂)

[2,16,17]. The replica symmetric solution is stable if the sad-
dle point solution satisfies the inequality

1

(1 − q)2
� α

∫
dhP(q, h)[ f ′′(q, h)]2. (19)

When Eq. (19) becomes a strict equality, the model enters in a
glassy regime where multiple minima appear, and the model
is characterized by replica symmetry breaking and (possibly)
marginal stability [16]. The equations (16)–(19) have been
derived in the finite-temperature regime. However, we are
interested in looking at the zero-temperature limit, which cor-
responds to the ground state of the cost function. In order to
take the T → 0 limit, we assume that in this regime

q = 1 − χT T → 0+, (20)

which gives m = χ . Substituting this relation in the first equa-
tion of Eqs. (16) we get that χ satisfies

1 − χ2

χ2
= T 2α

∫
dhP(1, h)[ f ′(1, h)]2. (21)

Furthermore, in the zero-temperature limit, we have

f (1, h) � − h2

2χT
θ (−h), (22)

which gives

1 − χ2 = α

∫
dhP(1, h)h2θ (−h). (23)

The marginal stability of the RS solution is given by

1 = α

∫
dhP(1, h)θ (−h). (24)

This relation defines the region in which replica symmetry
breaking (RSB) appears. Note that Eq. (20) requires χ to be
positive since q is constrained to be q � 1. The phase diagram
of the model is plotted in Fig. 1 where we considered only the
case of σ < 0, which gives rise to nonconvex excluded vol-
ume constraints. The red line in the phase diagram represents
the replica symmetric approximation for the SAT/UNSAT
(jamming) transition line. Above this line, there is no con-
figuration of x that satisfies all constraints and therefore the
optimization problem makes sense only in the region below
this line. This line is simply obtained by taking the χ → 0
limit of the saddle point equations. Indeed, above this line
no physically meaningful solution should exist. Therefore this
line coincides with the one obtained in Ref. [3]. Another way
to see that the χ → 0 is the right limit to get the SAT/UNSAT
line is by noting that at saddle point χ = m. We expect that,
on this line, only one solution of the CCSP is left and, by rota-
tional invariance of the disorder, it is orthogonal to the global
minimum of the cost function. This implies that m = 0.

The dashed green line instead corresponds to the line that
separates a strictly stable phase below it, where the ground
state of the cost function is unique and not critical, from
a marginally stable phase where the landscape of the cost
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FIG. 1. The phase diagram of the toy optimization problem we
are considering. The model is defined only below the SAT/UNSAT
transition line for which we plotted in red the replica symmetric
approximation. The SAT/UNSAT transition line represents where the
volume of configurations allowed by the constraints shrinks to zero.
Below the green dashed line, the minimum of the cost function is
unique and the replica symmetric solution is stable, meaning that
the stability condition Eq. (19) is satisfied. The dashed green line
corresponds to Eq. (19) becoming a strict equality. Above this line,
instead, the system enters in a glassy phase characterized by multiple
minima. This phase is described by replica symmetry breaking. In
the replica symmetric phase, the global minimum of the cost func-
tion is characterized by a hypostatic number of marginally satisfied
constraints. Upon reaching the marginal stability line the number of
those constraints becomes equal to the number of degrees of freedom
so that the minimum becomes isostatic. We plot in blue also the
glass transition line of the perceptron CCSP, whose equation is given
in Refs. [2,3] and is independent of the choice of the optimization
function H (x) since it only depends on the perceptron constraints.
Below this line, the phase space defined by the constraints is ergodic
while right above ergodicity is broken and one has replica symmetry
breaking.

function is glassy and local minima are marginally stable.
Note that the CCSP defined by the perceptron constraints also
undergoes a replica symmetry breaking transition where the
space of solutions disconnects before reaching the red line.
However, this line, plotted also in Fig. 1, is different from the
one signaling the onset of glassiness of the cost function and,
in particular, it is closer to the SAT/UNSAT transition line.
Therefore we get that even if the CCSP is replica symmetric,
the landscape of the cost function may be glassy.

B. Distribution of gaps

To characterize the phase diagram, we compute the dis-
tribution of the gaps defined as the values of gμ computed
in the configuration that represents the minimum of the cost
function. Using the same approach of Ref. [2], we can show
that the distribution of gμ is given by

ρ(h) = 1

N

M∑
μ=1

〈δ(h − gμ(x))〉 = cδ(h) + ρ+(h). (25)

In the replica symmetric region, we have that ρ+(h) is given
by

ρ+(h) = αP(1, h)θ (h) (26)

and

c = α − α

∫ ∞

0
dhP(1, h) = α

∫ 0

−∞
dP(1, h). (27)

Therefore, when the replica symmetric solution becomes
marginally stable, the system becomes isostatic, correspond-
ing to c → 1, meaning that the number of marginally satisfied
constraints equals the number of degrees of freedom in the
system. At this point we may ask what happens in the glassy
phase, beyond the instability line where the replica symmetric
solution breaks down. We do not attempt the RSB solution
of the model but we give a simple argument. At the jamming
point we know that the allowed phase space of configurations
shrinks to a point. This point is jamming critical and isostatic
[2]. Therefore we get that, at jamming as well as at the insta-
bility transition point, the system is isostatic. We, therefore,
conjecture that the RSB phase is again isostatic and jamming
critical. This would imply that we have another optimization
problem for which the landscape is critical everywhere far
from jamming as it happens for other cases [18–20].

III. KARUSH-KUHN-TUCKER DYNAMICS

In order to solve constrained optimization problems, one
can rely on the so-called Karush-Kuhn-Tucker (KKT) con-
ditions. We consider a dynamical version of such conditions
given by the following dynamical system:

ẋi(t ) = −ζ (t )xi(t ) − [xi(t ) − 1] + 1√
N

M∑
μ=1

ξ
μ
i fμ(t )

ḟμ(t ) = − fμ(t )gμ(t ), (28)

where ζ (t ) is a Lagrange multiplier needed to enforce the
spherical constraint on the variables xi. It is simple to show
that a fixed point of these equations is a solution of the
optimization problem. Indeed if at long times gμ > 0, we
have fμ = 0. Instead if we have gμ = 0 we have fμ > 0. The
variables fμ, which are the Lagrange multipliers of the KKT
conditions, are nothing but the forces that the constraints are
exerting in order to fix the corresponding variables gs to zero.
Therefore this system of equations, when it reaches a fixed
point, directly gives the statistics of forces corresponding to
the gμ that are identically equal to zero.

This set of dynamical equations can be analyzed exactly
in the N → ∞ limit through dynamical mean-field theory.
We first start by considering the case in which the dynamical
system is initialized at random for the xi while we will fix
fμ(0) = 1, which is a convenient choice. Then, to analyze
the dynamics in the N → ∞ limit, we consider the Martin-
Siggia-Rose-Jensenn-De-Dominicis dynamical path integral
[11] defined as

Zdyn =
∫

D( f , f̂ )D(x, x̂)D(r, r̂) exp[Sdyn], (29)
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where the dynamical action is given by

Sdyn = i
M∑

μ=1

∫
dt{ f̂μ(t )[ ḟμ(t ) + fμ(t )(rμ(t ) − σ )] + r̂μ(t )rμ(t )}

+ i
N∑

i=1

∫
dt x̂i(t )

[
ẋi + ζ (t )xi(t ) + (xi(t ) − 1) − 1√

N

M∑
μ=1

ξ
μ
i fμ(t )

]
− i√

N

N∑
i=1

∫
dt

M∑
μ=1

r̂μ(t )ξμ
i xi(t ) (30)

and the overline stands for the average over the random pat-
terns. Taking the average over these vectors gives

exp

[
− i√

N

M∑
μ=1

N∑
i=1

ξ
μ
i

∫
dt[xi(t ) fμ(t ) + r̂μ(t )xi(t )]

]

= exp

[
− 1

2

M∑
μ=1

∫
dtdt ′[ fμ(t ) fμ(t ′)D(t, t ′)

+r̂μ(t )r̂μ(t ′)C(t, t ′) + 2ir̂μ(t ) fμ(t ′)R(t, t ′)]
]
, (31)

where we have introduced the dynamical order parameters

C(t, t ′) = 1

N
x(t ) · x(t ′)

D(t, t ′) = 1

N
x̂i(t ) · x̂(t ′)

R(t, t ′) = − 1

N
x(t ) · ix̂(t ′). (32)

As usual, at the saddle point level D(t, t ′) = 0 by causality.
The single gap effective process then gives the equation

r(t ) =
∫ t

0
dt ′R(t, t ′) f (t ′) + η(t ), (33)

where the statistics of the noise η(t ) is Gaussian and given by

η(t ) = 0 η(t )η(t ′) = C(t, t ′). (34)

Finally we have

f (t ) = exp

[
−

∫ t

0
ds(r(s) − σ )

]
. (35)

Note that Eq. (33) must be understood as a distributional
equation. Furthermore, we have used that at the initial time
t = 0 forces are initialized to fμ(0) = 1. This initialization
does not affect the endpoint of the dynamics and provides a
way to enforce that all forces are either zero or positive. The
single-site effective process is instead

ẋ(t ) = −ζ (t )x(t ) − (x(t ) − 1) + �(t ) −
∫ t

0
dsK (t, s)x(s),

(36)

where the statistics of the Gaussian noise �(t ) is given by

�(t ) = 0 �(t )�(t ′) = α〈 f (t ) f (t ′)〉 = M(t, t ′) (37)

and the kernel K (t, s) is defined as

K (t, s) = α
δ〈 f (t )〉η
δP(s)

∣∣∣∣
P=0

, (38)

where the perturbation P(t ) is an additive perturbation on
the right-hand side of Eq. (33). Therefore we obtain the fol-
lowing equations for correlation, response, and magnetization
m(t ) = ∑

i xi(t )/N

∂t m(t ) = −ζ (t )m(t ) − [m(t ) − 1]

−
∫ t

0
dsK (t, s)m(s)

∂tC(t, t ′) = −ζ (t )C(t, t ′) − [C(t, t ′) − m(t ′)]

−
∫ t

0
dsK (t, s)C(t ′, s) +

∫ t ′

0
dsM(t, s)R(t ′, s)

∂t R(t, t ′) = −ζ (t )R(t, t ′) − R(t, t ′) + δ(t − t ′)

−
∫ t

t ′
dsK (t, s)R(s, t ′). (39)

Note that the Lagrange multiplier ζ (t ) can be obtained directly
from the equation for C(t, t ′).

From these dynamical equations it follows that

m(t ) =
∫ t

0
dsR(t, s), (40)

which is a relation connecting the response function R(t, s) to
the magnetization m(t ).

Replica symmetric solution

Let us consider what happens in the region where replica
symmetry is unbroken. If we define

χ = lim
t→∞

∫ t

0
dsR(t, s) (41)

we immediately have

m∞ ≡ lim
t→∞ m(t ) = χ. (42)

Considering Eq. (33) and taking the t → ∞ limit we get that

r∞ = χ f∞ + η (43)

being η a normal Gaussian random variable. This equation
tells us that if f∞ = 0 then r∞ is a Gaussian random variable
constrained to be such that r∞ − σ is positive. Therefore the
gap distribution is

P(h) = γ1(h + σ ). (44)

On the other hand, if r∞ = σ then f∞ > 0 and its distribution
coincides with the one of the random variable (σ − η)/χ with
the constraint that σ − η > 0. Finally we need to establish an
equation for χ and show that it coincides with the one coming
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FIG. 2. Time evolution of (a) gμ and (b) fμ in the RS phase
(α = 5, σ = −1 in this example), each color corresponding to a dif-
ferent μ = 1, . . . , 10, obtained by numerically integrating Eq. (28)
with an explicit Runge-Kutta method of order 5 [21]. In the RS phase,
the system quickly converges to the steady state. We notice that in the
steady state of the RS phase, for a given μ, gμ > 0, and fμ = 0 or
gμ = 0 and fμ > 0. In this experiment, the fμ have been initialized
to 1 while the xi have been initialized as standard Gaussian variables.
We used N = 100.

from the replica approach. We consider the long time limit of
the equation for m(t ), which gives

0 = −ζ∞χ − (χ − 1) − K∞χ, (45)

where

K∞ = lim
t→∞

∫ ∞

0
dsK (t, s). (46)

On the other hand the long time limit of the equation for M
is obtained by considering the long time limit of the equation
for C. This gives

0 = −ζ∞ + 1 − χ − K∞ + M∞χ, (47)

which can be combined with Eq. (45) to get

M∞χ2 = 1 − χ2. (48)
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FIG. 3. Time evolution of (a) gμ and (b) fμ in the RSB phase
(α = 8, σ = −1 in this example), each color corresponding to a dif-
ferent μ = 1, . . . , 10, obtained by numerically integrating Eq. (28)
with an explicit Runge-Kutta method of order 5 [21]. Since the RSB
phase is marginally stable, the time evolution is chaotic and does not
converge to a stationary state. In this experiment, the fμ have been
initialized to 1 while the xi have been initialized as standard Gaussian
variables. We used N = 100.

From the definition of M∞ we finally have

M∞ = α
〈
f 2
∞

〉 = α

∫
dη√
2π

e−η2/2 (η + σ )2

χ2
θ (η + σ ) (49)

and therefore using Eqs. (48) and (49) we get Eq. (16). This
concludes the derivation of the replica symmetric equation
from the KKT dynamics.

We implemented numerically the algorithm of Eq. (28)
and we found that in the RS phase the algorithm goes very
quickly to the solution of the optimization problem, as it can
be observed in Fig. 2. In the RSB phase, instead, it seems that
the algorithm does not converge and therefore we believe that
in this region it makes a chaotic surf on the isostatic landscape
(Fig. 3).

IV. CONCLUSIONS

We have considered the generic setting of optimization
problems under nonconvex excluded volume constraints. We
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have analyzed a simple example of this kind in which the cost
function is separable and convex and in which the nonconvex
excluded volume constraints are modeled by a negative per-
ceptron.

We have found that, when the number of constraints is
low enough, the cost function has a simple ground state,
which is captured by the replica symmetric solution of the
model. At high density of constraints, instead, the optimiza-
tion landscape undergoes an RSB transition where minima
become marginally stable. Remarkably, we find that the RSB
transition point happens before the point in which the acces-
sible phase space defined by the constraints splits into glassy

regions. We have also shown how to recover these results from
the dynamical mean-field theory of the KKT algorithm. We
leave the analysis of more complex cost functions for future
work.
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