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Entropy of fully packed rigid rods on generalized Husimi trees: A route to the square-lattice limit
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Although hard rigid rods (k-mers) defined on the square lattice have been widely studied in the literature, their
entropy per site, s(k), in the full-packing limit is only known exactly for dimers (k = 2) and numerically for
trimers (k = 3). Here, we investigate this entropy for rods with k � 7, by defining and solving them on Husimi
lattices built with diagonal and regular square-lattice clusters of effective lateral size L, where L defines the
level of approximation to the square lattice. Due to an L-parity effect, by increasing L we obtain two systematic
sequences of values for the entropies sL (k) for each type of cluster, whose extrapolations to L → ∞ provide
estimates of these entropies for the square lattice. For dimers, our estimates for s(2) differ from the exact result
by only 0.03%, while that for s(3) differs from best available estimates by 3%. In this paper, we also obtain a
new estimate for s(4). For larger k, we find that the extrapolated results from the Husimi tree calculations do not
lie between the lower and upper bounds established in the literature for s(k). In fact, we observe that, to obtain
reliable estimates for these entropies, we should deal with levels L that increase with k. However, it is very
challenging computationally to advance to solve the problem for large values of L and for large rods. In addition,
the exact calculations on the generalized Husimi trees provide strong evidence for the fully packed phase to be
disordered for k � 4, in contrast to the results for the Bethe lattice wherein it is nematic.

DOI: 10.1103/PhysRevE.105.024132

I. INTRODUCTION

The problem of a phase transition to an ordered phase in
a system of long cylindrical rods in solution, with excluded
volume interactions only, was considered by Onsager, who
showed that a solution of long rods would undergo a transi-
tion between an isotropic and a nematic ordered state as the
increasing density passes through a critical value [1]. Such
ordered phases were also found in approximate calculations of
systems of semi-flexible polymers in solution [2] if the chains
are sufficiently stiff. The case of rods with rectangular cross-
sections and discrete orientations in the three-dimensional
continuous space was studied also [3]. A review of these
models and their properties may be found in Ref. [4]. In
two dimensions, with continuous orientations and positions,
it is known that the system does not order, but undergoes a
Kosterlitz-Thouless transition between a low-density phase
with exponential decay of correlations to a high-density one
where the correlations decay with a power law [5–8].

In the related lattice model, rods are formed by k consec-
utive sites along one of the directions of the edges, called
k-mers. The particular case of dimers (k = 2) has a long
history, it can be shown that the orientational correlations
of the rods decay exponentially with the distance between
them if the dimers do not occupy all sites of the lattice, and

*nathan.rodrigues@ufv.br
†jstilck@id.uff.br
‡tiago@ufv.br

in the full lattice limit they decay with a power law tail for
all dimensions d � 2 [9,10]. In a seminal paper, for general
k, Ghosh and Dhar [11] studied the model with vacancies
on the square lattice, using grand-canonical simulations and
theoretical arguments in the large k limit. They found out
that, while the system is always in an isotropic phase for
k � 6, a continuous transition to a nematic phase, where the
rods are preferentially in one of the two directions, happens
at sufficiently high density of rods with k � 7. Moreover, at
even higher densities, close to the full-packing limit, where
simulations are difficult due to jamming, it was argued that a
reentrant transition to an isotropic phase must be present. Ad-
ditional simulations provided evidence that the first transition
is in the Ising universality class for rods on the square lattice
and in the three-state Potts universality class when they are
placed on the triangular lattice [12]. Even using a new Monte
Carlo scheme which reduces the long relaxation times in the
high density region and was introduced in Ref. [13], which
leads to more precise results for the second transition, its
universality class is still not clear, and actually recent results
show that it is actually discontinuous for large k [14]. The
existence of a nematic phase at intermediate densities of rods
on the square lattice was shown rigorously by Disertori and
Giuliani [15].

In the full lattice limit the entropy of dimers (k = 2) on
the square lattice was calculated exactly a long time ago,
using pfaffians [16] and transfer matrices [17], the result for
the entropy per site is s(2) = S(2)/N = G/π = 0.29156 · · · ,
where G is Catalan’s constant and N is the number of sites
in the lattice. A recent summary of the generalisations of
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Lieb’s transfer matrix calculations [17] may be found in
Ref. [18]. Precise transfer matrix estimates of the entropy
in this limit for trimers (k = 3) were obtained in Ref. [10],
leading to s(3) = 0.158520 ± 0.000015. However, for larger
values of k, besides very recent estimates provided by sim-
ulations [19], accurate estimates of s(k) are still missing, to
the best of our knowledge. There exist, however, interesting
results for the lower and upper bounds of s(k) in the literature
in the full square-lattice limit. For instance, the lower bound
s(k) � 4G

πk2 was established in Ref. [20], where the upper lim-
its s(k) � 1

k2 ln( k
2 ) + 4G

πk2 for even k and s(k) � 1
k2 ln( k−1

2 ) +
1

πk2

∫ π

0 arch( 2k
k−1 − cos φ)dφ for odd k were also obtained,

with G being Catalan’s constant. Very recently, the asymptotic
behavior of this entropy for large k was studied in Ref. [21].
Besides providing better lower bonds as compared to the one
above, it was shown that it approaches s(k) = k−2 ln k for
k � 1. This result was extended to hypercubic lattices also.

The behavior of the model on the Bethe lattice (the core
of an infinite Cayley tree), with arbitrary even coordination
number q, coverage and rod length k, was studied in Ref. [22].
To check for possible surface effects inherent to the Cayley
tree, which could be particularly relevant at full-packing, the
rods were analyzed in Ref. [22] also on a random graph where
all sites have the same coordination number [23], such that
the surface is absent. The exact solutions of models on this
random locally treelike layered (RLTL) lattice usually corre-
spond to the ones which follow from the Bethe approximation
and, in fact, equivalent results were found for the rods on
the Bethe and RLTL lattices [22]. If the infinite excluded
volume repulsion is relaxed, replaced by statistical weights for
multiple occupied sites, then it was found that both transitions
(isotropic-nematic-isotropic) may appear for the model on the
RLTL lattice [24]. Of particular interest here are the results for
the hard-core problem in coordination q = 4, where a contin-
uous isotropic-nematic transition was found in these lattices
already for k � 4 [22]. We remark that the ordering of rods
smaller than the smallest ones which lead to a nematic phase
on the square lattice is indeed expected, since the Bethe lattice
solution is equivalent to a mean-field approximation [25] and,
because of this, the critical exponents are classical and ordered
phases may appear in situations where they are absent in better
approximations or exact results. The second transition, from
the nematic to the high density isotropic phase is absent on the
Bethe lattice solution. Moreover, the entropies at full-packing
are considerably smaller than those for the regular lattice.
For example, s(2) = 0.26162 and s(3) = 0.05663 [22], which
deviate by 10% and 64% from the values above for the square
lattice. These differences lead us to inquire whether solutions
on improved treelike lattices may provide more reliable ap-
proximations to the behavior of rods on the square lattice.
For instance, in a recent paper [26], hard square-lattice gases
were investigated on a sequence of generalized Husimi lattices
[27] (built with diagonal square-lattice cells which share L

sites with each of their four neighboring cells) and accurate
estimates for the critical density and fugacity for the models
on the square lattice were obtained from extrapolations to
L → ∞ of the numerically exact results for increasing L.
This is in agreement with previous findings by Monroe [28],
who introduced and successfully applied this approach to
determine the critical parameters of the Ising and other spin
models. In this paper, we study fully packed rods on these
Husimi lattices, as well as on another sequence proposed by
Kobayashi and Suzuki [29], where the diagonal square cells
are replaced by regular square-lattice cells that share L sites
and L − 1 edges with neighboring ones. We are interested
mainly in two quantities: The entropy per site and the nematic
order parameter. After reviewing the results for the Bethe
lattice in this limit [22], we proceed solving the model on the
ordinary Husimi lattice, built with elementary squares, which
is the core of a square Husimi tree [27]. We then consider
the generalized trees, to obtain two systematic sequences of
values of the entropy per site and of the nematic order pa-
rameter for k � 7. By extrapolating these values for L → ∞,
accurate estimates of these parameters on the square lattice
are obtained for the smaller k’s.

The rest of this paper is organized as follows. We start
reviewing the results for a Bethe lattice with coordination
number q = 4 in Sec. II, proceed to the Husimi lattice built
with elementary squares in Sec. III and then to sequences of
trees with larger cells, with diagonally (Sec. IV) and regularly
(Sec. V) oriented square clusters. Final discussions and con-
clusions follow in Sec. VI.

II. BETHE LATTICE

For the sake of completeness, before starting the study of
hard rigid rods on Husimi lattices, we summarize the main
results for them on the Bethe and RLTL lattices, as obtained
in Ref. [22], for the full lattice limit. These lattices may be
viewed as a tree where the cells are sites. The entropy per site
(and in units of kB) of the model in this limit, for lattices with
coordination number q = 2d and rods with k monomers each
is given by [22]

s =
d∑

i=1

[(
1 − k − 1

k
ρi

)
ln

(
1 − k − 1

k
ρi

)
− ρi

k
ln

ρi

k

]
,

(1)
where ρi is the density of rods in direction i = 1, 2, . . . , d ,
such that

∑d
i=1 ρi = 1. The actual entropy of the system may

then be found by maximizing the entropy (1) over the den-
sities satisfying the constraint of full occupancy. For k � 4,
the maximum entropy phase is found to be the one that cor-
responds to a nematic phase, that is, ρ2 = ρ3 = · · · = ρd =
ρ1 − ψ , where ψ > 0 is the nematic order parameter. This is
different from what is observed on the square lattice, where
the system is isotropic in the full lattice limit [11]. We may
then write the entropy as a function of the order parameter:

s(ψ ) =
{

1 − (k − 1)[1 + (d − 1)ψ]

kd

}
ln

{
1 − (k − 1)[1 + (d − 1)ψ]

kd

}
+ (d − 1)

[
1 − (k − 1)(1 − ψ )

kd

]

× ln

[
1 − (k − 1)(1 − ψ )

kd

]
− 1 + (d − 1)ψ

kd
ln

[
1 + (d − 1)ψ

kd

]
− (d − 1)(1 − ψ )

kd
ln

[
1 − ψ

kd

]
(2)
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FIG. 1. A Husimi tree built with squares, with the central square
and two additional generations of squares. The dual lattice, repre-
sented by dashed lines, is a Cayley tree.

and search for its extrema, to find the order parameter in
the full lattice limit. Let us recall that for k = 2 and 3 the
maximum of this entropy is located at ψ = 0, so that the phase
is isotropic. For larger rods (k � 4) a phase transition between
an isotropic and a nematic phase happens at lower densities of
rods and the system is ordered even at the full lattice limit.
In this case, the entropy has a minimum at ψ = 0, assuming
negative values there (see Tables III and V, where the Bethe
lattice results correspond to L = 0). The maximum is located
at a value of ψ which is given by the following equation:

[kd − (k − 1)(1 − ψ )]k−1(1 − ψ ) − {kd − (k − 1)

× [1 + (d − 1)ψ]}k−1[1 + (d − 1)ψ] = 0. (3)

The values of these order parameters and the entropies, for
q = 4, are shown in Tables III and V for k � 7. As al-
ready noted in the Introduction, the values of s(2) and s(3)

are smaller than the square-lattice values [s(2) = G/π =
0.29156 . . . and s(3) = 0.158520 ± 0.000015] by 10% and
64%, respectively.

The asymptotic behavior of ψ at the maximum is as fol-
lows [22]:

1 − ψ ≈ d

kk−1
, k → ∞. (4)

By substituting for ψ in Eq. (2), we find the asymptotic en-
tropy (for k → ∞) on the Bethe lattice as s(k) = (d − 1)k−k ,
which, for d = 2, vanishes much faster than the square-lattice
result s(k) = k−2 ln(k) [21].

III. ORDINARY HUSIMI LATTICE

Let us start analyzing the simplest case of a tree built with
clusters, consisting of elementary squares, which is shown in
Fig. 1. The solution of a given model in the core of the infinite
tree (i.e., in the thermodynamic limit), known as Husimi lat-
tice (HL) [27], can be seen as the first level of approximation
for its behavior on the square lattice [26,28]. We may index
the levels of approximation by the number of sites shared
between each pair of adjacent clusters, which is L = 1 for this
lattice. In the same token, the solution of the model on the
Bethe lattice could be seen as a kind of zeroth-level (L = 0)
approximation.

As usual, to obtain the number of configurations of k-mers
placed on the HL, we start considering rooted subtrees for
fixed configurations at the root site. We may label the direc-
tions of the edges of the tree by x and y (see Figs. 2 and 3),
so that the configuration of the root site may be defined
by describing the rods coming from above. As illustrated in
Fig. 2 for k = 4, we may have the state (0,0) if no rods reach
the root site; (i, 0), for i = 1, 2, . . . , k − 1, if a rod in the x
direction with i monomers incorporated reaches it; and (0, i)
if the incident rod is in the y direction. Therefore, in general,
we have 2k − 1 root configurations, so this is the number of
partial partition functions (ppf’s) of the subtrees.

A recursion relation for the ppf associated with the con-
figuration (i, j), let us denote it by g(i, j), can be obtained
by considering the operation of attaching three subtrees (with
M generations each) to a new central square with the root
site in configuration (i, j), to build a subtree with an addi-
tional generation (M + 1). We will discuss in some detail

FIG. 2. Possible configurations for the root site of a HL built with squares for a tetramer (k = 4). The solid and open circles represent
endpoint and internal monomers, respectively, while the solid (red) lines are the bonds connecting them. The directions x and y of the edges
are also indicated.
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FIG. 3. Possible configurations of the root square for the root site configuration (0,0). The thick (red) lines indicate edges occupied by
k-mer bonds. The directions x and y of the edges are also indicated in panel (a).

the derivation of the contributions to g(0, 0). It is conve-
nient to order them according to the possible occupations
(by k-mer bonds) of the two edges of the rooted square
which are not connected to root site. For the root config-
uration (0,0), they can be empty, or occupied by the ith
bond of a k-mer in the x or y direction, as indicated in
Fig. 3. Thereby, the contributions to the ppf g′(0, 0), in gener-
ation M + 1, are [g(k − 1, 0) + g(0, k − 1)]3, [g(k − 1, 0) +
g(0, k − 1)]

∑k−2
n=0 g(n, 0)g(k − n − 2, 0), and [g(k − 1, 0) +

g(0, k − 1)]
∑k−2

n=0 g(0, n)g(0, k − n − 2) for the edge config-
urations (a), (b), and (c) in Fig. 3, respectively, where the
unprimed g(i, j) are in generation M. In a similar way, the
other recursion relations may then be derived, the result is

g′(0, 0) = [g(k − 1, 0) + g(0, k − 1)]3

+ [g(k − 1, 0) + g(0, k − 1)]

×
[

k−2∑
n=0

g(n, 0)g(k − n − 2, 0)

]

+ [g(k − 1, 0) + g(0, k − 1)]

×
[

k−2∑
n=0

g(0, n)g(0, k − n − 2)

]
, (5a)

g′(i, 0) = g(i − 1, 0){[g(k − 1, 0) + g(0, k − 1)]2

+
k−2∑
n=0

g(n, 0)g(k − n − 2, 0)}, (5b)

g′(0, i) = g(0, i − 1){[g(k − 1, 0) + g(0, k − 1)]2

+
k−2∑
n=0

g(0, n)g(0, k − n − 2)}, (5c)

where i = 1, . . . , k − 1 and k � 2.
These recursion relations (RRs) diverge in the thermody-

namic limit (i.e., when M → ∞), so that it is convenient to
work with ratios of them, which are defined as

R(i, 0) ≡ g(i, 0)

g(0, 0)
and R(0, j) ≡ g(0, j)

g(0, 0)
, (6)

for i, j = 1, . . . , k − 1. Note that the RRs above can be writ-
ten as g′(i, j) = [g(0, 0)]3 f (i, j), where the functions f (i, j)
depend only on the ratios. Thereby, one readily finds RRs
for the ratios as R′(i, 0) = f (i, 0)/ f (0, 0) and R′(0, j) =

f (0, j)/ f (0, 0). These RRs are convergent and their real, pos-
itive, and stable fixed points define the stable thermodynamic
phases of the k-mers on the Husimi tree.

Although the fixed point may be reached iterating the re-
cursion relations (5), in the present case, due to their rather
simple expressions, we can propose the following Ansatz for
the fixed point values of the 2k − 2 ratios of the ppf’s:

R∗(i, 0) = xi
1, (7a)

R∗(0, i) = xi
2. (7b)

At the fixed point, the variables x1 and x2 obey the follow-
ing pair of nonlinear equations:

x1
[
H3

k−1 + (k − 1)Hk−1Hk−2
] = H2

k−1 + (k − 1)xk−2
1 , (8a)

x2
[
H3

k−1 + (k − 1)Hk−1Hk−2
] = H2

k−1 + (k − 1)xk−2
2 , (8b)

where Hn = xn
1 + xn

2. For the isotropic fixed point x1 = x2 = x,
the variable x may be found easily, being given by

x =
[√

k2 − 2k + 2 − k + 2

4

]1/k

. (9)

Therefore, the fixed point Eqs. (8) have at least this solution,
associated with the isotropic phase, for any value of k. For
large rods, an additional nematic fixed point is also a solution.
It is therefore interesting to study the stability of the fixed
points, since in general we expect them to be stable to be
physically meaningful. If more than one fixed point is stable
in some region of the parameter space, then the one with the
lowest free energy will correspond to the thermodynamically
stable phase. We thus consider the (2k − 2) × (2k − 2) Jaco-
bian of the recursion relations

J
v, 
w = ∂R
v
∂R 
w

, (10)

where the derivatives are evaluated at the fixed point and the
vectors 
v and 
w denote all the allowed pairs (i, j) in R(i, j).
The Jacobianian matrix is nonsymmetric and in general the
dominant eigenvalues, λ, are complex. The modulus of the
dominant eigenvalue determines the stability of the fixed
point, it will be stable if |λ| � 1 and unstable if |λ| > 1.

The partition function, Y , of k-mers on the HL can be
obtained, similarly to the recursion relations for the ppf’s, by
considering all the possible ways of attaching four subtrees to

024132-4



ENTROPY OF FULLY PACKED RIGID RODS ON … PHYSICAL REVIEW E 105, 024132 (2022)

TABLE I. Results for the leading eigenvalue of the Jacobian calculated at the isotropic (λ(I )) and the nematic (λ(N )) fixed points. The real
and imaginary parts of λ are shown into parenthesis followed by the corresponding modulus.

k λ(I ) |λ(I )| λ(N ) |λ(N )|
2 (−0.6568542, 0.0000000) 0.6568542 – –
3 (−0.4270509, 0.7251423) 0.8415485 – –
4 (1.3239469, 0.0000000) 1.3239469 (−0.96392875, 0.00000000) 0.96392875
5 (1.7462874, 0.0000000) 1.7462874 (−0.80569924, 0.58665104) 0.99664975
6 (2.0057972, 0.0000000) 2.0057972 (−0.99974075, 0.00000000) 0.99974075
7 (2.1768442, 0.0000000) 2.1768442 (0.62350679, 0.78179613) 0.99998295
8 (2.2970438, 0.0000000) 2.2970438 (0.70710773, 0.70710447) 0.99999904
9 (2.3859984, 0.0000000) 2.3859984 (0.76604448, 0.64278748) 0.99999995
10 (2.4545486, 0.0000000) 2.4545486 (0.80901699, 0.58778524) 0.99999999

a central square. It can be written as

Y =
k−1∑
n=0

[g′(n, 0)g(k − n − 1, 0)

+ g′(0, n)g(0, k − n − 1)] = [g(0, 0)]4y, (11)

where y is given by

y =
k−1∑
n=0

[ f (n, 0)R(k − n − 1, 0) + f (0, n)R(0, k − n − 1)].

(12)
Then, the average number of k-mer bonds reaching the root
site (from above) in the x and y directions are

nx =
∑k−1

n=1 f (n, 0)R(k − n − 1, 0)

y
and

ny =
∑k−1

n=1 f (0, n)R(0, k − n − 1)

y
, (13)

and we may define a nematic order parameter as

ψ = |nx − ny|
nx + ny

. (14)

The bulk free energy per site, φb, at the central square of
the Husimi lattice reads [30–32]

φb = −kBT

4
ln

[
Y ′

Y 3

]
, (15)

where Y and Y ′ denote the partition functions in generations
M and M + 1, respectively. Thereby, it is an easy task to show
that

φb = −kBT ln

[
f (0, 0)

y1/2

]
. (16)

So, the dimensionless entropy (in units of kB) is given by

s = − 1

kB

(
∂φb

∂T

)
= ln

[
f (0, 0)

y1/2

]
. (17)

For dimers, one finds that g′(1, 0) = g′(0, 1) in Eqs. (5),
so that we can deal with a single ratio R ≡ [g(1, 0) +
g(0, 1)]/g(0, 0), whose physical fixed point solution is R =

4
√

2. Moreover, it is quite easy to verify that f (0, 0) =
R(2 + R2) and y = 2 + 4R2 + R4 in this case, so that

s = ln[
4√2(2+√

2)

2
√

1+√
2

] = 0.267399998 . . ., in agreement with the

result from Ref. [33].
For larger rods, we solved the fixed point Eqs. (8)

numerically and then obtained the entropy and nematic or-
der parameter for the fixed points, which are depicted in
Tables III and V. The dominant eigenvalue of the Jacobianian
of the recursion relations was also determined. For k < 4,
only the isotropic fixed point is found, and |λ(I )| < 1, so that
the isotropic fixed point is stable (see Table I). For k � 4,
two fixed points are found, the isotopic and the nematic one.
The isotropic fixed point is unstable, while the nematic one is
stable, as shows Table I. The entropy for the isotropic fixed
point is negative for k � 4 (see Tables III and V), signaling
also that this fixed point is not physical for this range of rod
sizes on the HL. We notice also that |λ(N )|, for the nematic
phase, rapidly approaches 1 as k increases. This explains why
in the direct calculation of the fixed points, by iteration of the
recursion relations for the ratios, the convergence becomes
slower as the rods grow. Also, as already mentioned, the
leading eigenvalues are in general complex, which means that
the values of the ratios do not converge uniformly to the fixed
point, and sometimes the system may be trapped for many
iterations in a sequence of values which resembles a limit
cycle. These features are seen also in the trees built with larger
cells, discussed in the following sections.

By comparing the entropies in Tables III and V for the HL
and for the Bethe lattice, we may note that they are always
larger in the former case, with the largest increase, of the
order of 50%, being observed for trimers. The differences
between both estimates become quite small as k increases, so
results for both lattices in the large k limit follow the same
asymptotic behavior. This is indeed expected, once a large rod
will not distinguish too much between an underlying Bethe
or an ordinary Husimi lattice. It is very likely that, for this
same reason, we are still finding a nematic phase for k > 7 in
the full lattice limit, though the nematic order parameters are
smaller in the Husimi lattice results.

IV. HUSIMI LATTICES BUILT WITH DIAGONAL
SQUARE CLUSTERS

Now, we consider rods defined on HLs whose building
blocks (BBs) are diagonal square lattices, with 2L(L + 1)
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FIG. 4. Building blocks of generalized HLs for levels up to L = 4.

sites, as shown in Fig. 4. The effective lateral size L defines
the level of approximation for the square lattice.

A. Preliminaries

The solutions of the problem in these generalized HLs
follow the very same steps as in the ordinary case (L = 1)
of the previous section, but now two adjacent BBs (in con-
secutive generations of the tree) are connected by L sites. In
Fig. 4 the BB’s for L between 1 and 4 are shown. The ppf’s
may then be determined through the configurations of k-mer
bonds reaching (from above) the L root sites, such that we
have now to deal with root lines of rooted BBs [see Fig. 5].
As above, the configuration of a given root site s can be
denoted by (is, js), with is [ js] accounting for the number
of incorporated monomers in the incident rod in the x [y]
direction. Hence, the ppf’s for a L-level HL are given by
g(i1, j1; i2, j2; . . . ; iL, jL ), with is, js = 0, . . . , k − 1 for s =
1, . . . , L. Although each root site can be found in 2k − 1
states, the total number of configurations for the root line is
much smaller than (2k − 1)L. In fact, the state of a given root
site s can impose restrictions on the configurations of other
root sites. For example, if js = n > 0, then is+1 = 0, is+2 � 1,
is+3 � 2, . . ., is+n � n − 1, assuming that s + n � L. So, it

FIG. 5. Rooted building block with three subtrees attached to it,
for L = 3. Different generations of the tree are indicated by different
colors. The three sites of the root line are represented by the red dots.

becomes very cumbersome to determine all the allowed con-
figurations for the root line “by hand” as L and k increases, but
this can be done computationally, which is the way we will
work hereafter. The numbers Nk,L of possible configurations
for the root line when k-mers are placed on a L-level HL are
displayed in Table II.

We notice that, instead of using the set
{i1, j1; i2, j2; . . . ; iL, jL} to represent a given configuration,
it is very convenient to order and label these configurations
by a single integer. In this way, the ppf’s can be simply
denoted by g(i), with i = 0, . . . , Nk,L − 1, where g(0) will
always represent the configuration chosen to be placed in the
denominator of the ratios of ppf’s defined below.

Similarly to the ordinary HL, we may write down a set of
recursion relations (RRs) for these ppf’s by considering the
process of building a (M + 1)-generation subtree by attaching
three M-generation ones to a rooted BB, as illustrated in
Fig. 5, for L = 3. In general, the RR for the ppf associated
with a given configuration i can be written as

g′(i) =
Nk,L−1∑

l=0

Nk,L−1∑
t=0

Nk,L−1∑
r=0

mk,L(i; l, t, r)g(l )g(t )g(r), (18)

where the integers l , t , and r set the configurations of the
subtrees attaching respectively at left, top and right side of
the rooted BB, whose root line is at configuration i. Note
that rods from the attaching subtrees, as well as those in the
root line may extend to the interior of the rooted BB and
may even cross it. Therefore, a large number of combinations
of the configurations (i; l, t, r) are forbidden, because they
would lead to attrition of rods and/or inconsistencies in their
continuity (or lengths). The integers mk,L(i; l, t, r) account for
this in the RRs, vanishing in these cases. Moreover, once

TABLE II. Number of configurations Nk,L for the root line of a
diagonal-square HL of level L, with k-mers placed on it.

L \ k 2 3 4 5 6 7

2 8 20 36 56 80 108
3 21 77 175 325 539 829
4 55 292 826 1820 3498 6136
5 144 1098 3828 9956 22 184 –
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FIG. 6. Building blocks, for L = 3. In panel (a) the colored part
highlights the BB for L − 1. The definition of the “up” (solid red)
and “down” (dotted black) zigzag lines forming the BB is presented
in panel (b).

an allowed set of configurations is found, since it already
determines the occupancy of some (or all) bulk sites, we
have to look for the possible free sites. If they do not exist,
then mk,L(i; l, t, r) = 1; otherwise, mk,L(i; l, t, r) will be the
number of ways of covering them with k-mers. For many sets
(i; l, t, r), specially for k � L, a full coverage is not possible,
so that mk,L(i; l, t, r) = 0. Hence, the sum over N3

k,L terms
in Eq. (18) has actually a much smaller number of nonnull
contributions. As an example, for L = 4 and k = 4, one has
only 11 079 nonnull terms for g′(0), whereas N3

k,L ≈ 5.6×108.
It is clear from Eq. (18) that, once we known the possible

configurations for the root line, we only need to determine the
variable mk,L(i; l, t, r) to have the RRs. At first, this can be
(computationally) done by fixing the configurations (i; l, t, r)
in the four sides of the rooted BB (RBB) and, then, checking
for attritions and discontinuities in length. If they are found,
then one makes mk,L(i; l, t, r) = 0 and goes to the next set
of configurations. Otherwise, there are some options to deter-
mine the bulk configurations. For instance, we may use, e.g.,
the Hoshen-Kopelman algorithm [34] to identify the possible
clusters of empty sites in the interior of the RBB and, then, try
to fully cover these clusters (if they exist) with k-mers through
an exact enumeration process to find mk,L(i; l, t, r). It turns
out however that this complicated procedure can become very
computationally demanding already for relatively small L’s;
on the one hand, because Nk,L becomes large for large k and,
on the other hand, because there are much bulk configurations
for small k. Another possibility is the use of the RRs for the
case L − 1 to obtain those for L, as recently done for hard
squares in Ref. [26]. In fact, as illustrated in Fig. 6(a), the
central portion of a L-level RBB can be seen as the RBB for
L − 1. Thereby, for each configuration (i; l, t, r) of the three
incoming subtrees (l, t, r) for a given root line i of the L-level
system, we can run over all the allowed configurations for
the L − 1 case, looking for those that fit at the center of the
larger RBB (satisfying the full occupancy condition and etc).
We find in this implementation that, since we have to compare
all the allowed configurations at four sides of the L-level RBB
with all the ones for L − 1, this becomes slow already for not
so large L and k.

Therefore, we use a different strategy to obtain the variable
mk,L(i; l, t, r) and so the RRs. For given L and k, beyond deter-
mining the configurations of the zigzag root line (let us refer to

it as a line of type “up”), we determine also the configurations
for such line flipped upside down (the “down” line). As shown
in Fig. 6(b), a L-level RBB can be built by alternately adding
L “down” lines over L “up” ones and viceversa. So, with the
line configurations at hand, we construct two transfer matrices
(for open boundary conditions): one for lines “down” adding
over “up” ones and another one for the opposite case. Using
these matrices, it is quite simple to build up all the possible rod
configurations for the RBB for a fixed root line configuration.
The process of obtaining the RRs for level L (for a given k)
becomes even more optimized if one starts with a line of type
“down” of size L + 1 and alternately adds L “up” and L − 1
“down” lines over it, all of them for L + 1. This automatically
furnishes the configurations of the RBB, as well as those of the
incoming subtrees at its left and right sides. Note that, thanks
to the transfer matrices, we only visit allowed configurations
along this process, what turns it much more effective than the
approaches discussed above.

As before, we work with ratios of ppf’s, which will be
defined in general as R(i) = g(i)/g(0), for i = 1, . . . , Nk,L−1.
At first, the ppf chosen to be in denominator [and generically
labeled here as g(0)] can be any of the Nk,L ones and, in most
cases, g(0) will represent the configuration where no rods
reach the root sites from above, as in the previous section. For
some few particular cases (e.g., L = 2 and k = 4, and L = 4
and k = 4) this choice for g(0) yields divergent ratios. Hence,
in such situations, g(0) will represent other configuration,
different from (0, 0; 0, 0; . . . ; 0, 0), which leads to convergent
ratios in the thermodynamic limit. In any case, the RRs for
the ppf’s can always be written as g′(i) = g(0)3 f (i), with f (i)
being a sum depending only on the ratios. Thereby, the RRs
for the ratios take the form R′(i) = f (i)/ f (0).

By connecting four subtrees to a central BB [summing
over all the possible ways of doing this, satisfying the full
occupancy, avoiding attritions and etc.] we obtain the partition
function, Y , which may be written, in general, as

Y =
Nk,L−1∑

i=0

Nk,L−1∑
j=0

�i jg(i)g′( j) = g(0)4y, (19)

where �i j = 1 if the configurations i and j match at the root
line; and �i j = 0 otherwise. In addition,

y =
Nk,L−1∑

i=0

Nk,L−1∑
j=0

�i jR(i) f ( j) (20)

only depends on the ratios. Therefore, the average number of
k-mer bonds reaching the root line (from above) in the x and
y directions read

nx =
∑Nk,L−1

i=0

∑Nk,L−1
j=0 �i jγ

(x)
j R(i) f ( j)

y
and

ny =
∑Nk,L−1

i=0

∑Nk,L−1
j=0 �i jγ

(y)
j R(i) f ( j)

y
. (21)

Here, γ
(s)
j is the number of bonds in the root line at config-

uration j in the direction s = x, y. Then, the nematic order
parameter can be calculated from Eq. (14).
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TABLE III. Entropy sL (k), for diagonal-square HLs of levels L � 5 and several k’s, for the isotropic (I) and nematic (N) phases. The
bottom line presents the extrapolated values s(I )

∞ , obtained from 3-pt extrapolations of the set (s(I )
1 , s(I )

3 , s(I )
5 ) to L → ∞. The values of the

nematic order parameters ψ (for the nematic phase) are shown between parentheses.

k 2 3 4 5 6 7

s(I )
0 0.2616241 0.0566330 −6.764415E-02 −0.1524737 −0.2146781 −0.2625527

s(N )
0 – – 4.276367E-03 3.247911E-04 2.147242E-05 1.2144921E-06

(ψ ) (0.962250) (0.996702) (0.999741) (0.999983)

s(I )
1 0.2673999 0.0827527 −1.771135E-02 −8.037280E-02 −0.1230766 −0.1540139

s(N )
1 – – 5.386386E-03 3.394689E-04 2.161841E-05 1.215430E-06

(ψ ) (0.936837) (0.996391) (0.999738) (0.999982)

s(I )
2 0.2822379 0.1215620 6.938599E-02 6.063561E-03 2.068819E-02 −2.970555E-02

s(N )
2 – – 6.947659E-02 8.194540E-03 – 2.048538E-04

(ψ ) (7.594707E-02) (0.740571) (0.995860)

s(I )
3 0.2854815 0.1463681 6.837276E-02a 3.793798E-02b 3.099252E-02 −4.709141E-03

s(N )
3 – – – – 3.123758E-02 1.582462E-03

(ψ ) (9.879675E-02) (0.939622)

s(I )
4 0.2878447 0.1455480 9.095362E-02 4.313372E-02b 3.299486E-02b 1.831432E-02b

s(N )
4 – – – – – 1.832327E-02b

(ψ ) (6.378773E-02)

s(I )
5 0.2887289 0.1487062 8.763683E-02 6.390494E-02 3.2731535E-02a –

s(N )
5 – – 8.765191E-02 – – –

(ψ ) (7.50218E-02)

s(I )
∞ 0.29211 0.14930 0.11476 0.09943 0.03294 –

aDivergent limit cycle-2.
bConvergent limit cycle-2.

For L-level HLs, the bulk free energy per site in Eq. (15)
trivially generalizes to [26]

φb = − kBT

2Veff
ln

[
Y ′

Y 3

]
, (22)

with Veff = 2L2 being the effective number of sites in each
BB, once the 4L sites shared between two generations of
the tree contribute as 2L. This leads to the dimensionless
entropy

sL(k) = − 1

kB

(
∂φb

∂T

)
= 1

L2
ln

[
f (0)

y1/2

]
. (23)

As it will be seen in what follows, for some particular
values of L and k, the RRs converge to a limit cycle of
period 2, instead of a fixed point, so that R′

B(i) = fA(i)/ fA(0)
and R′

A(i) = fB(i)/ fB(0), with A and B denoting the different
points of the cycle. In this case, the convergent part of the
partition function might also oscillate between two values
(yA and yB) and, as demonstrated in the Appendix, a more
appropriate definition for φb is

φb = − kBT

8Veff
ln

[
Y ′′

Y 9

]
, (24)

where Y ′′ (Y ) is the partition function for generation M + 2
(M). Then, we obtain the dimensionless entropies (see the

Appendix)

sL,A(k) = 1

4L2
ln

[
fA(0)3 fB(0)

y2
A

]
and

sL,B(k) = 1

4L2
ln

[
fA(0) fB(0)3

y2
B

]
. (25)

As expected, in the case of a fixed point, where fA(0) =
fB(0) = f (0) and yA = yB = y, these generalized definitions
reduce to Eq. (23).

For all L and k analyzed here, we find sL,A(k) = sL,B(k), so
that the indexes A and B will be suppressed from the entropies
below. However, nx,A and ny,A [calculated from Eq. (21) with
RA, fA and yA] are different from nx,B and ny,B, yielding
different values for ψA and ψB, calculated from Eq. (14).
Hence, in this case, the order parameter presented below is
ψ = (ψA + ψB)/2.

B. Results

The entropies obtained for the diagonal square HLs are
summarized in Table III, along with those for the ordinary HL
and the Bethe lattice, where the values of the order parameter
for the nematic phase are also shown. The few situations
where the RRs converge to limit cycles are also indicated,
with fixed points being find in the rest. We remark that two
types of cycles of period 2 are found: regular ones, for which
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1/L
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s L
(2

)

L odd
L even

FIG. 7. Entropy for k = 2 against 1/L, with L = 1, 2, . . . , 5.
Black filled squares represents odd values of L, while the red tri-
angles even values.

the RRs alternate between two sets of finite values; and “di-
verging” ones, where some ratios converge to finite values,
but others oscillate between diverging and vanishing values.
In this case, there is no suitable choice for the denominator
of the RRs to prevent the divergences. Namely, by changing
the configuration in the denominator, we simply change the
sets of finite, diverging and vanishing RRs. However, if one
redefines the ratios by placing their sum in the denominator,
then the diverging cycles become regular cycles. However,
regardless of the definition, the same (finite) entropy is found,
as displayed in Table III.

For dimers and trimers, only the isotropic phase is found
in the system, in agreement with the results for the Bethe
(and RLTL) lattice [22] and in consonance with the expected
behavior for the square lattice [11]. Although sL(2) increases
monotonically with L, its convergence depends on the L-
parity, as shown in Fig. 7. This is even more clear for k = 3,
once s4(3) < s3(3) in Table III and happens also for larger
rods. This parity effect hampers the data extrapolation for
L → ∞ (i.e., for the infinite square-lattice limit), once we
need to analyze high levels to end with few points to extrap-
olate. For instance, to perform five-point (5-pt) extrapolations
of the entropies for odd L, assuming, e.g., power-law correc-
tions of the form

sL = s∞ + a1L−α1 + a2L−α2 (26)

(with L being related to L as defined just below), we
should have sL, at least, for L � 9 to extrapolate the set
(s1, s3, . . . , s9), but this is unfeasible. In fact, our results are
restricted to L � 5, once s5(k) is already hard of obtaining,
specially for large k, due to the fast increase of Nk,L with both
L and k (see Table II). This is the reason for the absence of
results for L = 5 and k = 7 in Tables II and III. Hence, we
can perform only 3-pt extrapolations, assuming that a2 = 0 in
Eq. (26), which has thus three unknowns: s∞, a1 and α1. If
we extrapolate considering s0(k) in the set of even L’s [i.e.,
(s0, s2, s4)], then we obtain s∞(2) = 0.30056 and s∞(3) =
0.27148, when L = L∗, with L∗ being the square root of the
total number of sites in each BB (such that L∗ = 1 for the BL

and L∗ = √
2L(L + 1) for the HLs). These entropies differ,

respectively, by 3% and 71% from the expected results for
dimers and trimers on the square lattice. We notice that these
deviations increases if one defines L as the square root of
the effective number of sites in each BB (i.e., L = 1/2 for
the BL and L = √

2L for the HLs), so that we will always
use L = L∗ in the discussion below. The inaccuracy in these
estimates, particularly in s∞(3), certainly happens because the
BL solution is still a very crude approximation for the rods’
behavior on the square lattice. In fact, by extrapolating the set
(s1, s3, s5) we obtain much better results, which are depicted
in Table III as s(I )

∞ , deviating by ≈0.2% from the exact entropy
for the square lattice in the case of dimers, while for trimers
one finds a difference of ≈6% from the value estimated in
Ref. [10]. This demonstrates that, by increasing the level
L, the extrapolated entropies get closer to the square-lattice
values. Moreover, the variation observed in the deviations sug-
gests that to obtain s∞(k) with similar accuracy for different
k’s, we should extrapolate data for levels L that increase with
k, which is unfortunately not possible.

Despite this, reasonable estimates are obtained from 3-pt
extrapolations of the entropies of the isotropic phase, consid-
ering the set of odd-L’s, for k = 4 and k = 6 (see Table III),
once both s(I )

∞ (4) and s(I )
∞ (6) are within the intervals deter-

mined in Ref. [20] for these entropies in the square lattice.
For k = 5, however, our extrapolated value is out of the range
determined by the lower and upper bounds from Ref. [20]
for the square lattice: 0.04665 � s(5) � 0.08805. A similar
issue is observed for k = 7, in the extrapolations of the set
(s0, s2, s4) for both the isotropic and nematic phase.

Although these extrapolations are returning unreliable val-
ues in some cases, the results in Table III are consistent with
an isotropic phase in the square-lattice (L → ∞) limit, as
expected at full packing [11]. For instance, the entropy of
this phase becomes less negative as L increases and, with
exception of k = 7 (where it is still negative up to L = 3), it
becomes positive already for L � 2 in the other cases. Note
also that for the higher L’s there are several cases where
results for the nematic phase are lacking in Table III and this
happens because its fixed point is not found by iterating the
RRs. In fact, in such cases, even if one starts the iteration
with initial conditions that would yield the symmetry breaking
of the nematic phase, the RRs converge to the isotropic fixed
point. Although the appearance of the nematic phase becomes
rare at higher levels, whenever it shows up, it has an entropy
larger than the one for the isotropic phase, for given k and
L. Therefore, at least when it appears, the nematic phase is the
stable one. This is confirmed also by the leading eigenvalue, λ,
of the Jacobian matrix, since one finds |λ(N )| < 1 and |λ(I )| >

1 when both phases are present. However, when only the
isotropic phase is found, we obtain |λ(I )| < 1, demonstrating
that it is stable in such situations. Despite this disappearance
and reappearance of nematic phase for a given k, without any
clear rule, when it appears its order parameter is a decreasing
function of L. Moreover, for higher L’s, s(I )

L (k) and s(N )
L (k)

are quite close and the difference between them decreases
as L augments. As an example, for k = 4, this difference is
≈0.13% for L = 2 and ≈0.02% for L = 5. All these results
strongly indicate that only the isotropic phase shall exist for
L → ∞.
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FIG. 8. Building blocks of Kobaiashi-Suzuki generalized HLs for levels up to L = 4.

V. GENERALIZED HUSIMI LATTICES BUILT
WITH REGULAR SQUARE CLUSTERS

A. Preliminaries

In view of the limitation (to low levels) of the results
obtained for the diagonal approximation in the previous sec-
tion, we will analyze the rods in another sequence of treelike
lattices built with growing clusters, which was proposed by
Kobaiashi and Suzuki in 1993 [29]. In this generalization
of the Husimi lattice, the building blocks are regular square
lattices with lateral size L + 1. Some examples of them, for
L � 4, are shown in Fig. 8. One key difference of this se-
quence relative to the one considered in the previous section is
that adjacent building blocks, of successive generations of the
tree, share L − 1 edges also, besides the L sites (see Fig. 9).

As before, we proceed writing down recursion relations for
the ppf’s. We will describe in some detail the solution for
the case of dimers (k = 2) on the L = 2 lattice. In Fig. 9 a
subtree is shown. One point which has to be noticed is that
since for sufficiently large rods nematic order is expected,
the two possible orientations have to be distinguished in the

FIG. 9. Two generations of a L = 2 subtree, indicated by differ-
ent colors. The two sites and the edge between them indicated in red
at the root building block will be shared with the new block of the
next generation. The numbers are the order of the edges incident at
the root, which will be used to specify its configuration.

calculations. Thus, we will define two sets of ppf’s: g(i) for
subtrees whose root edge is in the x direction and h(i) if it is
in the y direction.

The configuration of the root sites of a subtree will be de-
fined by the rods which reach them whose starting monomer is
located in building blocks at the root or in earlier generations.
We notice that there are L + 1 edges incident on the root sites,
and we may label the configuration specifying the number
of monomers already incorporated into the rod, so that these
numbers will be in the range [0, k − 1]. There is a constraint
for the last pair of numbers, since they correspond to two
edges which reach the same root site: at least one of them
has to be equal to zero. Also, if an endpoint monomer reaches
the rightmost site of the root, the cases where this monomer
belongs to an horizontal or vertical rod are equivalent and are
included in the same configuration. Therefore, the number of
configurations will be

Nk,L = kL−k+1 kk − 1

k − 1
− kL−1, for k � L + 1, (27a)

Nk,L = kL+1 − 1

k − 1
+ k − L − 1 − kL−1, for k � L + 1.

(27b)

These numbers are explicitly shown in Table IV for the
parameters (k and L) analyzed here. It is noteworthy that these
Nk,L are much smaller than those in Table II for the diagonal
case. This will allow us to investigate higher levels here, at
least for the smaller k-mers.

We will adopt a particular order of the edges which are
incident on the root sites, starting at the corner of the root

TABLE IV. Number of configurations Nk,L for the root line of a
K-S HL of level L, with k-mers placed on it.

L \ k 2 3 4 5 6 7

2 4 10 18 28 40 54
3 8 30 69 132 225 354
4 16 90 276 656 1340 2460
5 32 270 1104 3280 8035 17208
6 64 810 4416 16 400 48 210 120 450
7 128 2430 17 664 82 000 289 260 843 150
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building block and moving along the edge of it. In the ex-
ample for L = 2 depicted in Fig. 9 this order is shown. We
may associate an integer is to each state, starting with is = 0
for the state (0, 0, . . . , 0) and is = Nk,L − 1 for the last
state (k − 1, k − 1, . . . , 0, k − 1). For example, in the case of
dimers (k = 2) on the tree with L = 2, the number of states
is N2,2 = 4, and the configurations associated to these states
are is = 0: (0,0,0); is = 1: (1,0,0); is = 2: (0,1,0) and (0,0,1);
is = 3: (1,1,0) and (1,0,1).

The procedure to obtain the coefficients of the recursion
relations for the ppf’s is similar to the one employed in the
case of diagonal building blocks, so we will not discuss it in
detail here. In general, the recursion relations are given by

g′(i) =
Nk,L−1∑

l=0

Nk,L−1∑
t=0

Nk,L−1∑
r=0

mk,L(i; l, t, r)h(l )g(t )h(r), (28a)

h′(i) =
Nk,L−1∑

l=0

Nk,L−1∑
t=0

Nk,L−1∑
r=0

mk,L(i; l, t, r)g(l )h(t )g(r). (28b)

Defining the ratios of the ppf’s R(i) = g(i)/g(0) and S(i) =
h(i)/h(0), we may write the recursion relations for the ratios
of ppf’s, which are of the form R′(i) = f (i)/ f (0) and S′(i) =
f ∗(i)/ f ∗(0) with

f (i) =
Nk,L−1∑

l=0

Nk,L−1∑
t=0

Nk,L−1∑
r=0

mk,L(i; l, t, r)S(l )R(t )S(r), (29a)

f ∗(i) =
Nk,L−1∑

l=0

Nk,L−1∑
t=0

Nk,L−1∑
r=0

mk,L(i; l, t, r)R(l )S(t )R(r). (29b)

We notice that, by definition, R(0) = S(0) = 1 and that the
recursion relations may be rewritten as g′(i) = g(0)h(0)2 f (i)
and h′(i) = g(0)2h(0) f ∗(i).

As usual, to obtain the partition function of the rods on the
tree, we connect four subtrees to the central building block,
leading to

Y =
Nk,L−1∑

i=0

Nk,L−1∑
j=0

�i, jg(i)g′( j) = g(0)2h(0)2y, (30)

where

y =
Nk,L−1∑

i=0

Nk,L−1∑
j=0

�i, jR(i) f ( j) (31)

is a polynomial in the ratios also. The bulk entropy per site in
the present case, when the RRs converge to a fixed point, is
given by

sL(k) = 1

2Veff
ln

(
Y ′

Y 3

)
= 1

L2 + 1
ln

(
f (0) f ∗(0)

y

)
, (32)

where the effective number of sites of a building block is
Veff = L2 + 1.

Similarly to the diagonal-square HL of the previous sec-
tion, we also find the RRs converging to limit cycles of period
2 here and, in such cases, the appropriate definitions for the

entropy are (see the Appendix)

sL,A(k) = 1

4(L2 + 1)

[
fA(0)3 f ∗

A (0)3 fB(0) f ∗
B (0)

y4
A

]
(33)

and

sL,B(k) = 1

4(L2 + 1)

[
fA(0) f ∗

A (0) fB(0)3 f ∗
B (0)3

y4
B

]
. (34)

As before, we always find sL,A = sL,B = sL here.

B. Results

The entropies for the KS-HL are depicted in Table V, along
with the values of the order parameter for the nematic phase.
The general picture is quite similar to the one for diagonal-
square HLs. For example, for dimers and trimers only the
isotropic phase is found and s(I )

L (k) > 0 already for the Bethe
lattice (L = 0). For larger rods on low-level HLs, s(I )

L (k) <

0 and the nematic phase is stable [having s(N )
L (k) > 0], but

s(I )
L (k) becomes less negative as L increases and at some level

(which increases with k) it becomes positive. At such point
the nematic phase stops appearing, though it can eventually
show up again, as for k = 5 for L = 6. Whenever the ne-
matic phase is found it is the stable one, having the largest
entropy and the leading eigenvalue of the Jacobian matrix
|λ(N )| � 1, while |λ(I )| > 1. When it is absent, however, one
finds |λ(I )| � 1. Importantly, for a given k, the nematic order
parameter decreases with L. Overall, these results suggest that
in the square-lattice limit only the isotropic phase shall be
observed.

Although we are obtaining results for higher levels here
when compared with the diagonal square HLs, the number of
points to extrapolate (for L → ∞) is still very limited, due
to the unfortunate L-parity effect. So, as before, we are not
able to perform detailed extrapolations considering high-order
corrections here. Assuming the finite-size scaling of Eq. (26)
with a2 = 0, once again, the most accurate results for k = 2
were obtained by defining L as the square root of the total
number of sites in each BB, which in present case is L = L +
1. In fact, this yields s∞(2) = 0.29483, s∞(2) = 0.29200,

and s∞(2) = 0.29171 from 3-pt extrapolations of the set
(sl−2, sl , sl+2) for l = 3, 4, and 5, respectively. A further 3-pt
extrapolation of these extrapolated values (for l → ∞) returns
s∞(2) = 0.29164, differing by only 0.03% from the exact
entropy of dimers on the square lattice. Similar 3-pt extrap-
olations for trimers give s∞(3) = 0.16255 for l = 3, s∞(3) =
0.16171 for l = 4 and s∞(3) = 0.16768 for l = 5. This fluc-
tuating behavior does not allow us to extrapolate these data
for l → ∞. Anyhow, this indicates that s∞(3) = 0.164(2),
which deviates by ≈3% from the transfer matrix estimate of
Ref. [11]. We remark that 4-pt extrapolations assuming the
existence of logarithmic corrections [in the form sL = s∞ +
aL−α log(L)β or sL = s∞ + aL−α log(bL)] do not improve
these estimates, furnishing values similar to the ones above.

For k = 4, the 3-pt extrapolation of the set (s2, s4, s6), with
the largest even L’s available in this case for the isotropic
phase, yields s∞(4) = 0.09003. This value lays well at the
middle of the interval established in Ref. [20] for this en-
tropy in the square lattice. For larger k’s, however, we obtain
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TABLE V. Entropy sL (k), for KS-HLs of levels L � 5 and several k’s, for the isotropic (I) and nematic (N) phases. The value of the nematic
order parameter (for the nematic phase) is shown into parenthesis.

k 2 3 4 5 6 7

s(I )
0 0.2616241 0.0566330 −6.764415E-02 −0.1524737 −0.2146781 −0.2625527

s(N )
0 – – 4.276367E-03 3.247911E-04 2.147242E-05 1.2144921E-06

(ψ ) (0.962250) (0.996702) (0.999741) (0.999983)

s(I )
1 0.2673999 0.0827527 −1.771135E-02 −8.037280E-02 −0.1230766 −0.1540139

s(N )
1 – – 5.386386E-03 3.394689E-04 2.161841E-05 1.215430E-06

(ψ ) (0.936837) (0.996391) (0.999738) (0.999982)

s(I )
2 0.2772131 0.1086632 1.987719E-02 −2.396047E-02 −5.707920E-02 –

s(N )
2 – – – 5.994109E-04 2.644304E-05 1.273296E-06

(ψ ) (0.989434) (0.999613) (0.999981)

s(I )
3 0.2822987 0.1291433 4.912690E-02 5.613078E-03 −2.419980E-02 −3.586687E-02

s(N )
3 – – 3.964852E-04 2.339824E-06

(ψ ) (0.998644) (0.999943)

s(I )
4 0.2853171 0.1372838 7.038655E-02 2.507253E-02 −1.931040E-03 −1.785139E-02

s(N )
4 – – – – 1.305415E-04 4.071709E-06

(ψ ) (0.992452) (0.999904)

s(I )
5 0.2869057 0.1424772 7.740926E-02 4.341118E-02 1.974750E-02

s(N )
5 – – – – –

(ψ )

s(I )
6 0.2880401 0.1470544 8.153816E-02 4.895803E-02

s(N )
6 – – – 5.009461E-02

(ψ ) (0.632976)

s(I )
7 0.2887282 0.1490338

s(N )
7 – – –

(ψ )

extrapolated results out of the lower and upper bounds from
Ref. [20]. This is somewhat consistent with the findings from
the previous section, pointing that to obtain reliable values
of s∞(k) we should extrapolate data for increasing L as k
increases.

VI. CONCLUSION

We have investigated fully packed rods on two sequences
of generalized Husimi lattices (HLs), which are expected to
furnish better approximations for these systems on the square
lattice as their level L increases. For L = 1 we recover the
ordinary HL built with elementary squares, whose results
are very similar to those previously found for these k-mers
on the Bethe lattice [22], but with a larger entropy and a
smaller nematic order parameter for the nematic phase. On
these two lattices, dimers and trimers are found in an isotropic
phase, with entropy s(I ) > 0, while for larger rods the stable
phase is nematic. However, our results for the generalized
HLs strongly indicate that when L → ∞ only the isotropic
phase is present in the system. In fact, with few exceptions,
it is the single phase observed for the higher L’s analyzed
here. Moreover, the nematic order parameter is a decreasing
function of L, for a given k, when the nematic phase appears.
Since we expect to obtain the behavior of the model on the

square lattice when L → ∞, these results are confirming that
k-mers at full-packing are indeed in an isotropic phase on the
square lattice.

The striking agreement of the extrapolated values (for
L → ∞) of the entropy for dimers with the exact result for
the square lattice (with a difference of 0.03%) confirms that
our approaches are indeed a good way to access the thermo-
dynamic behavior of rods on the regular lattice. Given the
difficulties with these extrapolations, due to the L-parity effect
observed in the entropies, our results for trimers [differing by
3% from the best known value of s(3)] can be regarded as
a very good estimate. Moreover, we obtained also reliable
estimates for tetramers on both HLs, whose average yields
s(4) = 0.10(1). In general, our results indicate that to obtain
accurate estimates, we have to extrapolate data for a maxi-
mal level, Lmax, that is larger than and increases with k (i.e.,
Lmax � k). Namely, by increasing the rod size k, one should
work with building blocks whose size also increases. This is
indeed expected and is certainly needed also in other athermal
systems (for other particle shapes), as well as in thermal
systems with long-range interactions reaching a length k. It
turns out that, at least for rods, it is quite hard to follow
the requirement Lmax � k and, as seen in Tables III and V,
one rather has Lmax decreasing with k, due to the numerical
difficulties in generating and dealing with a large number of
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recursion relations, each one containing a very large number
of terms.

On this matter, we remark that the regular square HLs
(introduced by KS) have an advantage over the diagonal
square HLs (introduced by Monroe), since in the former case
the number of rods’ configurations at the root line is much
smaller. Thereby, beyond the smaller number of recursion
relations, they have much less terms in the KS case, allow-
ing us to study higher levels. Conversely, for a given k and
L (� 2), the diagonal approach furnishes results closer to the
asymptotic ones. In fact, by comparing the data in Tables III
and V, one sees that sL(k) is always larger in the diagonal case
than in the KS one, with a smaller nematic order parameter
and the entropy of the isotropic phase becoming positive at
lower L’s. This is explained by the effective number of sites in
each building block, which is approximately two times greater
in the diagonal HLs than in the KS case. So, it is difficult
to establish which type of HLs is the best one. For example,
the larger number of points to extrapolate in the KS approach
yielded better results for the rods for k � 4, but in the diagonal
case we obtained a reliable estimate for s(6).

Finally, it is worth discussing what might happen in the
more general case where vacancies are also present in the lat-
tice. On the Bethe lattice, this system is found in the isotropic
phase at low rod densities, ρ, and undergoes a continuous tran-
sition to the nematic phase as ρ increases, for k � 4 [22]. This
suggests a similar scenario for the cases where the nematic
phase was found here and the analysis of the behavior of the
(possible) critical points with L is an interesting issue, which
might help to explain the disappearance and re-appearance of
the nematic phase as L increases, for a given k. In fact, for
the cases where only the isotropic phase was found here, we
may have either the absence of the isotropic-nematic transition
(as indeed expected for k < 7) or isotropic-nematic-isotropic
transitions (as expected for k � 7 for the square lattice). We
are currently initiating the study of these systems, which is
much more challenging than the case analyzed here, once the
presence of vacancies considerably increases the number of
possible configurations and recursion relations to be handled.
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APPENDIX: THE BULK FREE ENERGY

Although the bulk free energy per site, φb, has been
derived in several works, for different HLs (see, e.g.,
Refs. [26,30,32,35,36]), they are always defined in terms

of the total free energies �M = −kBT ln YM and �M+1 =
−kBT ln YM+1 for consecutive generations of the tree. In case
of a limit cycle of period 2, however, densities in the system
have a layered structure (repeating after each two genera-
tions), so that it is more appropriate to define φb in terms
of �M and �M+n, with n = 2, 4, 6, . . .. To do this, let us
start recalling that, by connecting the central plaquettes of
adjacent building blocks of the HLs considered here, a Cayley
tree with coordination q = 4 is formed (see Fig. 1). If Veff

is the effective number of sites in each building block, then
following Gujrati [30], the total free energy can be written
as �M = Veff[N

(M )
b φb + N (M )

s φs], where N (M )
b = 2 × 3M−1−1

and N (M )
s = 4 × 3M−1 are the number of building blocks in

the bulk and at the surface of the HL, respectively, while φb

and φs are the respective free energy densities there. Then, the
bulk free energy per site is given by

φb = 1

(3n − 1)Veff
[�M+n − 3n�M]

= − kBT

(3n − 1)Veff
ln

[
YM+n

Y 3n

M

]
. (A1)

If one uses A and B to denote each point of the cycle and
assumes that generation M falls in point A, then, for the HL
built with diagonal square clusters, YM = gM (0)4yA, YM+1 =
gM+1(0)4yB, YM+2 = gM+2(0)4yA, and so on. Moreover, for
general n, one may write gM+n(0) = gM (0)3n

fA(0)Pn fB(0)Pn−1 ,
where Pn = [3n+1 + (−1)n+1 − 2]/8. Substituting these quan-
tities in Eq. (A1), considering that n is even, one readily gets

φb = −kBT

Veff
ln

[
fA(0)

3
2 fB(0)

1
2

yA

]
. (A2)

For the KS lattice, where one has to distinguish between the
ppf’s for the x and y directions, a similar derivation yields

φb = −kBT

Veff
ln

[
fA(0)

3
4 f ∗

A (0)
3
4 fB(0)

1
4 f ∗

B (0)
1
4

yA

]
. (A3)

Note that these free energies are independent of n (even), as
expected. By exchanging A and B in these expressions, one
obtains an equivalent definition for φb [see Eq. (25)], which
corresponds to the case where generation M falls in point B.

It is noteworthy that the free energies obtained for odd n’s
have an unexpected n-dependence. For instance, in this case
Eq. (A2) changes to

φb = −kBT

Veff

{
ln

[
fA(0)

3
2 fB(0)

1
2

yA

]
+ 1

3n − 1
ln

[
fA(0)yB

fB(0)yA

]}
.

(A4)

This confirms that in systems with cycles of period 2 we can
not derive a consistent expression for φb from the total free
energies for subsequent generations of the tree differing by an
odd number.
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