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Anomalous band center localization in the one-dimensional Anderson
model with a disordered distribution of infinite variance
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We perform a detailed numerical study of the influence of distributions without a finite second moment on the
Lyapunov exponent through the one-dimensional tight-binding Anderson model with diagonal disorder. Using
the transfer matrix parametrization method and considering a specific distribution function, we calculate the
Lyapunov exponent numerically and demonstrate its relation with the fractional lower order moments of the
disorder probability density function. For the lower order of moments of disorder distribution with an infinite
variance, we obtain the anomalous behavior near the band center.
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I. INTRODUCTION

Since Anderson’s pioneer work [1] on the localization of
electrons caused by randomly distributed impurities in 1958,
the properties of disordered systems have fascinated scientists
for more than 60 years. Compared with the great progress
of strongly correlated systems in recent decades, peoples’
understanding of disordered systems is still unsatisfactory.
Only a few cases of low-dimensional disordered systems have
analytic solutions [2].

In the one-dimensional finite chain Anderson model, the
transport properties of electron wave function are character-
ized by the localization length ξ or the Lyapunov exponent
γ , which is the reciprocal of the localization length. Many
properties of disordered systems are related to this parame-
ter. The Lyapunov exponent has no extensive mathematical
form, and the analytic result of the Lyapunov exponent can
be obtained only in the strong or weak disorder limits. It is
very important to study the Lyapunov exponent for different
disorder distributions and electron energies, to improve the
understanding of the properties of disordered systems.

The one-dimensional Anderson model has been studied
from different aspects. Researchers have explored the in-
fluence of different disorder strengths [3] and asymmetric
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disorder distribution [4] on the localization length. Most of
these works are carried out by the perturbation expansion
method on the variance of disorder distribution. In most sta-
tistical problems, the mean and variance are routinely used to
describe a distribution. However, if the higher order moments
of disorder strength do not exist, the perturbation expansion
method is no longer applicable. A random variable X has an
infinite variance and does not prevent the same variable from
assuming finite values with probability 1. We need to find a
new way to deal with this infinite variance situation.

Some researchers focus on stable distributions with heavy
tails 1/xα , which is possible to preserve scaling [5]. Such
distributions have been found in various nature and social phe-
nomena [6–8]. Only until recently is it possible to study these
heavy-tails type disordered systems experimentally [9–11],
which has aroused interest to study these phenomena again
[12–16]. For instance, related researches on one-dimensional
disordered systems have shown that the conductance dis-
tribution is completely determined by only two parameters
[11–13]: the average of logarithm of conductance 〈ln G〉 and
the scaling exponent α of the power-law tail; all other details
of the disorder configuration are irrelevant.

In the present work, we consider a distribution (x2 +
σ 2)−(α+1)/2 with 1 < α � 2. This disorder distribution does
not have the finite second moment or variance, but the
absolute mean E [|X |] is defined. The noninteger moments
of distributions are sometimes called fractional lower order
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moments. The distribution (x2 + σ 2)−(α+1)/2 covers the frac-
tional lower order moments E [X α] with the order of moments
α ∈ (1, 2]. Through this distribution we will study the behav-
ior of the Lyapunov exponent for disorder distributions with a
finite first order moment but with an infinite second order mo-
ment. We show detailed numerical results about the influence
of fractional lower order α on the Lyapunov exponent γ .

II. TRANSFER MATRIX PARAMETRIZATION METHOD

The stationary Schrödinger equation of the one-
dimensional Anderson model with diagonal disorder is

εiψi + t (ψi+1 + ψi−1) = Eψi, (1)

where ψi is the wave function on the ith lattice site, εi is the
on-site energy, and E is the eigenenergy. In the following, the
hopping energy t between the nearest neighbor lattice points
is set to be the unit energy. The in-band energy is E ∈ [−2, 2],
and the energy out of band is |E | > 2. By introducing a two-
component vector �i, we can rewrite the above equation with
the transfer matrix Ti,

�i+1 =
(

ψi+1

ψi

)
=

(
E − εi −1

1 0

)
�i = Ti�i. (2)

Through the transfer matrix, we can express the wave function
�L on the Lth site as

�L = ML�1 = TLTL−1 · · · T1�1. (3)

The transfer matrix Ti is a real symplectic matrix, so is ML.
We then can diagonalize MT

L ML by an orthogonal matrix
U(θL ),

U(θL )MT
L MLU(−θL ) =

(
eλL 0
0 e−λL

)
, (4)

with

U(θL ) =
(

cos θL − sin θL

sin θL cos θL

)
.

A recursion relation can be obtained from the above formula
for sufficiently long chains in the localization regime,

tan θL+1 = 1

vL − tan θL
, (5)

where we have defined vL = E − εL.
With the distribution of ε or v, we can obtain an integral

equation for p(θ ) [17],

p(θ ) = 1

sin2 θ

∫ π/2

−π/2
p(θ ′)pv

(
1

tan θ
+ tan θ ′

)
dθ ′. (6)

Then the Lyapunov exponent is given by

γ = 1

2

∫ π/2

−π/2

∫ ∞

−∞
p(θ )pv (v)

× ln(1 + v2 cos2 θ − v sin 2θ )dθ dv. (7)

For uncorrelated disorder, p(θ ) and pv (v) are independent of
each other, and the above equations are exact.

FIG. 1. p(θ ) for typical in- and out-of-band energies E with α =
1.5 and σ = 1.

There is no general solution for p(θ ) except for some
special cases, such as when pv (v) is the Cauchy distribution.
Therefore we consider a probability density function

pv (v, α) = σα

B( α
2 , 1

2 )

(
1

(E − v)2 + σ 2

)(α+1)/2

, (8)

with

B

(
α

2
,

1

2

)
= �[(1 + α)/2]√

π�(α/2)
,

where B(x, y) and �(x) are the beta function and the gamma
function, respectively. In particular, the mean exists if and
only if α > 1, and the variance exists if and only if α > 2.
When α = 1, we recover the Cauchy distribution,

pv (v, 1) = 1

π

σ

(v − E )2 + σ 2
, (9)

and in the limit α → ∞, the density function pv (v, α)
converges to the Gaussian distribution exp[−(α+1)(E−v)2

2σ 2 ]. In
addition, when σ → ∞, the distribution decays with a power
law. Therefore this distribution not only represents an inter-
polation between the Gaussian distribution and the Cauchy
distribution, but also provides an approach to study the power-
law-like distribution.

In order to get the density function p(θ ), we solve the
integral equation (6) numerically. The accuracy of numerical
calculation is approximately 10−7. In Fig. 1, four curves of
p(θ ) are plotted for different values of energy E , where we
have chosen α = 1.5 and σ = 1. Figure 1 shows that p(θ )
is symmetrical about the origin θ = 0 when E = 0. As the
energy E increases, the distribution of θ becomes asymmetric
and tends to be the δ function. This is consistent with previous
studies [17].

To compare with previous results for weak disorder dis-
tributions with small variances, we plot p(θ ) for in-band
energies in Fig. 2, where we set α = 1.5 and σ = 0.1. As the
energy decreases, the peak of p(θ ) becomes lower and lower.
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FIG. 2. Density function p(θ ) for small energies E under the
conditions α = 1.5 and σ = 0.1.

These curves are close to the following relation:

p(θ ) =
√

4 − E2

2π (1 − E/2 sin 2θ )
, (10)

which corresponds to the p(θ ) of uncorrelated disorder at a
finite E in the weak disorder limit [3,18–21]. We find that
within our numerical error p(θ ) is given by Eq. (10) when
σ → 0 for α = 1.5. Here the point is not that p(θ ) is given
by Eq. (10) in the weak disorder limit when we fix σ and let
α go to infinity, which is natural. Here the disorder has no
higher moments except the mean. We find that p(θ ) is given
by Eq. (10) when we fix α and let σ go to zero.

III. ANOMALY OF THE LYAPUNOV EXPONENT NEAR
THE BAND CENTER

Now we study the band center region with energies around
zero. We demonstrate the behavior of p(θ ) for E = 0 first.
In Fig. 3, we plot p(θ ) for various α’s under E = 0 and
σ = 1. We see that the probability density function p(θ ) is
bimodal, which is different from the unimodal result of the
Cauchy distribution. p(θ ) for the Gaussian distribution is also
bimodal. In Fig. 3 the p(θ ) for 1 < α � 2 looks more like
the result of the Gaussian distribution except the singularity at
θ = 0.

To obtain an analytical expression of p(θ ) around θ = 0,
we change the integral variable dθ ′ into d tan θ ′ in the integral
equation (6), then

p(θ ) =
∫

p(θ ′)
1 + tan2 θ ′

pv

(
1

tan θ
+ tan θ ′)

sin2 θ
d tan θ ′.

In the limit of θ → 0, only two parts of the integration need
to be considered when α � 1: the θ ′ = 0 peak for p(θ ′)/(1 +
tan2 θ ′), and the E − 1

tan θ
− tan θ ′ = 0 peak for pv . We obtain

the behavior of the probability density function p(θ ) around
θ = 0 when α � 1,

p(θ ) = p
(π

2

)
+ σα

B( α
2 , 1

2 )
|sin θ |α−1, (11)

which is demonstrated by numerical results in Fig. 3.

FIG. 3. p(θ ) for typical α’s with E = 0 and σ = 1.0.

In the weak disorder limit, the probability density function
p(θ ) given by the traditional perturbation theory is a stable
form [3,21]

p(θ ) = 1

K (1/
√

2)
√

3 + cos 4θ
, (12)

where K (1/
√

2) ≈ 1.85 is the complete elliptic integral of the
first kind. In Fig. 4 we plot p(θ ) for small σ ’s at E = 0 and
α = 1.1, and we find that p(θ ) is not close to Eq. (12) for small
σ ’s at E = 0. In the case of 1 < α � 2, p(θ ) around θ = 0 is
in a V shape, which can be seen in Fig. 4. We calculate further
p(θ ) for α > 2, and find p(θ ) tends to Eq. (12) smoothly when
σ goes to zero. This indicates that the existence of second
moment has a great influence on p(θ ).

In Fig. 5, we plot the Lyapunov exponent γ (E ) within the
band for different α’s under σ = 0.1. We can see that as the
parameter α increases, the Lyapunov exponent γ becomes
smaller and closer to the result of the Gaussian distribution.

FIG. 4. p(θ ) for decreasing σ ’s with E = 0 and α = 1.1.
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FIG. 5. Lyapunov exponent γ for typical α’s under σ = 0.1.

In the case of the Cauchy distribution, the analytical result
of the Lyapunov exponent has been obtained [2]:

γ (E , σ ) = arccosh

√
(2 + E )2 + σ 2 +

√
(2 − E )2 + σ 2

4
;

(13)

our numerical results for the Cauchy distribution are in good
agreement with this, and the accuracy is about 10−6.

To demonstrate the anomalous behavior near the band cen-
ter, we plot γ (E , α) for different E ’s and α’s but at the same
σ = 0.05. For a more intuitive comparison, in Fig. 6 we plot
the results using y = γ (E , α)/γ (0.1, α). We can see from the
picture that the anomalous behavior of the band center exists
when α > 1, and the anomaly strongly depends on the higher
moments of the distribution function. For α ∈ (1, 2], the dis-
order distribution pv possesses an infinite variance. Figure 6
demonstrates the anomalous behavior near the band center.

FIG. 6. Lyapunov exponent γ (E ) near the band center under σ =
0.05 for different α’s. The vertical axis is in unit γ (0.1) for each α.

It is not immediately clear whether the numerically ob-
tained behavior of the Lyapunov exponent should be classified
as “anomalous.” In the model studied in this work, neither
analytical expression or clear understanding, nor physical in-
terpretation is available for the Lyapunov exponent for 1 <

α � 2 at zero energy. For the weak disorder with α > 2, the
Thouless formula and the Lyapunov exponent in the neigh-
borhood of the band center can be obtained by standard
perturbation techniques. The band-center anomaly consists
in a discrepancy between the Thouless formula for a finite
in-band energy and the Lyapunov exponent in the neighbor-
hood of the band center. This discrepancy is due to resonance
effects. In Figs. 5 and 6 we see that the Lyapunov exponent
for 1 < α � 2 as a function of energy is similar to pertur-
bation results for the weak disorder with α > 2. Considering
the different behavior of the Lyapunov exponent for a finite
energy and in the neighborhood of the band center, we expect
that the different behavior for the 1 < α � 2 case also comes
from resonance effects, which is similar to that of the α > 2
case. Therefore, like the well-known band-center anomaly for
α > 2, we call this behavior for 1 < α � 2 the anomalous
band center localization for a disorder distribution of infinite
variance. The site-energy distribution in this study decays with
a power law, and the exponent α determines how fast the tails
of the distribution decay in the model. In Fig. 6 we see the
band-center anomaly is in connection with disorder distribu-
tions (1 < α � 2) possessing well-defined absolute means but
infinite variances.

IV. CONCLUSION

In this work, we numerically calculated the probability
density function p(θ ) and the Lyapunov exponent γ in the
one-dimensional Anderson model with diagonal disorder. We
investigated the effect of fractional lower order moments of
the random potential density function. We found the anoma-
lous behavior near the band center for the order of moments
α ∈ (1, 2], where the disorder distributions possess infinite
variances.

Taking the existence of the mean value and the nonexis-
tence of the second moment of disorder probability density
function as bounds, where 1 < α � 2, we found p(θ ) is bi-
modal and V shaped for small σ ’s at E = 0. This p(θ ) is
different from the result given by weak disorder perturbation
for disorder distributions with small second moments. For
1 < α � 2, in the limit of σ → 0, we found p(θ ) at an in-band
finite energy is the same as the result given by weak disorder
perturbation for disorder distributions with small second mo-
ments.

Since when α < 1, the numerical result of p(θ ) is singu-
lar at the origin, the behavior in this situation needs further
research in the future.
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