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Annealed inhomogeneities in random ferromagnets
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We consider spin models on complex networks frequently used to model social and technological systems.
We study the annealed ferromagnetic Ising model for random networks with either independent edges (Erdős-
Rényi) or prescribed degree distributions (configuration model). Contrary to many physical models, the annealed
setting is poorly understood and behaves quite differently than the quenched system. In annealed networks with
a fluctuating number of edges, the Ising model changes the degree distribution, an aspect previously ignored.
For random networks with Poissonian degrees, this gives rise to three distinct annealed critical temperatures
depending on the precise model choice, only one of which reproduces the quenched one. In particular, two of
these annealed critical temperatures are finite even when the quenched one is infinite because then the annealed
graph creates a giant component for all sufficiently small temperatures. We see that the critical exponents in
the configuration model with deterministic degrees are the same as the quenched ones, which are the mean-
field exponents if the degree distribution has finite fourth moment and power-law-dependent critical exponents
otherwise. Remarkably, the annealing for the configuration model with random independent and identically
distributed degrees washes away the universality class with power-law critical exponents.
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I. INTRODUCTION

In spin systems with disorder, usually, two averaging pro-
cedures are considered: the quenched state, which is used
to model the setting where the couplings between spins are
essentially frozen, and the annealed state, in which spins and
disorder are treated on the same footing. In this paper we ask
the following question: how different are the quenched and
annealed states of a disordered ferromagnet? Do they share the
same critical temperatures and critical exponents? We show
here that this seemingly simple question does not admit a
simple answer. Instead, the comparison of the annealed state
of a random ferromagnet to the quenched one reveals a host
of surprises. As we shall see by considering several models
of random graphs, the answer depends sensitively on whether
the total number of edges of the underlying random graph is
fixed or is allowed to fluctuate. Indeed, the typical graph under
the annealed measure rearranges itself in order to maximize
the ferromagnetic alignment of spins by increasing the num-
ber of edges. As a consequence, we argue that the annealed
critical temperature is highly model dependent, even in the
case of graphs that are asymptotically equivalent (such as the

*Corresponding author: cristian.giardina@unimore.it

different versions of the simple Erdős-Rényi random graph).
This should be contrasted with the quenched critical tempera-
ture that is essentially the same for all locally treelike graphs.

The difference between quenched and annealed states
becomes even more substantial in the presence of inhomo-
geneities that produce a fat-tail degree distribution, whose tail
behavior is characterized by a power-law exponent τ > 2. In
this case it has been shown [1,2] that quenched models, on top
of the mean-field universality class, may have other university
classes where the quenched critical exponents depend on the
power-law exponent τ , taking the mean-field values for τ > 5
but different values for τ ∈ (3, 5).

Our analysis shows that the picture radically changes in
the annealed setting. In the context of the configuration model
we find that when the degrees are fixed, one obtains the
same universality classes as in the quenched setting. However,
the annealed partition function of the configuration model
with random [independent and identically distributed (i.i.d.)]
degrees blows up for fat-tail degree distributions. Further-
more, for models with a well-defined partition function, the
power-law universality classes are washed away, and only the
mean-field universality class survives.

The distinction between quenched and annealed averaging
is particularly relevant for social systems, where the network
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of acquaintances of members of a group changes quite rapidly
on a timescale that is comparable to that of opinion changes
[3–5]. In such settings, the annealed setting is the most
appropriate.

The multifaceted phenomenology that we find in the de-
scription of the annealed state did not emerge in previous
studies of disordered ferromagnets [1,2,6–8] that instead
suggested the annealed state should be described by an ap-
proximate mean-field theory that accounts for heterogeneity
of the graph (so-called annealed network approach [1]). Our
analysis shows that this approximate theory may fail to iden-
tify the critical temperature, even for very simple random
graph models. In the following we first discuss the case of
homogeneous models with Poissonian degrees, and afterward,
we extend our analysis to models with inhomogeneities.

II. MODELS WITH POISSON DEGREE DISTRIBUTIONS

Let us consider the Ising model on a network with
n vertices. Given a spin configuration σ = (σ1, . . . , σn) ∈
{−1,+1}n and a random graph with vertex set V and edge
set E , the Hamiltonian is defined as

Hn(σ ) = −β
∑

(i, j)∈E

σiσ j − B
∑
i∈V

σi, (1)

where β is the inverse temperature and B is an external field.
The order parameter is the spontaneous annealed magnetiza-
tion M(β ) = limB→0+ M(β, B), where

M(β, B) = lim
n→∞

〈∑
σ

(
1
n

∑n
i=1 σi

)
e−Hn (σ )

〉
〈 ∑

σ e−Hn (σ )
〉 . (2)

Here, 〈·〉 denotes the expectation over the randomness of the
graph, which, in the annealed setting, appears in both the
numerator and denominator.

The simplest possible random network is the binomial
Erdős-Rényi, denoted bER(λ/n), in which a pair of vertices in
[n] = {1, . . . , n} is connected (independently of other pairs)
with the same probability λ/n, λ > 0. In this case, the Hamil-
tonian (1) becomes

HbER(λ/n)(σ ) = −β
∑

1�i< j�n

Ii, jσiσ j − B
n∑

i=1

σi, (3)

where Ii, j are independent and identically distributed
Bernoulli random variables with P (Ii, j = 1) = λ/n defining
the adjacency matrix of the network. The random variable
Di = ∑

k Ii,k , counting the number of edges connected to ver-
tex i, is the degree of i, which for large n results in a Poisson
random variable with parameter λ. As shown in Appendix B,
the annealed magnetization (2) of the binomial Erdős-Rényi
model solves the mean-field Curie-Weiss equation with a
renormalized temperature β �→ sinh(β ), i.e.,

MbER = tanh[λ sinh(β )MbER + B], (4)

yielding the critical inverse temperature

βbER
c = asinh(1/λ) (5)

and critical exponents of the mean-field universality class.

FIG. 1. Annealed critical points βc(λ) for models with Poisson
degree distribution λ. Points are guides to the eye.

The annealed network approach introduced in [1,6] is
based on the idea of replacing the model with Hamiltonian (1)
by a mean-field model on a weighted fully connected graph
described by the Hamiltonian

Hmf (σ ) = −β

2

n∑
i, j=1

DiDj

�n
σiσ j − B

n∑
i=1

σi, (6)

where �n = ∑
i Di. This translates into an equation for the

magnetization given by

Mmf (β, B) = 〈tanh(βyD + B)〉, (7)

where y ∈ (0, 1) is a solution of the mean-field equation

y = 〈D tanh(βyD + B)〉/〈D〉. (8)

In the case of models with Poissonian degrees with 〈D〉 =
λ, the linearization around y = 0 yields the inverse critical
temperature

βmf
c = 1/(λ + 1), (9)

and critical exponents are those of the mean-field universal-
ity class. Therefore, the annealed network approach predicts
the correct annealed critical exponents but fails to determine
the critical temperature. As shown in Fig. 1, the discrep-
ancy between the true value of the critical temperature (red
dashed curve) and the one predicted by the annealed network
approach (blue curve with circles) increases as the average
connectivity λ is decreased. In particular at λ = 0 one gets
βmf

c = 1, which is clearly unphysical.
It is interesting to compare the annealed magnetization (2)

to the magnetization that is obtained in the quenched setting
[9]. For all the models that are locally treelike [1,2,10,11], the
quenched magnetization Mqu(β, B) is

Mqu(β, B) =
〈

e2B − ∏D
i=1 Xi

e2B + ∏D
i=1 Xi

〉
, (10)

where (Xi )i�0 are i.i.d. random variables satisfying

X0
(L)= e−β+B + eβ−B

∏D
i=1 Xi

eβ+B + e−β−B
∏D

i=1 Xi

. (11)
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The linearization around X = 1 yields

βqu
c = atanh (1/λ). (12)

Surprisingly, the quenched critical value coincides with
the one that is obtained by solving the annealed Ising model
on the combinatorial Erdős-Rényi random graph, denoted
cER(λn/2), with n vertices and a fixed number of edges λn/2
placed uniformly at random. The annealed magnetization of
the combinatorial Erdős-Rényi random graph satisfies yet an-
other mean-field equation (see Appendix A),

McER = tanh

[
λ(1 − e−2β )McER

2 + (1 − e−2β )[(McER)2 − 1]
+ B

]
. (13)

The linearization around zero gives

βcER
c = βqu

c . (14)

We observe that although the bER and the cER are asymptoti-
cally equivalent random graph models (in particular, they both
have Poisson degrees), their annealed magnetizations satisfy
different equations, yielding different critical temperatures.
We show in Appendix B that this difference arises from the
fact that in the cER the number of edges is fixed, whereas
annealing macroscopically increases the number of edges in
the bER.

III. MODEL WITH INHOMOGENEITIES

We now go to a more general setting that allows us to
treat inhomogeneities described by general degree distribu-
tions (beyond the Poissonian case).

We first consider the configuration model with fixed de-
grees, denoted by CM(d), that is obtained by prescribing the
degree values d = (di )i∈[n] and connecting the vertices uni-
formly at random [12]. In Appendix C we show that, denoting
by D the degree of a uniformly chosen vertex, the annealed
magnetization is

MCM(d)(β, B) = 〈tanh(βyD + B)〉, (15)

where y ∈ (0, 1) is a solution to

1 − e−4βy

1 + e−4βy − 2e−2β(1+y)
= 〈D tanh(βyD + B)〉/〈D〉. (16)

Comparing (16) and (8), we see once more that the annealed
network approach correctly predicts a mean-field behavior for
the annealed magnetization but that the mean-field equation
for y is again quite different. From the linearization of Eq. (16)
around y = 0 we find that the annealed critical point βCM(d)

c of
the configuration model with prescribed Poissonian degrees is

βCM(d)
c = βqu

c , (17)

which is consistent with the claim that fixing the number of
edges recovers the quenched critical temperature.

If, instead, the configuration model is constructed by con-
sidering random i.i.d. degrees Di [denoted by CM(D)], then
the situation drastically changes. The additional randomness
of the degrees implies that only degree distributions with
exponential tails are possible. Indeed, by considering the con-
figuration σ with all spins up, one immediately obtains the
bound

〈eβ
∑

i∈V Di/2〉 � e−n|B|〈Zn〉 � 2n〈eβ
∑

i∈V Di/2〉. (18)

The annealed free energy is thus only well defined in the
thermodynamic limit if 〈eβD/2〉 < ∞. Assuming this to be the
case, the annealed magnetization reads (see Appendix D)

MCM(D)(β, B) = 〈tanh(βyDβ + B)〉, (19)

where y ∈ (0, 1) is a solution to

1 − e−4βy

1 + e−4βy − 2e−2β(1+y)
= 〈Dβ tanh(βyDβ + B)〉/〈Dβ〉.

(20)

Here, Dβ is the new law that arises from the law of D as a
consequence of the randomness of the degrees. Indeed, in the
presence of i.i.d. degrees that are copies of a random variable
D with distribution p = (pk )k�1, i.e., P (D = k) = pk , the an-
nealed “pressure” (= − f /β, with f being the annealed free
energy) is [13]

ϕCM(D)(β, B) = sup
q

[ϕCM(d)(β, B; q) − H(q|p)], (21)

where ϕCM(d)(β, B; q) denotes the pressure of the configu-
ration model with a deterministic degree distribution q and
H(q|p) is the relative entropy of q with respect to p,

H(q|p) =
∑

k

qk ln
qk

pk
. (22)

Equations (19) and (20) are then obtained by deriving with
respect to the external field B. To identify the critical tempera-
ture, one takes B ↘ 0, in which case the law of Dβ turns out to
be a β-dependent exponential tilting of the degree distribution
D,

qk (β ) = pk cosh(β )k/2/c(β ), (23)

with c(β ) = 〈cosh(β )D/2〉. Thus, since cosh(β ) > 1, under
the annealed measure of the configuration model, the typical
graph in the case of random i.i.d. degrees rearranges itself
(compared to the case of deterministic degrees) in order to
maximize the ferromagnetic alignment of spins, and it does
so by increasing the number of edges. See [14] for a similar
effect for antiferromagnets on annealed random graphs.

In particular, when the degree D is Poissonian with mean
λ, the tilted degree Dβ is again a Poisson random variable with
mean λ

√
cosh(β ). The linearization of (20) around y = 0 then

yields an implicit equation for the critical inverse temperature

βc = atanh

(
1

λ
√

cosh(βc)

)
, (24)

whose solution βCM(D)
c is

− ln(2λ2) + ln

[
1 +

√
1 + 4λ4 +

√
2 + 2

√
1 + 4λ4

]
. (25)

Comparing (25) to (17), we see that while the annealed
CM(d) with fixed Poissonian degrees has a phase transition
only when a giant connected component exists (λ > 1), the
CM(D) with random Poissonian degrees has a finite critical
temperature for all λ > 0.

In Fig. 1, we collect the results obtained so far. For all
the random networks with Poisson degree distribution, the
quenched critical temperature is given by (12), but we have
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four different values of the annealed critical temperatures. In
particular, the combinatorial Erdős-Rényi (cER) and the con-
figuration model CM(d), both having a fixed number of edges,
reproduce the quenched critical value, whereas the binomial
Erdős-Rényi (bER) and the configuration model CM(D) with
a fluctuating number of edges have a critical value that is
model dependent (and different from that of the mean-field
annealed network approach).

IV. PRESENCE OR ABSENCE OF POWER-LAW
UNIVERSALITY CLASS

We now analyze the annealed critical exponents. We imme-
diately see that for homogeneous networks (i.e., Poissonian
degree distribution), the critical exponents are those of the
Curie-Weiss model. Therefore, we concentrate on inhomoge-
neous networks, and for the sake of space, we consider the
configuration model.

We start from the case of fixed degrees: by Taylor ex-
pansion of Eqs. (15) and (16), we now obtain a critical
temperature βCM(d)

c = atanh ( 〈D〉
〈D(D−1)〉 ). Thus, the annealed

system has a ferromagnetic phase transition when 〈D2〉 < ∞
and is always in the ferromagnetic phase when 〈D2〉 = ∞.
As for the critical exponents, we find those of the mean-field
universality class, provided that 〈D4〉 < ∞. If this condition
is not met, then new universality classes arise [1,2,15]. For
instance, for power-law distributed degrees, i.e.. pk ∼ k−τ

with an exponent 3 < τ < 5, we find

α = 5 − τ

τ − 3
, β = 1

τ − 3
, γ = 1, δ = τ − 2.

This scenario of a family of universality classes (labeled
by the degree power-law exponent τ ) coincides with what
was found for all quenched networks with a locally treelike
structure [1,2,15].

We now move to the configuration model with random
i.i.d. degrees. Taylor expansion of (19) and (20) identifies
the critical inverse temperature βCM(D)

c as the solution of the
equation

β = atanh

( 〈Dβ〉
〈Dβ (Dβ − 1)〉

)
.

As we have already remarked, for power-law degrees the free
energy simply blows up. Thus, we have to restrict ourselves to
degree distributions with exponential tails, in which case, the
free energy diverges when β is large but not when it is small.
In this case, the critical value βCM(D)

c is strictly smaller than
the value β where the free energy explodes. Then, provided
that 〈eβCM(D)

c D/2〉 < ∞ [see (18)], the tilted degree distribution
q(β ) in (23) always has exponential tails since cosh(β ) < eβ .
Therefore, the empirical degree distribution q(β, B) of the
random graph under the annealed Ising model with a nonzero
field B, close to the critical point, has exponential tails. As a
result, power-law degree distributions cannot occur, and thus,
the critical exponents are all equal to those of the Curie-Weiss
model. In this case, there exists only one universality class,
compared to several for the setting of deterministic degrees.

V. CONCLUSION AND OPEN PROBLEMS

We have investigated Ising models on random graphs and
have compared the various quenched and annealed versions.
We have found that the quenched and annealed critical tem-
peratures agree in general when the number of edges is
deterministic and that they are distinct when this number of
edges is random. We have computed the exact critical temper-
atures in all the settings. When dealing with models having
asymptotic Poisson degrees, we find three distinct critical
temperatures that are all different from the critical temperature
predicted in the annealed networks approach of Dorogovtsev
et al. [1,6]. In the case of the configuration model with i.i.d.
degrees, we found that the power-law universality class van-
ishes with the annealing, while it is present in the quenched
setting. These results imply that one needs to be careful in
using annealed approximations for Ising models on random
graphs, as they can be extremely sensitive to the precise form
of annealing even when the quenched models do agree.

It would be interesting to extend our analysis to fluc-
tuations by studying the various susceptibilities. A further
possible generalization is to Potts models with more than two
spin values.
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APPENDIX A: ANNEALED COMBINATORIAL
ERDŐS-RÉNYI

Here, we investigate the annealed Ising model on the
Erdős-Rényi random graph cER(λn/2) of size n with a fixed
number m = λn/2 of edges placed uniformly at random, for
which we prove that the critical value equals the quenched
critical value.

Let us denote by ZcER
n,+ (k) the partition function where we

fix |σ+| = k, with σ+ beomg the subset of sites with positive
spin. Then, the annealed partition function equals

〈
ZcER

n

〉 =
〈∑

σ

e−H cER(σ )

〉
=

n∑
k=0

〈
ZcER

n,+ (k)
〉
. (A1)

Using

H cER(σ ) = −βm + 2βe(σ+, σ−) − B(2|σ+| − n),

where e(σ+, σ−) is the number of edges connecting σ+ to σ−,
we get

〈
ZcER

n,+ (k)
〉 =

〈 ∑
|σ+|=k

eβm−2βe(σ+,σ− )+B(2k−n)

〉
. (A2)
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By adding edges one by one, we see that, with m = λn/2 and
N = n(n − 1)/2, we get

〈
ZcER

n,+ (k)
〉 =

(
n

k

)(
1 + (e−2β − 1)

k(n − k)

N

)m
eβm+B(2k−n).

(A3)
Here, we ignored possible double additions of edges, which
is not relevant in the thermodynamic limit. Therefore, the
annealed pressure ϕcER = limn→∞ 1

n ln〈ZcER
n 〉 equals

ϕcER
β,B (λ) = sup

t∈[0,1]
[I (t ) + ϕ̂β,B(t )], (A4)

where

I (t ) = −t ln t − (1 − t ) ln(1 − t ), (A5)

ϕ̂β,B(t ) = (λ/2){β + ln[1 + (e−2β − 1)2t (1 − t )]}
+ B(2t − 1). (A6)

Optimizing over t in (A4) shows that the optimizer t� is the
solution to

ln
(1 − t )

t
+ 2B + λ(e−2β − 1)(1 − 2t )

1 + (e−2β − 1)2t (1 − t )
= 0. (A7)

Setting Pβ,B(t ) = I (t ) + ϕ̂β,B(t ), the magnetization is
M(β, B) = ∂

∂B Pβ,B(t�(β, B)); then

M(β, B) = 2t� − 1.

The equation for the magnetization of the combinatorial
Erdős-Rényi model can be obtained by substituting t� =
(M + 1)/2 into (A7). We get

ln

(
1 + M

1 − M

)
= 2B + 2λ(e−2β − 1)M

2 + (e−2β − 1)(M2 − 1)
, (A8)

which is Eq. (13) of the main text.
The critical value βc satisfies

∂2

∂t2
Pβc,0+ (t )

∣∣
t= 1

2
= 0. (A9)

Computing the second derivative gives

∂2

∂t2
Pβ,0+ (t ) = −1

t
− 1

(1 − t )
− 2λ(e−2β − 1)

1 + (e−2β − 1)2t (1 − t )

− λ

2

[(e−2β − 1)2(1 − 2t )]2

[1 + (e−2β − 1)2t (1 − t )]2
. (A10)

This derivative computed at t = 1
2 gives

−2 − λ(e−2β − 1)

1 + (e−2β − 1)/2
= 0,

or

λ tanh(β ) = 1.

Therefore, the critical value βcER
c of the combinatorial Erdős-

Rényi random graph with n vertices and λn/2 edges equals
atanh (1/λ).

APPENDIX B: ANNEALED BINOMIAL ERDŐS-RÉNYI

The annealed binomial Erdős-Rényi random graph (with a
fluctuating number of edges) was solved in Refs. [11,12] by
a direct mapping to the inhomogeneous Curie-Weiss model.
Here, we show that the solution arises from the combinatorial
Erdős-Rényi (cER) random graph (with a fixed number of
edges) via the total probability formula. We have〈

ZbER
n

〉 =
∑
k�1

〈Zn〉cER(k)P (#{edges in bER(λ/n)} = k),

where 〈·〉cER(k) is the expectation with respect to the cER
random graph with a fixed number of edges k. Now,

〈Zn〉cER(nμ/2) = exp
{
n
[
ϕcER

β,B (μ) + o(1)
]}

, (B1)

and

P (#{edges in bER(λ/n)} = nμ/2) = e−n[Sλ(μ)+o(1)], (B2)

where Sλ(μ) is the relative entropy of the binomial dis-
tribution Bin(N, μ/n) with respect to binomial distribution
Bin(N, λ/n), given by

Sλ(μ) = 1

2

(
μ ln

μ

λ
+ μ − λ

)
.

Considering the pressure ϕbER = limn→∞ 1
n ln〈ZbER

n 〉, a saddle
point argument (or Varadhan’s lemma) implies

ϕbER
β,B (λ) = sup

μ>0

{
ϕcER

β,B (μ) − Sλ(μ)
}
, (B3)

with

ϕcER
β,B (μ) = Pβ,B(t�(μ)), (B4)

where the optimizer t� = t�(μ) satisfies [see (A7)]

ln
t�

1 − t�
− 2B = μ(e−2β − 1)(1 − 2t�)

1 + (e−2β − 1)2t�(1 − t�)
. (B5)

The stationarity condition for (B3), i.e.,

∂ϕcER
β,B

∂μ
(μ) ≡ ∂Pβ,B

∂μ
(t�(μ)) = ∂Sλ

∂μ
(μ), (B6)

yields the implicit equation for the optimizer μ� = μ�(λ, B)
as

β + ln[1 + (e−2β − 1)2t�(1 − t�)] = ln
μ

λ
, (B7)

from which we get

μ� = λeβ[1 + (e−2β − 1)2t�(1 − t�)].

Substituting μ� in (B5), we get

ln
t�

1 − t�
= λ(e−β − eβ )(1 − 2t�) + 2B.

Since the magnetization is MbER = 2t� − 1 (as we show be-
low), we rewrite the previous equation as

atanh (MbER) = λ sinh(β )MbER + B,

which is Eq. (4) in the main text for the magnetization
of the bER. In order to check that MbER = 2t� − 1, we
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write ϕbER
β,B (λ) = ϕcER

β,B (μ�(λ, B)) − Sλ(μ�(λ, B)) and compute

MbER = ∂ϕbER
β,B

∂B . We have

∂ϕbER
β,B

∂B
(λ) = ∂ϕcER

β,B

∂B
(μ�(λ, B))

+
[
∂ϕcER

β,B

∂μ
(μ�(λ, B))− ∂Sλ

∂μ
(μ�(λ, B))

]
μ�(λ, B)

∂B
.

(B8)

The term in square brackets vanishes because μ�(λ, B) satis-
fies (B6). On the other hand, the partial derivative with respect
to B of ϕcER

β,B is

∂ϕcER
β,B

∂B
(μ) = ∂Pβ,B,μ

∂B
(t�(μ, B)) + ∂Pβ,B,μ

∂t
(t�(μ, B))

× ∂t�(λ, B)

∂B
= 2t�(λ, B) − 1 (B9)

since the derivative of Pβ,B,μ with respect to t vanishes at the
optimizer t�(λ, B) and ∂Pβ,B,μ(t )

∂B ≡ ∂ϕ̂β,B (t )
∂B = 2t − 1 [see (A6)].

APPENDIX C: ANNEALED CONFIGURATION MODEL
WITH DETERMINISTIC DEGREES

In Ref. [15] we showed that the pressure of the annealed
configuration model with deterministic degrees is

ϕCM(d)(β, B) = β〈D〉
2

+ G((s�
k )k�1, B), (C1)

where D is the degree distribution and G is a function of the
infinite-dimensional vector (sk )k�1 ∈ (0, 1)N given by

G((sk )k�1, B) =
∑

k

pkI (sk ) + B

(
2

∑
k

sk pk − 1

)

+ 〈D〉Fβ

(∑
k kpksk

〈D〉
)

. (C2)

Here, pk = P (D = k), and Fβ is a function that we do not
need to make explicit here (see [15]). The vector of optimizers
(s�

k )k�1 in (C1) is defined as

s�
k (B) = (wke−2B + 1)−1, (C3)

where, for B > 0, w = w(β, B) is a solution in (e−2β, 1) to

1 − e−2βw

1 + w2 − 2e−2βw
= 〈(1 + wD�

e−2B)−1〉 (C4)

and D� is the size-biased random variable given by P (D� =
k) = kpk/〈D〉. Thus, the magnetization MCM(d) can be
computed as

MCM(d) = d

dB
G((s�

k (B))k�1, B) = ∂G

∂B
((s�

k (B))k�1, B)

+
∑
k�1

∂G

∂sk
((s�

k (B))k�1, B)
ds�

k (B)

dB

= 2
∑

k

s�
k (B)pk − 1 =

∑
k

e2β − wk

e2β + wk
pk, (C5)

where we use (C3) and the fact that the partial derivatives
∂G
∂sk

vanish at (s�
k )k�1 (see [15]). Since tanh(x + y) = e2x−e−2y

e2x+e−2y ,
defining y by w = e−2βy, we can rewrite (C5) as

MCM(d) = 〈tanh(βyD + B)〉,
which is (15) of the main text. In the same fashion, writing
(1 + wD�

e−2B)−1 as 1
2 tanh(βyD� + B) + 1

2 in (C4), we obtain

1 − w2

1 + w2 − 2e−2βw
= 〈tanh(βyD� + B)〉,

which, in turn, can be transformed into Eq. (16) of the main
text by substituting w = e−2βy and using the fact that D� is the
size-biased degree. This proves our statements concerning the
magnetization of the configuration model with fixed degrees
CM(d).

APPENDIX D: ANNEALED CONFIGURATION MODEL
WITH RANDOM DEGREES

In the case in which the degrees are i.i.d. copies of a
random variable D with distribution p = (pk )k�1, i.e., P (D =
k) = pk , the annealed pressure is

ϕCM(D)(β, B) = sup
q

[ϕCM(d)(β, B; q) − H(q|p)], (D1)

where ϕCM(d)(β, B; q) denotes the pressure of the configu-
ration model with deterministic degree distribution q and
H(q|p) is the relative entropy of q with respect to p. The vari-
ational representation of the pressure (D1) can be rewritten as

ϕCM(D)(β, B) = sup
w,q

Rβ,B(w, q), (D2)

with [see (C1)]

Rβ,B(w, q) = − H(q|p) + β〈D(q)〉
2

+ G((sk (w, B))k�1, B; q),

where sk (w, B) = e2B/(e2B + wk ) and G((sk )k�1, B; q) is de-
fined as in (C2) with p replaced by q and D replaced by D(q).
The latter is the degree random variable with distribution q.
Denoting by (w�, q�) the optimizer of the variational problem
(D2), we write

ϕCM(D)(β, B) = Rβ,B(w�, q�) = −H(q�|p) + β〈D(q�)〉
2

+ G((sk (w�, B))k�1, B; q�). (D3)

The relation between p and the optimizing distribution q� can
be obtained by a stationarity condition which, with q being a
probability cosh mass function, is given by

∂Rβ,B(w�, q�)

∂qk
= ζ (D4)

for some Lagrange multiplier ζ . Computing the derivatives,
we obtain

ln(q�
k/pk ) = k

[
β

2
+ Fβ ([s�]q� ) + F ′

β ([s�]q� )(s�
k − [s�]q� )

]

+ I (s�
k ) + 2s�

kB + ζ , (D5)
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where [s�]q� = (
∑

k ks�
kq�

k )/〈D(q�)〉 is the average of the
vector s�

k = sk (w�, B) with respect to the size-biased dis-
tribution of q�. The stationarity condition for (s�

k )k�1, i.e.,
∂G((s�

k )k�1,B;q� )
∂sk

= 0, is

q�
k · {I ′(s�

k ) + 2B + kF ′
β ([s�]q� )} = 0.

From this equation we get F ′
β ([s�]q� ), which, inserted in (D5),

yields

ln(q�
k/pk ) = k

[
β

2
+ Fβ ([s�]q� ) + I (s�

k ) + I ′(s�
k )(s�

k − [s�]q� )

]

+ 2[s�]q�B + ζ . (D6)

The implicit relation (D5) [or (D6)] can be made explicit for
vanishing field B ↘ 0. In this case, since (s�

k )k�1 → ( 1
2 )k�1

and Fβ ( 1
2 ) = −β/2 + 1

2 ln cosh(β ), Eq. (D5) yields

ln(q�
k/pk ) − k

2
ln cosh(β ) = ζ ,

which is Eq. (23) of the main text.
In order to show (19) and (20) of the main text, we start

from (D3) and, observing that ∂Rβ,B

∂B = ∂G((sk )k�1,B;q)
∂B , compute

MCM(d) = d

dB
Rβ,B(w�(B), q�(B))

=
∑

k

∂Rβ,B(w�, q�)

∂qk

∂q�
k

∂B
+ ∂G((s�

k )k�1, B; q�)
∂B

= 2
∑
k�1

s�
kq�

k − 1, (D7)

where we use (D4) and the fact that
∑

k
∂q�

k (B)
∂B =

∂
∂B

∑
k q�

k (B) = ∂
∂B 1 = 0. From this point on, the proof

proceeds as in the case of fixed degrees [see (C5)], with D
replaced by Dβ ≡ D(q�).
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