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Reaction-diffusion models are common in many areas of statistical physics, where they describe the late-time
dynamics of chemical reactions. Using a Bose gas representation, which maps the real-time dynamics of the
reactants to the imaginary-time evolution of an interacting Bose gas, we consider corrections to the late-time
scaling of k-particle annihilation processes kA → ∅ above the upper critical dimension, where mean-field theory
sets the leading order. We establish that the leading corrections are not given by a small renormalization of the
reaction rate due to k-particle memory effects, but instead set by higher-order correlation functions that capture
memory effects of subclusters of reactants. Drawing on methods developed for ultracold quantum gases and
nuclear physics, we compute these corrections exactly for various annihilation processes with k > 2.
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I. INTRODUCTION

Reaction-diffusion models describe the stochastic dynam-
ics of particles that spread diffusively and undergo local
chemical reactions [1–3]. They are ubiquitous in statistical
physics, where they describe, for example, the dynamics of
chemical reactions [4], predator-prey populations [5,6], or pat-
tern formation [7]. In particular, the specific case of k-particle
annihilation

kA
λ−→ ∅ (1)

with a reaction rate λ describes processes such as the re-
combination of excitons in semiconductors [8], monopole
annihilation in models of the early universe [9], reactions in
polymer melts [10,11], or the dynamics of domain walls [12].
Historically, this model was first investigated in a statistical
physics context by von Smoluchowski to describe the co-
agulation kinetics in colloidal gold suspensions [13,14]. Of
interest for annihilation processes like Eq. (1) is the late-time
dynamics of the reactant density n(t ) that characterizes the
decay to the empty state [9,15–17], which is independent of
the initial reactant distribution. However, it depends sensi-
tively on the space dimension d , since above an upper critical
dimension dc = 2/(k − 1) [15,18] reactant particles are not
correlated (at least to leading order), whereas below that they
are [10]. The first case d > dc defines the reaction-limited
regime, where the density (to a first approximation) solves a
mean-field rate equation [2,3]

∂t n(t ) = −kλ nk (t ), (2)
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which predicts a power-law decay at late times,

lim
t→∞ n0(t ) = 1

[k(k − 1)λt]1/(k−1)
, (3)

independent of the initial density but with an explicit de-
pendence on the annihilation rate λ [3,19]. The second case
d < dc defines the diffusion-limited regime where reactants
are strongly anticorrelated, giving rise to a scaling n(t ) ∼
(Dt )−d/2 that is slower than the mean-field decay (here, D
is the diffusion constant), with n(t ) ∼ [(ln t )/Dt]1/(k−1) at
the critical dimension. This scaling, which is independent
of the reaction rate λ, is called universal. Experimentally,
diffusion-limited scaling has been observed in exciton re-
combination in semiconductors [8,20–24]. Theoretical work
predominantly considers the diffusion-limited regime, which
for integer dimensions describes the case (k, d ) = (2, 1)
as well as (2,2) and (3,1) with marginal scaling, using
renormalization group methods [9,16,18,25,26], mappings to
integrable models in one dimension [12,27–29], and numer-
ical simulations [15,17,30–33]. By comparison, scaling in
the reaction-limited regime appears less explored beyond the
mean-field equation (2), even though it describes most param-
eter combinations.

The aim of this paper is to derive the corrections to mean-
field scaling (3) above the upper critical dimension d > dc.
By the argument given above, one could assume that this
correction is set by a perturbative renormalization of the re-
action rate λ that corrects for reactant correlations. In detail,
such a perturbation describes a memory effect that accounts
for a reduction in the reactant density if the k reactants have
already met at some point in the past and annihilated. We
show here that this is not correct. Instead, the leading-order
scaling corrections are set by memory effects that account
for a reactant depletion due to subclusters of l < k reactants
having reacted in the past with other particles, which are
processes that involve a total particle number larger than k. A
quantitative discussion reveals two separate scaling regimes,
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FIG. 1. Asymptotic scaling behavior of reaction-diffusion pro-
cesses with local k-particle annihilation as a function of the space
dimension d . The continuous black line d = dc = 2/(k − 1) marks
the boundary between the diffusion-limited regime with n(t ) ∼
t−d/2 and the reaction-limited regime with mean-field scaling n(t ) ∼
t−1/(k−1). Corrections to mean-field scaling are set by memory effects
of subclusters of the k reactants, and they are either perturbative
with δn(t ) ∼ t−d/2 (light blue shaded area) or nonperturbative with
δn(t ) ∼ t−2/(k−1) (dark blue shaded area), separated by the line d =
4/(k − 1) (black line). Moreover, the parameter case (k, d ) = (3, 2)
contains a logarithmic scaling correction. All corrections dominate
over a simple renormalization of the reaction rate, except in the
perturbative regime for k = 2 (green line), where they are of the same
order.

which are summarized in Fig. 1: right above the critical di-
mension, the corrections are perturbative and describe a single
past memory event, which leads to a scaling δn(t ) ∼ t−d/2,
whereas, for even higher dimensions, such terms must be
summed to all orders, which gives a nonperturbative correc-
tion δn(t ) ∼ t−2/(k−1). In both regimes, the corrections are
of higher order than the renormalization of the annihilation
rate (at least for k > 2). Corrections to mean-field scaling are
thus more pronounced than one might expect. In addition,
the magnitude of the corrections is parametrized by λ, which
also parametrizes the nonuniversality of the leading term (3).
The results of this paper should be observable in numerical
simulations [34,35].

In deriving the scaling corrections, we make use of a
representation of the reaction-diffusion system in terms of
a bosonic Doi-Peliti path integral, which maps the process
(1) to a nonrelativistic Bose gas dual with non-Hermitian k-
particle contact interactions. In this description, the diffusion
constant D corresponds to an inverse mass and the reaction
rate λ sets the strength of the interaction between bosons.
Related (but not identical) models are used as effective field
theories in atomic and nuclear physics, where they describe
quantum gases of bosonic atoms or 4He [36,37], as well as the
scattering of neutrons or mesons [38]. In particular, higher-
order processes that determine the leading-order corrections
to mean-field scaling are linked to vertex functions that de-
scribe the scattering of more than k particles, and techniques
to compute the three-body scattering amplitude in Bose quan-
tum gases [39–41] are applied to the problem.

The paper is structured as follows. We begin in Sec. II with
a discussion of the Doi-Peliti path integral. Next, in Sec. III,

we derive a dynamical equation for the density using the effec-
tive action, which systematically includes beyond-mean-field
corrections through the vertex functions. We establish a power
counting for these vertex functions and show that the leading-
order corrections to mean-field scaling stem from higher-order
vertices. To obtain a result that is independent of a short-
distance cutoff, some vertex functions must be summed to all
orders, which is done numerically for various decay processes
and dimensions. Section IV contains a summary and outlook.

II. DOI-PELITI PATH INTEGRAL

We begin by introducing the representation of the reaction-
diffusion system (1) in terms of a bosonic Doi-Peliti path
integral [42–44]. Reviews of the Doi-Peliti formalism and
reaction-diffusion systems are found in Refs. [3,19,45–47]
and of the effective field-theory description of Bose quantum
gases in Refs. [37,38].

To capture the dynamics of the process (1) beyond a mean-
field approximation, consider first a microscopic model for
the reaction-diffusion system [47] defined on a lattice with
lattice constant a0. A lattice site with index i is occupied
by ni particles and, if this number is larger than k, particles
can annihilate according to the prescription (1) with a bare
annihilation rate g0. Ultimately, we are interested in aspects
of the model that do not depend on the lattice spacing a0, i.e.,
we will take the continuum limit.

Denote the occupation probability for {ni} particles on the
lattice sites by P({ni}; t ). It evolves in time according to the
master equation

∂P({ni}; t )

∂t
= g0

∑
i

{
(ni + k)!

ni!
P(. . . , ni + k, . . . ; t )

− ni!

(ni − k)!
P(. . . , ni, . . . ; t )

}
, (4)

with additional terms that account for hopping, i.e., diffusion,
between lattice sites. Here, the first term describes a gain as
k particles annihilate at a site i with ni + k particles and the
second term describes a loss as k particles are removed from
a state with ni particles.

To recast this equation in a Fock-space formalism, define
the ket vector |ni〉 that denotes a single-site state with ni parti-
cles. We introduce bosonic creation and annihilation operators
a†

i and ai, which act on a single-site state as

ai|ni〉 = ni|ni − 1〉, (5)

a†
i |ni〉 = |ni + 1〉. (6)

This convention is different from the usual bosonic ladder
operators in quantum mechanics [48], but the number oper-
ator acts in the same way as a†

i ai|ni〉 = ni|ni〉. In particular,
|ni〉 = (a†

i )ni |0〉 with |0〉 the single-site vacuum state. The
Hilbert space of the full lattice is spanned by the direct product
of single-site Hilbert spaces. A state with definite particle
number on each lattice site is then represented by the Fock
state

|{ni}〉 =
∏

i

(a†
i )ni |0〉, (7)
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where |0〉 is the many-site vacuum state. Now, define the state
vector

|�(t )〉 =
∑
{n j}

P({n j}; t )|{n j}〉, (8)

which, from Eq. (4), obeys an imaginary-time Schrödinger
equation

∂t |�(t )〉 = −H |�(t )〉, (9)

with a non-Hermitian Hamiltonian that does not involve com-
binatorial factors [3,47]:

H = g0

∑
i

[1 − (a†
i )k]ak

i . (10)

Here, the first term represents the gain term in Eq. (4) and
the second term the loss term. The state |�(t )〉 then evolves
as |�(t )〉 = e−Ht |�0〉 with an initial state |�0〉. Likewise,
an additional hopping term with bare hopping amplitude D0

between nearest neighbor sites 〈i j〉 is represented by a term
D0

∑
〈i j〉(a

†
i − a†

j )(ai − a j ) [47].
The average particle number at a lattice point r is expressed

in terms of the state vector as [45,47]

〈N (t )〉 =
∑
{n j}

nr P({n j}; t ) = 〈P|are−Ht |�0〉, (11)

where 〈P| = 〈0|∏i eai is a coherent projection state. The
first equality is the definition of the expectation value and
the second equality follows from 〈P|0〉 = 1 and 〈P|a†

i =
〈P|. Note that the form (11) differs from the quantum-
mechanical definition of the expectation value, which involves
the square of the wave vector. Equation (11) can be expressed
as a coherent-state path integral with coherent states |φ〉 =
e
∑

i φia
†
i |0〉, where the φis are the eigenvalues at site i, i.e.,

ai|φ〉 = φi|φ〉. Formally, such a state describes (up to normal-
ization) a Poisson distribution of ni-particle states at site i.
This gives

n(t ) = 〈φ(t )〉 =
∫

D[φ̄, φ] φ(t )e−A[φ̄,φ], (12)

where the path-integral measure is defined as D[φ̄, φ] =∏
i dφ∗

i dφi/(2π i) and the term A in the exponent is known
as the Doi-Peliti action. Taking the continuum limit with a
coupling g = a(k−1)d

0 g0 and diffusion constant D = a2
0D0, it

reads (neglecting boundary terms)

A[φ̄, φ] =
∫

dd x
∫ t

0
dt ′

{
φ̄

(
∂φ

∂t ′ − D∇2φ

)
− g(1 − φ̄k )φk

}
.

(13)

Here, φ is a bosonic field of length dimension −d , whereas
φ̄ is dimensionless. If one identifies the diffusion constant
with an inverse mass, D = h̄2/2m, the Doi-Peliti action (13)
is similar (but not identical) to the effective description of a
dilute Bose quantum gas, for which the term gφ̄kφk in Eq. (13)
describes the scattering of k bosons via a contact interaction.
The theories differ in the non-Hermitian vertex −gφk that
would describe the annihilation of k bosons [49].

For further calculations, it is convenient to rewrite the Doi-
Peliti action with a nondynamical auxiliary k-particle field

= 1
s+Dq2 = −1

g
... k

= −g

...k
= −g ...k − 1 = −kg . . . = −kg

FIG. 2. Feynman rules for the interaction vertices of the Doi-
shifted action (15). Continuous single lines denote the propagator
of the φ field and double lines the auxiliary k-particle field d .

d = φk [38] through a Hubbard-Stratonovich transformation
of Eq. (13):

A[φ̄, φ, d̄, d] =
∫

dd x
∫ t

0
dt ′

[
φ̄

(
∂φ

∂t ′ − D∇2φ

)

− g(d̄ − φ̄k )d − g(1 − d̄ )φk

]
. (14)

This is a common representation in nonrelativistic field
theories [38] that simplifies diagrammatic calculations con-
siderably. In addition, since the field operators are not normal
ordered with respect to the projection state 〈P|, it is customary
to perform a “Doi shift” of the conjugate fields in the Doi-
Peliti action (14) as φ̄ → 1 + φ̄ and d̄ → 1 + d̄ [45]:

A′[φ̄, φ, d̄, d] =
∫

dd x
∫ t

0
dt ′

[
φ̄

(
∂φ

∂t ′ − D∇2φ

)

− gd̄d + g
k∑

i=1

(
k

i

)
φ̄id + gd̄φk

]
. (15)

Note that Eq. (12) can now be written as

n(t ) = δZ
δ j

∣∣∣∣
j, j̄=0

, (16)

with a generating functional

Z[ j, j̄] =
∫

D[φ̄, φ, d̄, d] e−A′[φ̄,φ,d̄,d]+∫
t,r ( j̄φ̄+ jφ) (17)

that contains source fields j and j̄. Feynman rules for this
theory are as follows (adhering to the convention of Ref. [3],
which avoids symmetry factors in the action): imaginary
time runs from the right to the left in a Feynman diagram.
Continuous lines represent single-particle propagators, which
carry a momentum label q and contribute a factor G0(t, q) =
�(t )e−Dq2t , and double lines the nondynamical field d , which
contributes −δ(t )/g. Feynman rules are shown in Fig. 2,
where we state the Laplace transform of propagators and
vertices defined as f (s) = ∫ ∞

0 dt e−st f (t ), which depends on
a frequency variable s, with the inverse Laplace transform
f (t ) = ∫

BW
ds

2π i est f (s), where BW is the Bromwich contour.
Due to the Doi shift, there is only one vertex that describes
the fusion of k bosons to a k-boson line, but several that
describe the splitting of the line into l = 1, . . . , k − 1 parti-
cles, with corresponding Feynman rule −g

(k
l

)
. Note that this

does not imply that less than k reactant particles annihilate.
Diagrams carry a combinatorial factor that accounts for the
multiplicity of vertices and different ways of connecting the
propagator lines, and vertex functions have an overall minus
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sign. Momentum conservation is imposed at every vertex and
undetermined loop momenta and time labels are integrated
over.

III. EFFECTIVE ACTION

The Doi-Peliti generating functional (17) is linked to an
equation of motion for the density through the effective action,
which systematically takes into account fluctuations. In this
section, we work out the corrections to mean-field scaling
using this formalism. We begin in Sec. III A by reproducing
the mean-field result (3) and derive a first correction due to a
k-particle memory effect (discussed already in the Introduc-
tion), which however is not of leading order. As illustrated
in Fig. 1, there are instead two distinct regions with different
leading-order corrections: a perturbative correction, which in-
volves a two-particle memory correction and which is derived
in Sec. III B, and a nonperturbative correction, which involves
a (k − 1)-particle memory correction and which is derived in
Sec. III C.

The effective action is defined in terms of the gen-
erating functional Z[ j, j̄] by a Legendre transformation
with respect to the field expectation values 	 = 〈φ〉
and 	̄ = 〈φ̄〉 [3,50,51]:


[	̄,	] = − lnZ[ j, j̄] +
∫

dd x
∫ t

0
dt ′ ( j̄	̄ + j	). (18)

It may be expanded in powers of 	 and 	̄ with coefficients
set by the vertex functions


̄N̄,N (t̄1, . . . ; t1, . . .)

= δ
[	̄,	]

δ	̄(t1) . . . δ	̄(tN̄ )δ	(t1) . . . δ	(tN )

∣∣∣∣
	,	̄=0

, (19)

where we assume homogeneous field configurations in the fol-
lowing. Diagrammatically, the vertex functions 
̄N̄,N describe
one-particle irreducible (1PI) processes with N ingoing and
N̄ outgoing lines at zero momentum. In terms of the Bose
gas representation, they represent the 1PI scattering of an
initial state with N bosons to a final state with N̄ bosons. The
standard identities δ
/δ	 = j and δ
/δ	̄ = j̄ then define an
equation of motion for the fields 	̄ and 	 by varying 
[	̄,	]
in the absence of sources. The first variation with respect to
	 gives 	̄ = 0, which is required by probability conservation
[45], and the variation with respect to 	̄ gives an equation of
motion for the density n = 	| j, j̄=0:

δ


δ	̄(t )

∣∣∣∣
	̄, j, j̄=0

= 0. (20)

Note that only vertices with a single outgoing line (N̄ = 1)
will contribute to the dynamical equation. In the following,
we use the notation 
l for the vertex 
1,l , where the missing
bar indicates that we separate all delta functions in time.

A. Mean-field solution

The leading-order terms in the equation of motion (20)
that involve the smallest power of the density are set by the
vertices 
1 = −G−1

0 and 
k , which are shown in Fig. 3. The

FIG. 3. First two vertex functions that contribute to the equa-
tion of motion (20). They capture both the scaling crossover for
d � dc and the mean-field result for d > dc.

corresponding equation for the density reads

∂t n =
∫ t

0
dt ′ 
k (t − t ′)nk (t ′), (21)

where we omit a boundary term n̄δ(t ) that sets the initial
density n̄. In defining the vertex 
k , we separate a k-particle
propagator that is indicated by a bold line in Fig. 3. The
equation for 
k is


k (t ) = −kgδ(t ) − gk!
∫ t

0
dt ′ 
k (t − t ′)Sk (t ′), (22)

where k! is a symmetry factor for the different ways of com-
bining the k boson lines in the loop integral [note that our
definition of the vertex functions (19) implies that there is no
symmetry factor associated with the ordering of the k ingoing
lines]. Furthermore, we define the loop integral

Sk (t ) =
∫

p1

. . .

∫
pk

δ(p1 + · · · + pk )
k∏

i=1

G(t, pi ), (23)

which is called the memory function and which is the dif-
fusion propagator of k bosons from one identical point in
space to another identical point. Intuitively, the first term in
Eq. (22) describes the reaction rate given an uncorrelated
reactant distribution. The convolution integral then describes
a memory effect that accounts for anticorrelations due to pro-
cesses where k particles have already reacted in the past [10].
Following the discussion in the Introduction, we expect that
the first (second) term in Eq. (22) dominates above (below) the
critical dimension. Indeed, Eq. (21) is solved using a Laplace
transformation [10,18]

sn(s) = 
k (s)[nk](s), (24)

where we denote by [nk](s) the Laplace transform of nk (t ).
Using the convolution theorem, Eq. (22) forms a geometric
series that evaluates to


k (s) = −k

[
1

g
+ k!Sk (s)

]−1

, (25)
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with the Laplace transform of the memory function

Sk (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


(1− d
dc

)

Dkd/2(4π )d/dc

(
D

s

)1− d
dc

d < dc(k)

− 1
4πDkdc/2 ln

s

D�2
d = dc(k)

1
Dkd/2(4π )d/dc (k)
( d

dc
)

�2( d
dc

−1)

d/dc − 1
d > dc(k)

+ 
(1− d
dc

)

Dkd/2(4π )d/dc

(
s

D

) d
dc

−1

.

(26)

Here, � is a momentum space cutoff and we recall that
dc = 2/(k − 1) is a function of k. The expression is finite for
d < dc, and there is a logarithmic divergence for d = dc and
a power-law divergence for d > dc. This strong dependence
on a short-distance scale r0 � �−1 indicates that the contact
potential is not a well-defined reaction potential for d � dc.
For k = 2 (dc = 2), this is linked to the lack of reentrance
for Brownian motion in higher dimensions [47], such that
two point particles starting at different positions will never
meet and thus never react unless the reaction potential has a
more complicated short-distance form with a finite range r0

[13,14]. However, as pointed out by de Gennes [10], at time
and distance scales that are much larger than r2

0/D and r0, the
annihilation vertex is still of the form (25) with an effective
rate λ. Formally, for d > dc, the UV divergence in the memory
function in Eq. (26) may be absorbed into a redefinition of the
rate g

1

λ
= 1

g
+ k!

Dkd/2(4π )d/dc
(d/dc)

�2( d
dc

−1)

d/dc − 1
. (27)

The effective rate λ defines a characteristic length scale
b via λ/D ∼ b2(d−dc )/dc , which is called the capture radius
and which is (in principle) independent of r0 [10]. For d =
dc, where g is dimensionless, the bare coupling is linked
to a capture radius by dimensional transmutation as b =
�−1 exp[−2Dkdc/2π/gk!], which is known as a scale anomaly
[52–54]. The renormalized vertex is


k (s) =

⎧⎪⎨
⎪⎩

k
4πDkdc/2 ln

sb2

D
d = dc

−k
[

1
λ

+ k!
(1− d
dc

)

Dkd/2(4π )d/dc

( s

D

) d
dc

−1]−1
d �= dc

(28)

and no longer contains a strong cutoff dependence. Equa-
tion (28) is valid below d < 2dc and additional logarithmic
divergences appear at integer multiples of dc. They can be
renormalized by including higher-order reaction terms that
include derivatives, but they will not contribute to the vertex
function in the limit s → 0, which is the one relevant in this
paper.

Note that this discussion of the k-particle memory function
in reaction-diffusion systems is similar to that of scattering
in quantum gases, where Eq. (25) describes the scattering T
matrix of k bosons (typically, k = 2) via a contact interaction
[37]. The renormalization then links the strength of the contact
interaction to the s-wave scattering length λ/D ∼ a2(d−dc )/dc ,
which is the universal parameter that encodes all information
about low-energy scattering via a (possibly unknown) short-
range potential.

To solve Eq. (24), impose the power-law scaling n(t ) =
At−α at late times, which implies n(s) = A
(1 − α)sα−1 and
[nk](s) = Ak
(1 − kα)skα−1 at small s [at d = dc, use n(t ) =
A(ln t/t )α]. Below d < dc, the vertex interpolates between the
mean-field expression lims→∞ 
k (s) = −kλ at large s (small
times) and the diffusion limit lims→0 
k (s) ∼ −ks(dc−d )/dc at
small s (late times). Thus, provided that (λ/D)n̄(dc−d )/d 

1—i.e., if the initial density is negligible—the density scaling
will transition from a reaction-limited mean-field decay with
exponent n(t ) ∼ (λt )−1/(k−1) at early times to the (slower)
diffusion-limited decay with n(t ) ∼ (Dt )−d/2 at late times. In
the special case d = dc, we find 
k (s → 0) → k/(ln sb2/D)
and n(t ) ∼ [(ln t )/t]1/(k−1), i.e., the mean-field result with
a logarithmic scaling correction. The scaling crossover be-
low d < dc from the reaction-limited to the diffusion-limited
regime has been observed in exciton recombination in one-
dimensional carbon nanotubes [8]. However, an analogous
crossover for d > dc does not exist. To leading order at late
times (small s), we have 
k (s) = −kλ, which reproduces the
mean-field result (3), but since the memory function (26) has
negative sign, the vertex diverges as the scale is increased to
s � Db−2. This is known as a Landau pole [55], which marks
the limit of the description in terms of a contact interaction
and is absent if a microscopic potential (such as hard-core
potential) is used.

Nevertheless, Eq. (24) still sets a correction to the mean-
field scaling that is obtained by expanding the vertex 
k (s)
to leading order in λ. Expanding around the mean-field result
n = n0 + δn, the perturbation solves

s δn(s) = −k2λ
[
nk−1

0 δn
]
(s) − k δλ(s)

[
nk

0

]
(s), (29)

with

δλ(s) = −λ2k!
(1 − d/dc)

Dkd/2(4π )d/dc

( s

D

)(d−dc )/dc

, (30)

where the external fields in the subleading term of the vertex
function are evaluated at the mean-field value. In real time, the
solution is δn(t ) = Bt−β with an exponent β = (k − 1)−1 +
(d − dc)/dc.

Note that this scaling also follows from dimensional anal-
ysis as the correction δn is suppressed by O(λ) compared to
the mean-field equation and must be a function of the small
dimensionless parameter λ/[D(Dt )(d−dc )/dc ] � 1. In the next
section, we establish that this k-particle memory term does
not form the leading correction to mean-field scaling, but
that there are higher-order vertex corrections that describe
memory effects of subclusters of reactants.

B. Perturbative scaling corrections

It is straightforward to obtain higher-order vertices start-
ing from any given vertex 
m (such as the one in Fig. 3)
by pinching a number of l < k (where k > 2) ingoing lines
and fusing them to a k-particle line at an earlier time (using
the vertices in the second line of Fig. 2), which generates a
contribution to the vertex 
m+k−l . These higher-order (in the
external fields) vertex functions account for memory effects
that describe anticorrelations in the reactant density at a time
t ′ < t due to a subcluster of l particles having reacted in the
past with k − l other reactants. To determine the order of the
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FIG. 4. Vertices that set the perturbative leading-order (first row)
and next-to-leading order (second and third row) correction to the
mean-field result for k > 2.

vertex contributions to the dynamical equation at small λ for
d > dc, we replace the bold k-particle line by its mean-field
value −λ and use the mean-field scaling O(λ−1/(k−1)) for the
external fields. The contribution of this new vertex to the equa-
tion of motion is then suppressed by O(λ(l−1)/(k−1)) < O(λ)
compared to the contribution of the original vertex. Note that
this power counting assumes that the vertices are finite, which
is not always the case and will be revisited in the next section.

The first perturbative correction to the equation of motion
constructed in this way (starting with the vertex 
k) is set
by the vertex 
2k−2, which includes the two-particle memory
function and is shown in the first line of Fig. 4. It induces
a correction to the mean-field result that is suppressed by
O(λ1/(k−1)), which dominates over the O(λ) renormalization
of the 
k vertex. Next-to-leading order corrections are shown
in the second and third line of Fig. 4. They are set by a
second-order diagram that involves the three-particle memory
function as well as three third-order diagrams that describe
more complicated two-particle correlations. Perturbatively,
there are at least k − 1 processes that are of lower order
than the simple O(λ) mean-field correction discussed in the
previous Sec. III A.

The leading perturbative correction to the mean-field result
is thus of order δn ∼ O(λ0), which implies

δnpert (t ) = Bk

(Dt )d/2
. (31)

The coefficient Bk follows from a solution of

∂tδn = −k2λnk−1
0 δn − nk−2

0

∫ t

0
dt ′ 
2k−2(t − t ′)nk

0(t ′), (32)

with


2k−2(s) = k3(k − 1)2

2
λ2S2(s) ∼ sd/2−1, (33)

where the symmetry factor accounts for two fusion ver-
tices and the k(k − 1) ways of connecting the lines in
the loop integral. In d = 1 (which is the relevant dimen-
sion for the perturbative correction; cf. Fig. 1), we find
Bk = k2
( k

k−1 )/[2
√

2(k + 1)
( 1
2 + 1

k−1 )], which evaluates to
Bk=4 = 0.62 and Bk=5 = 1.60.

Note that the above power counting for higher-order ver-
tices does not apply for k = 2 (where dc = 2). An example of

FIG. 5. Leading-order correction to the mean-field result in the
special case k = 2. This correction is of the same order as the dimer
memory correction shown in Fig. 4.

a leading-order correction is the vertex 
3, which is of order
O(λ3) and shown in Fig. 5 [note that a hypothetical O(λ2)
diagram similar to Fig. 4 with one internal line is not 1PI]. In
d = 3, this vertex evaluates to [39]


3

∣∣
k=2 = λ3

3D
√

Ds
+ O(λ4) (34)

and its contribution to the equation of motion will be sup-
pressed by O(λ) compared to the mean-field term. The vertex

4 induces a correction of the same order. Unlike for k > 2,
they are of the same order as the correction to the mean-field
decay rate obtained by expanding the vertex 
2. Note that a
similar mixing of different contributions in the effective action
approach was noted by Lee [18], where taking into account the
vertex correction alone for k = 2 leads to a decay amplitude
below dc at variance with renormalization group calculations.
In the following, we focus on the case k > 2, where the power
counting is set by higher-order vertices.

C. Nonperturbative corrections

The perturbative results discussed in the previous sec-
tion apply if the memory functions S2, S3, . . . , Sk−1 that
appear in the vertices 
2k−2, 
2k−3, . . . are finite. While the
k-particle memory function Sk is always finite above the criti-
cal dimension, this is only true for other memory functions if
dc < d < 2/(k − 2). In higher dimensions, some (or indeed
all for d � 2) of them may contain logarithmic or power-
law divergences, starting at d = 2/(k − 2) with a logarithmic
divergence in the vertex 
k+1; cf. Fig. 5. Such a cutoff de-
pendence can have at least three different implications for
scaling. (a) It can remain explicitly. (b) If a strong cutoff
dependence can be removed by further renormalization, the
scaling corrections depend on other parameters in addition to
λ. (c) If the divergence is only superficial, summing the vertex
to all orders will give a manifestly finite result.

Our calculations indicate that the latter case applies, i.e.,
the vertices summed to all order are finite and only depend
on λ. Since in this case the only time dependence is in-
troduced by the external fields in the effective action, the
leading nonperturbative correction to mean-field scaling is set
by the vertex 
k+1, which (by dimensional analysis) scales as
O(λ1+d/[d (k−1)−2]). This implies

δnnonpert (t ) =
(

λ

D

)dcd/2(d−dc ) Bk

(λt )2/(k−1)
, (35)

with a numerical coefficient Bk that will be determined in the
following. Provided that d > 4/(k − 1), the nonperturbative
contribution of the vertex 
k+1 to the equation of motion
dominates over the perturbative correction discussed in the
previous section, which is indicated by the dark blue shaded
region in Fig. 1.
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FIG. 6. Bethe-Salpeter equation for the (k + 1)-body vertex that
contributes to the scaling correction above the critical dimension.

In general, it is not possible to sum a vertex with more
than k ingoing lines to all orders. To determine the vertex

k+1, however, we apply methods developed for cold quantum
gases to compute the three-body scattering matrix exactly
[39–41] (for a review, see Ref. [38]). The first three terms
that contribute to the vertex 
k+1 are shown in Fig. 6(a) (note
that, for k = 2, the first term is not 1PI and the vertex function
starts with the second term). These diagrams are summed to
all orders using a vertex that is implicitly defined as shown
in Fig. 6(b). Unlike the k-particle vertex 
k , this is not a
geometric series but represents an integral equation, which is
given by


k+1(S|Sa, p) = (−λ)2k!k2Sk−1(S − Sa, p) +
∫

BW

ds

2π i

×
∫

dd q

(2π )d

k+1(S|s, q)

1

s + Dq2
(−λ)

× k2(k − 1)!Sk−1(S − Sa − s, p + q). (36)

Here, the vertex is a function of a total frequency S and the
frequency of the ingoing particle line Sa, as well as a relative
momentum p between the ingoing particle and the k-particle
line. The inhomogeneous term in the integral equation (36)
corresponds to the first diagram in Fig. 6(a) or 6(b), where
k! is a symmetry factor for the different ways of combining
the internal loop lines and an additional factor of k2 stems
from the two fusion vertices; cf. Fig. 2. The homogenous term
of the integral equation corresponds to the second term in
Fig. 6(b). It involves the vertex function with loop frequency
s and momentum q and a single-particle propagator, as well
as the k-particle propagator, which as before is replaced by its
mean-field value −λ. In addition, the integrand contains the
memory function for k − 1 particles as a subdiagram, where
k2(k − 1)! is now a symmetry factor that accounts for the
different ways of combining the lines in the loop and the
ingoing and outgoing line.

The frequency integration is evaluated using the residue
theorem, which picks up the pole at s = −Dq2. To determine
the running of the vertex at a small momentum or frequency
scale μ, we set the ingoing particle frequency equal to its value
at the diffusion pole, Sa = −Dp2, as well as S = 0, such that

μ = |p| [39]. This gives


k+1(p) = (−λ)2k!k2Sk−1(Dp2, p)

+
∫

dd q

(2π )d

k+1(q)(−λ)k2(k − 1)!

× Sk−1[D(p2 + q2), p + q]. (37)

The loop-angle integral over Sk−1 is performed in closed
analytical form. The resulting one-dimensional integral equa-
tion is a Fredholm equation of the second kind that is solved
using numerical standard algorithms such as the Nystrom
method [56] (for an introduction to the method applied to the
three-body problem in ultracold quantum gases, see [57]). The
integral equation is solved taking into account a momentum
range q ∈ [0,�] while retaining the explicit (divergent) cutoff
dependence in the integration kernel and the inhomogeneous
term.

Figure 7 shows the result for 
k+1(p = μ) for a range
of dimensions d = 1, 2, 3 and parameters k = 3, 4, 5, where
we exclude the case (k, d ) = (3, 1) as this is the marginal
dimension for this process. As is apparent from the figure,
the vertex functions are finite and strongly suppressed at large
μ. We checked that the solution is independent of the cutoff
scale and takes a scaling form that depends only on a dimen-
sionless scaling variable μ(λ/D)dc/2(d−dc ). This confirms the
power-counting established at the beginning of the section.
The perturbation solves

∂tδn = −k2λnk−1
0 δn + 
k+1(μ = 0)nk+1

0 (t ), (38)

which reproduces the result (35) with Bk = 
k+1(μ =
0)(D/λ)d/[d (k−2)−2]/{λk(k − 1)[k(k − 1)]2/(k−1)} . The static
limit 
k+1(μ = 0) is indicated in Fig. 7 by the red dashed
lines.

We conclude this section by discussing the special case
where the integral equation (37) sums a logarithmic diver-
gence of the memory function Sk−1. Such a logarithmic
divergence occurs for d = 2/(k − 2), which can be seen di-
rectly from Eq. (26) (changing k → k − 1 to describe Sk−1).
In integer dimensions, this corresponds to the two cases
(k, d ) = (4, 1) and (k, d ) = (3, 2); cf. Fig. 7.

First, for (k, d ) = (4, 1), we have for small λ


5(μ)
∣∣
k=4,d=1 = −128

√
3λ2

πD

[
ln

(
μλ

D

) + 2.24
]
. (39)

However, as discussed above, for the parameter choice
(k, d ) = (4, 1), the vertex 
k+1=5 is subleading compared to
the perturbative result (which is set instead by the vertex

2k−2=6; cf. Sec. III B).

Second, for (k, d ) = (3, 2), we have


4(μ)
∣∣
k=3,d=2 = −27λ2

2πD

[
ln

(
μ

√
λ
D

)
− 0.73

]
. (40)

This term sets the leading-order correction at (k, d ) = (3, 2).
Solving the equation of motion including this logarithmic
correction gives instead of Eq. (35)

n(t )
∣∣
k=3,d=2 = 1

(6λt )1/2
− 3 ln λ

D2t + 1.73

8πDt
+ O

(
λ1/2

t3/2

)
,

(41)
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FIG. 7. Dimensionless scaling function of the (k + 1)-particle vertex 
k+1. The parameter choices correspond to the solid points in Fig. 1
[we exclude (k, d ) = (3, 1) as this is the marginal dimension of the process]. Blue lines indicate the full numerical result obtained from Eq. (37)
and red dashed lines mark the small-λ limit.

which contains a logarithmic correction in time, too. Note
that, beyond the leading-order correction, there can be ad-
ditional corrections that include the range of the reaction
potential [39,58,59].

IV. SUMMARY AND OUTLOOK

In summary, we have discussed beyond-mean field cor-
rections to the late-time dynamics of absorptive reaction-
diffusion processes with k-particle annihilation. Using a Bose
gas representation of the process, we link scaling corrections
to few-boson scattering amplitudes, which capture memory
effects of past reactions. Importantly, the leading corrections
are not just given by a small renormalization of the k-particle
reaction rate but by memory effects that involve a larger
number of particles. This gives rise to two distinct regimes—a
perturbative one and a nonperturbative one—with different
scaling exponents for the corrections. The main results of this
work are summarized in Fig. 1.

For the specific case of absorptive reaction-diffusion pro-
cesses, further work to compute correlation functions [18]
or applications to fusion processes kA → lA with l < k [16]
and reactions involving multiple reactant species [26,60–62]
appear straightforward. It is worth pointing out that, in evalu-
ating higher-order corrections, we apply techniques that are
well known to describe few-particle scattering in ultracold
quantum gases and nuclear physics, but that are perhaps not
widely used in other fields. While this paper provides an
application to a particular class of reaction-diffusion sys-
tems, it would be interesting to apply these methods more
broadly.
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