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Motivated by the growing importance of strong system-bath coupling in several branches of quantum infor-
mation and related technological applications, we analyze and compare two strategies currently used to obtain
(approximately) steady states in strong-coupling regime. The first strategy is based on perturbative expansions
while the second one uses reaction coordinate mapping. Focusing on the widely used spin-boson model, we
show that the predictions of these two strategies coincide in many situations. This confirms and strengthens the
relevance of both techniques. Beyond that, it is also crucial to know precisely their respective range of validity.
In that perspective, thanks to their different limitations, we use one to benchmark the other. We introduce and
successfully test some very simple validity criteria for both strategies, bringing some answers to the question of
the validity range.
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I. INTRODUCTION

It is notoriously challenging to describe the dynamics and
the steady states of quantum systems coupled to noisy en-
vironment [1]. This is particularly true when the coupling
strength is such that system-environment correlations cannot
be neglected, invalidating the traditional Born and Markov ap-
proximations [2], characterizing the so-called strong-coupling
regime.

Still, strong-coupling effects are playing increasing role in
quantum transport [3–11], quantum sensing [12–14], quan-
tum thermal engines [15–21], magnets properties for memory
hard-drive [22], and possibly in biological systems [23–26].
For such applications, since one is usually interested in sta-
tionary properties and performances, the knowledge of the
steady state of the strongly dissiaptive dynamics is enough.

Several techniques have been established to gain access to
the strong-coupling dynamics where usual Markovian master
equations cannot be used straightforwardly. One of them
is the polaron transformation [15,27–31], which consists in
analyzing the problem in a rotating frame with respect to the
coupling Hamiltonian. In the following, however, we will
focus on two other approaches which have been recently used
to obtain estimates of the steady states in the strong-coupling
regime. The first one uses embedding techniques like reaction
coordinate [5,6,16,19,32,33] and pseudomode [34–37] to
obtain the dynamics of the system of interest and then
considers time going to infinity. The second one relies on
a result sustained by several studies [38–43] establishing,
under some generic conditions, that a system S interacting
strongly with a thermal bath B tends together with B to a
global thermal state. Greater details on this technique can be
found in the recent review [44].
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Both approaches have some strengths and weaknesses. The
limitations of the first approach relying on embedding tech-
niques typically come from the bath spectral density. On the
other hand, the results are expected to have a broad range of
validity in terms of coupling strength. The second approach
requires to trace out the bath in the global thermal state, which
actually amounts to similar difficulties as computing the exact
dynamics in the first place. Thus, one is left with perturbative
expansions, with limited range of validity. However, within
the range of validity of these expansions, the obtained ex-
pressions are expected to provide very good description of the
steady states.

Even though one expects these two approaches to coincide,
at least for some regions of parameter, this has not been
tested. This is the first aim of this paper. Second, we will
use the strength of each approach to benchmark and define
more precisely the range of validity of the other approach.
This allows us to introduce and successfully test some simple
validity criteria for both approaches, providing some answers
to the crucial question of validity range for each approach.

II. PERTURBATIVE EXPANSION APPROACH

We consider a system S, of self-Hamiltonian HS , interact-
ing with a thermal bosonic bath B of self-Hamiltonian HB at
inverse temperature β := 1/kBT (T being the usual temper-
ature). The interaction is of the form V = AB, where A is
an observable of S, and B is the standard bosonic operator
B = ∑

k gk (b†
k + bk ), where gk is the coupling coefficient be-

tween S and the kth mode of the bath (setting h̄ = 1), with
creation and annihilation operators b†

k and bk , respectively.
The starting point of the perturbative expansion approach is
the convergence of the system together with the bath toward
the global thermal state,

ρ th
SB = Z−1

SB e−βHSB , (1)
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where HSB := HS + HB + V is the total Hamiltonian gener-
ating the dynamics of SB and ZSB := TrSB[e−βHSB ] is the
partition function. This fundamental result has been widely
used for classical and quantum systems, and is supported
by several important studies focusing on quantum systems
[38–44] under the important condition [HS,V ] �= 0 (which
can be seen as pure dephasing and can be simply solved).
From (1), the reduced steady state of S is obtained by tracing
out B,

ρss
S := TrB

[
ρ th

SB

]
. (2)

As usually, tracing out the bath is a very challenging task
which can only be done approximately. A common approach
is perturbative expansion, whose main steps are presented
below (for more details see Appendix A and [43–47]). By
“taking out” the local contributions in (2) and then expanding
up to second order, we obtain

ρss
S = Z−1

SB TrB
[
e−β(HS+HB )e−T

∫ β

0 duÃ(u)B̃(u)
]

�
2d order

Z−1
SB e−βHS

[
1 −

∫ β

0
duÃ(u)TrB[e−βHB B̃(u)] +

∫ β

0
du1

∫ u1

0
du2Ã(u1)Ã(u2)TrB[e−βHB B̃(u1)B̃(u2)]

]

= ZSZB

ZSB
ρ th

S

[
1 +

∫ β

0
du1

∫ u1

0
du2Ã(u1)Ã(u2)cB(u1 − u2)

]
, (3)

where we used in the first line the usual “splitting”
formula [48] and defined the operators X̃ (u) :=
eu(HS+HB )Xe−u(HS+HB ), the bath correlation function cB(u1 −
u2) := TrB[ρ th

B B̃(u1)B̃(u2)] = TrB[ρ th
B B̃(u1 − u2)B̃] taken in

the thermal state ρ th
B := Z−1

B e−βHB with ZB := TrB[e−βHB ],
and the local thermal state of S, ρ th

S = Z−1
S e−βHS , with the

local partition function ZS := TrS[e−βHS ]. We also use the
property of stationary baths, namely TrB[ρ th

B B̃(u)] = 0. We
obtain for the bath correlation function,

cB(u) =
∫ ∞

0
dωJ (ω)[e−ωu(nω + 1) + eωunω], (4)

where nth
ω = (eωβ − 1)−1 is the thermal occupation at the fre-

quency ω and the bath spectral density is defined as

J (ω) :=
∑

k

g2
kδ(ω − ωk ). (5)

Introducing the eigendecomposition of the coupling observ-
able A = ∑

ν A(ν) such that [A(ν), HS] = νA(ν), A†(ν) =
A(−ν), and Ã(u) = ∑

ν e−νuA(ν), we have, up to the second
order,

ρss,PE
S =

2d order

ZSZB

ZSB
ρ th

S

[
1 +

∑
ν,ν ′

A(ν)A†(ν ′)g(ν, ν ′)

]
, (6)

where

g(ν, ν ′) :=
∫ β

0
du1

∫ u1

0
du2e−νu1+ν ′u2 cB(u1 − u2), (7)

and the superscript “PE” denotes “perturbative expansion.”
Addtionally,

ZSB = TrSB[e−β(HS+HB+V )]

=
2d order

ZSZB

(
1 +

∑
ν

TrS
[
ρ th

S A(ν)A†(ν)
]
g(ν, ν)

)
. (8)

Expression (6) is Hermitian and is equivalent to the expression
obtained in Ref. [47] (up to the initial renormalization term).
An explicit, analytical expression of the function g(ν, ν ′) in

terms of usual functions is provided in Appendix A for under-
damped (22) and overdamped (23) bath spectral densities.

A. Conditions of validity

The above expression (6) is a second-order expansion.
It provides a good approximation of the exact steady state
ρss

S [Eq. (2)] in the limit of small corrections, when the
second-order contribution is much larger than higher-order
contributions. Based on that, one can build validity criteria by
requiring that the corrections brought by (6) with respect to
the thermal state ρ th

S = Z−1
S e−βHS remain small. Expressed in

different mathematical ways, we present in the following sev-
eral potential validity criteria to be tested later with numerical
simulations (Sec. IV).

(i) A first criterion can be obtained by considering that
small corrections should imply that the global partition func-
tion ZSB is close the product of the local partition functions
ZSZB,

cr1 :=
∣∣∣∣ ZSB

ZBZS
− 1

∣∣∣∣ � 1, (9)

which turns out to be equivalent to the condition suggested in
Ref. [47].

(ii) Alternatively, one could consider that the expansion
is valid as long as the corrections to the populations (in the
eigenbasis of HS) are small, resulting in the following crite-
rion:

cr2 :=
∣∣pss

n − pth
n

∣∣
pss

n

� 1, (10)

for all energy level n of S, where pss
n stands for the populations

of the steady state (6) and pth
n corresponds to the popula-

tions of the thermal state ρ th
S , reached in the weak-coupling

limit. Note that a coherence-based criterion would typically
be equivalent to the above population-based one.

(iii) Additionally, the quantity

Q :=
∫ ∞

0
dω

J (ω)

ω
, (11)
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known as the “reorganization energy” [49–51], gives a fig-
ure of merit of the coupling energy. Therefore, one can expects
the expansion to be valid for Q � ωS , where ωS stands for
the typical energy difference in HS . Thus, we define a third
candidate for the validity criterion as

cr3 := Q

ωS
� 1. (12)

Anticipating Secs. III and IV, we can obtain explicit expres-
sions of Q in term of the bath parameters for the bath spectral
densities used there. For the underdamped spectral density
JUD(ω) := ω 2

π

γUD	2λ2

(	2−ω2 )2+(γUD	ω)2 (see more details in Sec. III),

we obtained QUD = λ2/	, while for the overdamped spectral

density JOD(ω) := αω
ω2

c
ω2

c +ω2 , we have QOD = π
2 αωc.

(iv) Finally, considering a two-level system, focus of the
comparison (Sec. IV), we can come up with an additional cri-
teria obtained from a special choice of the system parameters
for which the partition function can be easily computed. More
precisely, if we take rx = ry = 0 (see Sec. II B), we can diago-
nalize the total Hamiltonian and compute exactly the partition
function, giving a simple but nontrivial expression, ZSB =
eβQZSZB. Then, in the same spirit as in the first criterion, we
can consider that small corrections imply |ZSB/ZSZB − 1| �
1, which leads to the simple criterion

cr4 := βQ � 1. (13)

Note that at this stage we only use the setting rx = ry = 0
as a mathematical trick to compute ZSB, while in the reminder
of the paper we consider rx �= 0, implying [HS,V ] �= 0, nec-
essary condition for the applicability of (1). Although it might
not seem totally justified to approximate the order of magni-
tude of ZSB for arbitrary rx and ry by its value for rx = ry = 0,
we will see in the following (Sec. IV), that cr4 is always very
close to cr1, justifying afterwards this approximation. Addi-
tionally, the factor eβQ is reminiscent of the renormalization
factor eβQA2

due to the bath interaction [47,52], so one can
conjecture that this criterion could be extended to arbitrary
systems in the form cr4 := βQ|A2| � 1. Finally, this last cri-
terion seems promising because it involves the bath inverse
temperature β. Indeed, the expansion (6) becomes trivially
valid when the energy scale set by the bath temperature,
kBT = β−1, is much larger than the system-bath coupling [47]
(infinite temperature limit), suggesting that β should play a
role in the validity criterion.

We will test these criteria in Sec. IV and see that two
of them, cr1 and cr4, seem to indicate particularly well the
validity range of expression (6).

B. Spin-boson model

In order to obtain explicit comparison with embedding
techniques (reaction coordinate), we choose a specific system,
namely the spin-boson model, for being a widely used system,
experimentally as well as theoretically. The Hamiltonian of
the two-level system is of the form

HS = ωS

2
(rxσx + ryσy + rzσz ) = ωs

2
�r · �σ , (14)

where �r is a real unit vector of component rx, ry, and rz (such
that r2

x + r2
y + r2

z = 1) and �σ is the Pauli vector of component

the Pauli matrices σx, σy, and σz. Importantly, we will use in
the following the notation r := rx + iry. We consider a typical
coupling with the bath, namely A = σz. The eigendecomposi-
tion takes the form A(u) = A(ωs)e−uωs + A(−ωs)euωs + A(0),
with

A(ωs) = −r|g〉〈e|,
A(−ωs) = −r∗|e〉〈g|, (15)

A(0) = rz(|e〉〈e| − |g〉〈g|) := rz
z,

where

|e〉 := (1 + rz )|+〉 + r|−〉√
2(1 + rz )

,

(16)

|g〉 := −r∗|+〉 + (1 + rz )|−〉√
2(1 + rz )

,

are the excited and ground eigenstate of HS , respectively. In
the above expression, we used the notation |+〉, |−〉 to denote
respectively the excited and ground state of σz. Injecting these
expressions in (6) with the use of the explicit expression of
the function g(ν, ν ′) provided in Appendix A, we obtain for
the reduced steady state of S in the basis {|e〉, |g〉},

ρss,PE
S =

(
pss

e css∗
ge

css
ge pss

g

)
, (17)

with

css,PE
ge = −2rrz(β/ωs)[G(ωs, β ) − (1 + e−ωsβ )Q/β]

(1 + e−ωsβ )
(
1 + r2

z βQ
) + |r|2β2G(ωs, β )

, (18)

and the population,

pss,PE
e = e−ωsβ

(
1 + r2

z βQ
) − |r|2βG′(ωs, β )

(1 + e−ωsβ )
(
1 + r2

z βQ
) + |r|2β2G(ωs, β )

, (19)

where Q is the reorganization energy defined above,

G(ωs, β ) :=
∫ 1

0
due−ωsβucB(uβ ), (20)

and G′(ωs, β ) := ∂
∂ωs

G(ωs, β ). The explicit expression of
G(ωs, β ) and G′(ωs, β ) in term of usual functions is provided
in Appendix A for both underdamped and overdamped spec-
tral densities JUD(ω) (22) and JOD(ω) (23).

III. REACTION COORDINATE

In the perspective of comparing the perturbative ex-
pansion approach with embedding approaches, we briefly
review some important features of the reaction coordinate
mapping. Introduced in Ref. [53] and further developed in
Refs. [5,16,32,33,54,55], the archetypal application of reac-
tion coordinate is for the spin-boson model, although it can
applied to other systems [5,6,19]. Thus, considering the two-
level system of the previous section, the spin-boson model
of Hamiltonian HSB = ωs

2 �r.�σ + σzB + HB can be mapped
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onto [32,33]

HSB = HSRCE

:= ωs

2
�r.�σ + λσz(a† + a) + 	a†a

+ (a† + a)BE + HE + (a† + a)2
∑

k

g2
k

ωk
, (21)

where a and a† are the annihilation and creation operators
of the collective bosonic mode, called the reaction coordi-
nate (RC), defined as λA(a† + a) = ∑

k gk (b†
k + bk ), and the

system E is a residual bath (the original bath “minus” the
collective mode) of self-Hamiltonian HE and coupling to the
reaction coordinate through the operator BE . The detailed
expressions of the residual bath’s modes and parameters are
not useful in our problem so we refer interested readers to
Refs. [32,33] for further details.

Importantly, the mapping is exact when the original bath B
has an underdamped spectral density,

JUD(ω) := ω
2

π

γUD	2λ2

(	2 − ω2)2 + (γUD	ω)2
, (22)

where λ (frequency), 	 (frequency), and γUD (dimensionless)
characterize respectively the strength of the coupling, the peak
of the spectral density, and its width. According to the reaction
coordinate mapping, the parameters of the collective mode are
given directly by the parameters of the underdamped spectral
density [32,33]: λ corresponds to the strength of the coupling
between S and the collective mode and 	 is its frequency.

It is also possible to find an approximate mapping when
the original bath spectral density is overdamped, namely of
the form,

JOD(ω) = αω
ω2

c

ω2
c + ω2

. (23)

where ωc is sometimes referred to as the cutoff frequency
and α is a dimensionless parameter determining the coupling
strength. The RC coupling and frequency can be expressed in
terms of the parameters of JOD(ω) as [32,33]

	 = γωc and λ =
√

π

2
αωc	. (24)

Written directly in term of the reaction coordinate parameters,
the overdamped spectral density takes the form JOD(ω) =
ω 2

π

λ2γ

	2+γ 2ω2 . While the expression (23) is a function with
two parameters α and ωc, this later expression contains three
parameters. The extra parameter γ is introduced during the
reaction coordinate mapping and is required to be much larger
than 1. To understand better the emergence of this free pa-
rameter γ , one should mention that for overdamped spectral
density, the mapping is actually obtained from an asymptotic
limit of the underdamped spectral density case, as follows
[32,33]. For γUD � 1, we have JUD(ω) � JOD(ω) when set-
ting α = 2γUDλ2

π	2 and ωc = 	
γUD

. Then, with these settings, we
can use the reaction coordinate mapping used for the under-
damped case, and the parameter γ appearing in (24) is actually
γUD which must be much larger than 1 in order to have the ap-
proximate identification JUD(ω) � JOD(ω). As a conclusion,
the reaction coordinate mapping is not exact for overdamped

spectral density and only holds under the condition 	 � ωc

(or γUD � 1).
Now that we have introduced the reaction coordinate map-

ping for the underdamped and overdamped spectral densities,
we can focus on the steady state. For weak coupling between
the RC and the residual bath E , which is precisely the situation
where the reaction coordinate mapping is useful, one expects
from weak dissipation theory that the extended system SRC
(S and the reaction coordinate) tends to the thermal state at
inverse temperature β, the inverse temperature of the original
and residual bath,

ρ th
SRC = Z−1

SRCe−βHSRC , (25)

where

HSRC := HS + λA(a† + a) + 	a†a. (26)

This conjecture was indeed benchmarked by numerical tech-
niques (hierarchical equation of motions) in Refs. [32,33]
and Redfield master equation [46] and used in Refs. [16,17].
However, when the residual coupling between RC and E is
not weak, one expects ρ th

SRC to depart from the exact steady
state of SRC. Thus, ρ th

SRC becomes an approximation of the
exact steady state. How good is this approximation and when
exactly does it start breaking down are the questions which
motivated this paper. In the following, we will refer to ρ th

SRC
as the “reaction coordinate mapping of the steady state” or
“mapping of the steady state” in short. From ρ th

SRC, the reduced
steady state of S is given by

ρss,RC
S := TrRC

[
ρ th

SRC

]
. (27)

Again, we stress that since in general ρ th
SRC is an approxima-

tion of the exact steady state of SRC, ρss,RC
S is also in general

an approximation of ρss
S (2), the exact steady state of S.

The partial trace over the RC mode can be realized numer-
ically or analytically via approximate diagonalization of HSRC

(see, for instance, Refs. [56,57]). Note that the plots presented
below were indeed realized using numerical diagonalization
using QuTiP (with adequate truncation of the RC mode). The
remainder of the paper is mainly dedicated to the comparison
of the predictions of the two approaches, namely comparing
(27) with (17), (19), and (18). Before that, we introduce a third
approximation of the steady state which will help us in the
comparison and is detailed in Sec. III A.

A. Perturbative expansion applied to reaction coordinate

Beyond our prime objective to confirm that the perturba-
tive expansion approach and the reaction coordinate-based
approach coincide, at least for some range of parameters, we
also aim at studying the validity range of each approach. In
that perspective, when some discrepancies appear between
ρss,RC

S and ρss,PE
S , how can we tell that it is because the reaction

coordinate mapping of the steady state, ρ th
SRC, fails to faithfully

approximate the exact steady state of RC, that it is because the
perturbative expansion stops being valid, or both? How can we
separate the two effects?

We can obtain some insights on these questions by con-
sidering a third state, obtained by applying the general
perturbative expansion of Sec. II to ρ th

SRC (25), where the
reaction coordinate RC plays the role of the bath B. We denote

024126-4



STEADY STATE IN STRONG SYSTEM-BATH COUPLING … PHYSICAL REVIEW E 105, 024126 (2022)

the resulting state by ρss,PRC
S , where the superscript “PRC”

stands for perturbative expansion of the RC mapping. Then,
from the point of view of the perturbative expansion, ρss,RC

S is
the “exact” (containing all orders) version of ρss,PRC

S . Conse-
quently, the discrepancy between ρss,RC

S and ρss,PRC
S provides

information on the validity of the perturbative expansion.
Conversely, ρss,PE

S and ρss,PRC
S are both expansions to the same

order, of the original problem and of the reaction coordinate
mapping, respectively. Then, from the point of view of the
reaction coordinate mapping, ρss,PE

S is the exact version of
ρss,PRC

S . Thus, by observing the discrepancy between ρss,PE
S

and ρss,PRC
S we can obtain information on the performance

of the reaction coordinate mapping. We will use in the next
section these discrepancies ρss,RC

S versus ρss,PRC
S and ρss,PE

S

versus ρss,PRC
S to gain precious information on the range of

validity of each approach.
Applying the general perturbative expansion of Sec. II to

ρ th
SRC, we obtain the same form as (6), namely

ρss,PRC
S =

2d order

ZSZB

ZSB
ρ th

S

[
1 +

∑
ν,ν ′

A(ν)A†(ν ′)g(ν, ν ′)

]
. (28)

The functions g(ν, ν ′), cB(u), G(ν, β ), and G′(ν, β ), have the
same general expression as the one detailed in Appendix A
but using the following spectral density:

J (ω) = λ2δ(ω − 	). (29)

Thus, for the steady-state populations and coherences,
it leads to the same expressions as (19) and (18),
respectively, substituting G(ν, β ) and G′(ν, β ) with
GPRC(ν, β ) := CPRC(−ν) + e−νβCPRC(ν), and GPRC′

(ν, β ) :=
−CPRC′

(−ν) − βe−νβCPRC(ν) + e−νβCPRC′
(ν), with

CPRC(ν) := λ2

β

(
nth

	 + 1

	 − ν
− nth

	

	 + ν

)
(30)

and

CPRC′
(ν) := λ2

β

(
nth

	 + 1

(	 − ν)2
+ nth

	

(	 + ν)2

)
. (31)

IV. COMPARISON

In this section, we compare the steady state ρss,RC
S given by

the reaction coordinate (27), the steady state ρss,PRC
S (28) given

by the perturbative expansion of the reaction coordinate, and
the steady states ρss,PE,UD

S and ρss,PE,OD
S , given respectively by

the perturbative expansion of the original problem (17) for un-
derdamped bath spectral density JUD(ω) (22) and overdamped
bath spectral density JOD(ω) (23). We denote the coherence
and excited population in the eigenbasis {|e〉, |g〉} of HS as

pRC
e := 〈e|ρss,RC

S |e〉, (32)

cRC
ge := 〈g|ρss,RC

S |e〉, (33)

pPRC
e := 〈e|ρss,PRC

S |e〉, (34)

cPRC
ge := 〈g|ρss,PRC

S |e〉, (35)

pPE,UD
e := 〈e|ρss,PE,UD

S |e〉, (36)
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FIG. 1. Steady-state coherences cPE,OD
ge (39) (red thick solid line),

cPE,UD
ge (37) (orange thick solid line), cPRC

ge (35) (blue dashed line), and
cRC

ge (33) (sparse dotted line), in function of the inverse temperature β

in unit of ω−1
S , for (a) λ/ωS = 0.5 and (b) λ/ωS = 1.5. The other

parameters are given by 	/ωS = 10, γUD = 0.1, rz = √
0.75, and

r = rx + iry = 0.5.

cPE,UD
ge := 〈g|ρss,PE,UD

S |e〉, (37)

pPE,OD
e := 〈e|ρss,PE,OD

S |e〉, (38)

cPE,OD
ge := 〈g|ρss,PE,OD

S |e〉. (39)

Figure 1 presents the plots of the steady-state coherences
as given by cPE,OD

ge (red thick solid line), cPE,UD
ge (orange thick

solid line), cPRC
ge (blue dashed line), and cRC

ge (sparsely dot-
ted line) as a function of the inverse temperature β (in unit
of ω−1

S ). Figure 1(a) corresponds to a coupling λ/ωS = 0.5
and Fig. 1(b) to λ/ωS = 1.5. The other parameters are cho-
sen as follows: 	/ωS = 10, γUD = 0.1 (dimensionless), rz =√

0.75, and r = rx + iry = 0.5, meaning that ry = 0 (note
than one would obtain a similar behavior up to a π/2
phase for the coherence with the alternative choice rx = 0,
and ry = 0.5).

One can see a very good agreement between cRC
ge (sparse

dots) and cPRC
ge (blue dashed line) at high temperature (low

inverse temperature β), but this agreement slowly deterio-
rates beyond β ∼ 4ω−1

S in Fig. 1(a) and beyond β ∼ ω−1
S in

Fig. 1(b). By contrast, the agreement between cPE,OD
ge (red

solid line) and cPRC
ge (blue dashed line) is only good at very

high temperature and it deteriorates quickly as the temperature
decreases. Finally, cPE,UD

ge (orange solid line) and cPRC
ge (blue

dashed line) coincide perfectly at high temperature, and only
a very small discrepancy appears at small temperatures.
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(a) 5 5.5 6

0.004

0.006

0.008

pe

(b) 5 5.5 6

0.004

0.006

0.008

0.01

0.012

0.014

pe

(c) 0.5 0.505 0.51

0.376

0.377

0.378

pe

(d) 0.5 0.505 0.51

0.376

0.377

0.378

0.379

0.38

0.381

pe

FIG. 2. Steady-state populations in function of the inverse tem-
perature β ∈ [5; 6] (in the unit of ω−1

S ) for (a) and (b) and β ∈
[0.5; 0.51] for (c) and (d). The coupling strength is λ/ωS = 0.5 for
(a) and (c) and λ/ωS = 1.5 for (b) and (d). Following the same
color convention as in Fig. 1, the red thick solid line corresponds
to pPE,OD

e (38), the orange thick solid line corresponds to pPE,OD
e (36),

the blue dashed line corresponds to pPRC
e (34), and the sparse dotted

line corresponds to pRC
e (32). The dotted gray line represents the

thermal excited population pth
e := 〈e|ρ th

S |e〉 at inverse temperature β.
The other parameters are as in Fig 1.

Figure 2 is the counterpart of Fig. 1 for the excited popu-
lation. Note that instead of plotting directly the populations
for ωSβ from 0 to 10, we zoom in and consider two sec-
tions; otherwise, all five curves would be indistinguishable:
Figures 2(a) and 2(b) represent the steady-state excited pop-
ulation as a function of the inverse temperature β in the
interval [5; 6] (in unit of ω−1

S ), while Figs. 2(c) and 2(d) cor-
respond to β ∈ [0.5; 0.51]. Additionally, Figs. 2(a) and 2(c)
correspond to a coupling λ/ωS = 0.5, while Figs. 2(b) and

2(d) to λ/ωS = 1.5. The color convention is the same as in
Fig. 1, namely pPE,OD

e (38) (red solid line), pPE,UD
e (36) (orange

solid line), pPRC
e (34) (the blue dashed line), and pRC

e (sparsely
dotted line) (32). The gray dotted line represents the thermal
excited population pth

e := 〈e|ρ th
S |e〉 at inverse temperature β.

The other parameters are chosen as in Fig. 1.
The conclusions are the same as in Fig. 1, namely the

agreement between pRC
e and pPRC

e is very good at high tem-
perature and deteriorates more at low temperature when
the system-bath coupling is larger. However, the agreement
between pPE,OD

e and pPRC
e is relatively good only at high tem-

perature, and large discrepancies appear at low temperatures,
while pPE,UD

e and pPRC
e coincide perfectly at both ranges of

temperatures, even in strong coupling.
Finally, Fig. 3 presents the plots of the steady-state coher-

ences and populations in function of the coupling strength
λ (in unit of ωS) for [Figs. 3(a) and 3(b)[ ωSβ = 0.5 and
[Figs. 3(c) and 3(d)] ωSβ = 5. The color conventions are
the same as in Fig. 1 and Fig. 2, as well as the remaining
parameters.

As a first observation, one can see that the plots for the co-
herences and populations have almost identical shapes, which
will be confirmed in Figs. 4 and 7. Second, the agreement
between css,RC

ge (sparse dotted line) and css,PRC
ge (blue dashed

line) (as well as pss,RC
e and pss,PRC

e ) is excellent below λ ∼ 2ωS

at high temperature ωSβ = 0.5, and below λ ∼ 0.75ωS at
low temperature ωSβ = 5, while it starts deteriorating beyond
these values of coupling strength. For cPE,OD

ge (red thick line)
and cPRC

ge (blue dashed line) (as well as pPE,OD
e and pPRC

e ), the
agreement is good until λ ∼ 1 for ωSβ = 0.5, but for ωSβ = 5
the agreement drops quickly beyond λ ∼ 0.2ωS . By contrast,
the agreement between cPE,UD

ge (orange thick line) and cPRC
ge

(blue dashed line) (as well as pPE,UD
e and pPRC

e ) is almost
perfect for both values of β and for all λ.

From Figs. 1–3, we can conclude that the two approaches
do coincide on an extended region of parameters for un-
derdamped spectral densities, namely from high to low
temperatures for limited coupling λ = 0.5ωS , and even for
large coupling λ = 1.5ωS at high temperature ωSβ = 0.5.
However, for overdamped spectral densities, the two ap-
proaches coincide only at high temperatures.

A. Discrepancies due to the perturbative expansion

In order to obtain a more precise and quantitative criterion
of “good” and “bad” agreement, we introduce the relative
discrepancies

dexp
coh :=

(
cRC

ge − cPRC
ge

)
cRC

ge

,

(40)

dexp
pop :=

(
pRC

e − pPRC
e

)
(
pRC

e − pth
e

) ,

where one should note that the relative discrepancy related
to the population is defined with respect to the deviation
from the thermal excited population pth

e = 〈e|ρ th
S |e〉 (at inverse

temperature β). As already discussed in Sec. III A, these rel-
ative discrepancies provide information on the validity of the
perturbative expansion.
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(a) 0 1 2 3

0.378

0.382

0.386

pe

(b) 0 1 2 3

0.005

0.01

0.015

cge

(c) 0 1 2 3

0.006

0.01

0.014

0.018

pe

(d) 0 1 2 3

0.01

0.02

0.03

0.04

0.05

0.06

cge

FIG. 3. Steady-state populations [(a) and (c)] and coherences
[(b) and (d)] as a function of the coupling strength λ (in unit of
ωS) at inverse temperature [(a) and (b)] ωSβ = 0.5 and [(c) and (d)]
ωSβ = 5. The color conventions are the same as in Figs. 1 and 2.
The remainder of the parameters are chosen as in previous figures,
namely 	/ωS = 10, γUD = 0.1, rz = √

0.75, r = rx + iry = 0.5.

Figure 4(a) provides the relative discrepancies associated
with Fig. 3, namely the yellow and green dots correspond to
dexp

coh for ωSβ = 0.5 and ωSβ = 5, respectively, while the black
and purple large dots (in the background of the yellow and
green dots) correspond to dexp

pop for ωSβ = 0.5 and ωSβ = 5,
respectively. The remainder of the parameters are chosen as in
previous figures, namely 	/ωS = 10, γUD = 0.1, rz = √

0.75,
and r = rx + iry = 0.5. First, one can see that the relative
discrepancies is exactly the same for coherences and for pop-
ulations at both temperatures, confirming observations from
Fig. 3. More importantly, adopting the standard 10% error
criterion, these plots testify that the perturbative expansion is

(a) 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
dexpcoh/pop

(b) 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7
dexpcoh/pop

FIG. 4. (a) The yellow and green dots correspond to dexp
coh in func-

tion of λ (in unit of ωS) for ωSβ = 0.5 and ωSβ = 5, respectively,
and the black and purple large dots (in the background of the yellow
and green dots) correspond to dexp

pop in function of λ for ωSβ = 0.5
and ωSβ = 5, respectively. (b) The yellow and green dots correspond
to dexp

coh in function of β (in unit of ω−1
S ) for λ = 0.5ωS and λ =

1.5ωS , respectively, and the black and purple large dots correspond
to dexp

pop in function of β for λ = 0.5ωS and λ = 1.5ωS , respectively.
For both panels, the remainder of the parameters are chosen as in
previous figures, namely 	/ωS = 10, γUD = 0.1, rz = √

0.75, and
rx + iry = 0.5.

valid up to a coupling strength λ ∼ 2ωS at ωSβ = 0.5, and up
to λ ∼ 0.5ωS at ωSβ = 5, which also coincides with what we
can see from Fig. 3.

Figure 4(b) provides the relative discrepancies of Figs. 1
and 2. Adopting a similar color convention as Fig. 4(a), the
yellow and green dots correspond to dexp

coh for λ = 0.5ωS and
λ = 1.5ωS , respectively, while the black and purple large dots
correspond to dexp

pop for λ = 0.5ωS and λ = 1.5ωS , respectively.
Thus, as for Fig. 4(a), the relative discrepancies are also ex-
actly the same for coherences and populations.

We conclude that these plots confirm the observations
from Figs. 1 and 2, namely that the perturbative expansion is
roughly valid up to ωSβ ∼ 5 for λ = 0.5ωS and up to ωSβ ∼ 1
for λ = 1.5ωS .

B. Benchmarking the validity criteria for
perturbative expansions

Using the observations from the previous figures, we can
benchmark the capacity of the validity criteria introduced
in Sec. II A to pinpoint the actual range of validity of the
perturbative expansion. In Fig. 5, we plot the four criteria cr1

(9) (black line), cr2 (10) (blue line), cr3 (12) (green line), and
cr4 (13) (red dashed line) as a function of λ (in unit of ωS) for
ωSβ = 0.5 in Fig. 5(a) and ωSβ = 5 in Fig. 5(b). Considering
that cri � 1 means cri � 0.1, one can see that only criteria
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(a) 0 1 2 3

0.1

0.2

0.3

cri

(b) 0 1 2 3

0.1

0.2

0.3
cri

FIG. 5. Plots of the validity criteria introduced in Sec. II A in
function of the coupling strength λ (in unit of ωS) for (a) ωSβ = 0.5
and (b) ωSβ = 5. Criteria cr1 and cr4 coincide almost exactly and
correspond to the black solid line and red dashed line, respectively;
cr2 corresponds to the blue solid line, and cr3 corresponds to the
green solid line. The remainder of the parameters are chosen as in
previous figures, namely 	/ωS = 10, γUD = 0.1, rz = √

0.75, and
r = rx + iry = 0.5.

cr1 = | ZSB
ZBZS

− 1| and cr4 = βQ, which, interestingly, coincide
exactly, indicate a range of validity in agreement with our
conclusions from Figs. 3 and 4. More precisely, at inverse
temperature ωSβ = 0.5 (ωSβ = 5), cr1 and cr4 indicate a va-
lidity of the perturbative expansion up to a coupling strength
λ ∼ 1.5ωS (λ ∼ 0.5ωS), in agreement with the value λ ∼ 2ωS

(λ ∼ 0.5ωS to 0.75ωS) from Figs. 3 and 4.
Similarly, in Fig. 6, we plot the same validity criteria

but now as functions of the inverse temperature, using the
same color convention as in the previous Fig. 5. One can
see that the conclusions are the same: only cr1 and cr4,
which coincide almost perfectly, indicate a range of validity
in agreement with our previous conclusions from Figs. 1, 2,
and 4.

Thus, we obtain a very simple criterion for the validity
of the perturbative expansion incorporating both the coupling
strength and the temperature aspects,

βQ � 0.1. (41)

This takes the explicit form β λ2

	
� 0.1 for an un-

derdamped spectral density of parametrization (22) and
π
2 βαωc � 0.1 for an overdamped spectral density of
parametrization (23).

Importantly, we also benchmarked this result for 	 ∼ ωS

and 	 � ωS , both in function of β and λ (see additional plots
provided in Appendix B). In all situations, we confirm that

(a) 0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3
cr i

(b) 0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3
cr i

FIG. 6. Plots of the validity criteria introduced in Sec. II A in
function of β (in unit of ω−1

S ) for (a) λ = 0.5ωS and (b) λ = 5ωS .
The color conventions are the same as in Fig. 5, namely cr1 (black
solid line), cr4 (red dashed line), cr2 (blue solid line), and cr3

(green solid line). The remainder of the parameters are chosen as
in previous figures, namely 	/ωS = 10, γUD = 0.1, rz = √

0.75, and
r = rx + iry = 0.5.

βQ � 0.1 is a surprisingly good validity criterion. In partic-
ular, even in regimes where the criterion Q � ωS is totally
misleading, βQ � 0.1 indicates accurately the region where
the expansion stops being valid.

One should note that there is something unexpected in
this result. It is comparing the energy scale of the system
with the energy scale of the coupling that one sometimes
defines weak, strong, or ultrastrong coupling: The system’s
transition energy scale (here ωS) is the reference. However,
our results point at a criterion which is independent of ωS ,
namely βQ � 0.1, while the criterion based on ωS is wrong
most of the time. This could suggest that either the break-
down of the validity of the perturbative expansion is not
strictly related to strong coupling or the definition of strong
coupling might not always be related to the system’s energy
scale.

As a side comment, cr1 and cr4 are exactly equal
for rx = ry = 0, by definition. However, their exact agree-
ment, at least for the considered range of parameters (see
also plots in Appendix B), is quite surprising and justi-
fies afterwards the assumption made in Sec. II A that the
order of magnitude of ZSB does not depend on the spin
orientation.

C. Benchmarking the reaction coordinate mapping

In this section we focus on the other aspect of the prob-
lem: How well does the reaction coordinate mapping of the
steady state (25) approximate the steady state of the original

024126-8



STEADY STATE IN STRONG SYSTEM-BATH COUPLING … PHYSICAL REVIEW E 105, 024126 (2022)

problem, ρss
S (2)? We already saw in Figs. 1, 2, and 3 that it

depends strongly on the bath spectral density as well as on
the bath temperature. As inSec. IV B, in order to obtain more
quantitative information on the performance of the mapping
of the steady state, we introduce the following relative dis-
crepancies:

dmap,UD
coh :=

(
cPE,UD

ge − cPRC
ge

)
cPE,UD

ge

,

dmap,UD
pop :=

(
pPE,UD

e − pPRC
e

)
(
pPE,UD

e − pth
e

) ,

(42)

dmap,OD
coh :=

(
cPE,OD

ge − cPRC
ge

)
cPE,OD

ge

,

dmap,OD
pop :=

(
pPE,OD

e − pPRC
e

)
(
pPE,OD

e − pth
e

) ,

and plot them as a function of λ and β in Fig. 7. In Fig. 7(a),
the yellow and green thin solid lines represent dmap,UD

coh as a
function of λ for ωSβ = 0.5 and ωSβ = 5, respectively, while
the black and purple large solid lines represent dmap,UD

pop as a
function of λ for ωSβ = 0.5 and ωSβ = 5, respectively. In
Fig. 7(c), the same quantities are plotted for the overdamped
spectral densities. Interestingly, we can see that the relative
discrepancies are independent of the coupling strength. In
some sense it means that both perturbative expansions ρss,PRC

S

and ρss,PE
S drift away in parallel from their respective exact

states ρss,RC
S and ρss

S . This is a good indication that the strategy
of comparing ρss,PRC

S and ρss,PE
S does result in getting rid of

discrepancies stemming from the perturbative expansion and
thus retains only discrepancies stemming from the reaction
coordinate mapping, as if we were measuring directly the
discrepancies between ρss,RC

S and ρss
S . From Fig. 7(a) we also

have the confirmation that the mapping of the steady state
performs well for narrow underdamped spectral densities and
fails for overdamped spectral densities [Fig. 7(c)].

In Fig. 7(b), the yellow line corresponds to dmap,UD
coh in

function of β (in unit of ω−1
S ) and the black thick line cor-

responds to dmap,UD
pop also in function of β (both for arbitrary

λ since dmap,UD
pop/coh is independent of λ). The same quantities

are plotted in Fig. 7(d) for overdamped spectral density.
The main message of these plots is that the reaction co-
ordinate mapping seems to always perform well at high
temperatures.

In the following, we briefly explain the reasons behind
the failure of the reaction coordinate mapping of the steady
state for overdamped spectral densities at arbitrary temper-
atures, and we also explain its universal success at high
temperature.

1. Reasons for discrepancies

Since the reaction coordinate mapping is exact for under-
damped bath spectral densities [16,32,33], one might not be
surprised that we observed a good performance for such spec-
tral densities. On the other hand, for underdamped spectral
densities of increasing width (determined by γUD), the reac-
tion coordinate mapping is still exact, but one can verify that

(a) 0 1 2 3

0.05

0.1

dmap,UDcoh/pop

(b) 0 1 2 3 4 5 6 7 8 9 10

0.05

0.1

dmap, UDcoh/pop

(c) 0 1 2 3

0.2

0.4

0.6

0.8

dmap, ODcoh/pop

(d) 0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

dmap, ODcoh/pop

FIG. 7. Plots of the relative discrepancies dUD/OD
pop/coh as a function

of the coupling strength λ and β. (a) [(c)] The yellow and green thin
solid line represent dmap,UD

coh (dmap,OD
coh ) as a function of λ (in unit of

ωS) for ωSβ = 0.5 and ωSβ = 5, respectively, while the black and
purple large solid line represent dmap,UD

pop (dmap,OD
pop ) in function of λ

for ωSβ = 0.5 and ωSβ = 5, respectively. (b) [(d)] The yellow line
corresponds to dmap,UD

coh (dmap,OD
coh ) in function of β (in unit of ω−1

S ) and
the black thick line corresponds to dmap,UD

pop (dmap,OD
pop ) also in function

of β, both for arbitrary λ. The other parameters are chosen as in
previous figures, namely 	/ωS = 10, γUD/ωS = 0.1, rz = √

0.75,
and rx + iry = 0.5.

the underdamped spectral density becomes indistinguishable
from an overdamped spectral density, and the steady-state co-
herences and populations also become indistinguishable from
the ones of an overdamped spectral density. Thus, how can
we have an exact mapping giving a wrong stead state? As
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already commented in Sec. III, the reason for this apparent
contradiction is that the reaction coordinate mapping of un-
derdamped spectral densities is exact for the dynamics, and
the steady state ρ th

SRC (25) is only an approximation of the
actual steady state of the dynamics [16,17,32,33,46]. Thus,
as already stressed above, the observed failure of the reaction
coordinate mapping of the steady state is not a failure of the
reaction coordinate mapping per se but is a break down of the
approximation consisting in equating the exact steady state of
SRC by ρ th

SRC (25). This breakdown can be understood from
three related points of view.

(i) Although the mapping is exact for underdamped spec-
tral densities of arbitrary width, the strength of the coupling
between the residual bath and the reaction coordinate grows
as γUD. Therefore, for increasing spectral widths, one should
expect ρ th

SRC to depart from the exact steady state. In par-
ticular, one expects a steady state of the form ρss

SRC =
TrE [ρ th

SRCE] �= ρ th
SRC. More precisely, one can show [16] that

TrRC[ρ th
SRC] is equal to TrB[ρ th

SB] at lowest order in the
residual coupling between RC and E . Thus, for increasing
γUD, and therefore increasing residual coupling, discrep-
ancies between ρss

SRC and ρ th
SRC as well as ρss

S and ρss,RC
S

increase.
(ii) Alternatively, this can be seen directly from the ex-

pressions we obtained for the general perturbative expansion
(6). The steady state (6) depends on the function g(ν, ν ′),
which is entirely determined by the bath correlation function
cB(u) (4), which is itself ultimately determined by the bath
spectral density J (ω). Thus, when approximating the steady
state ρss

S = TrB[ρ th
SB] (2) by TrRC[ρ th

SRC] (27), we are ultimately
approximating the original bath spectral density by a single
mode, represented by the reaction coordinate. In other words,
we are approximating the original bath spectral density J (ω)
by λ2δ(ω − 	). This approximation is reasonable if J (ω) is a
narrow spectral density centered in 	 but is not justified for
a broad spectral density. Thus, one expects that TrRC[ρ th

SRC]
becomes increasingly distant from ρss

S = TrB[ρ th
SB] (2) as the

spectral width increases.
(iii) This final viewpoint is strongly related to the first

one. It can be shown that the steady state ρ th
SRC (25) is ac-

tually the steady state of the master equation derived in the
supplementary material of Ref. [32] when applying the sec-
ular approximation. However, the secular approximation is
valid when max|ωSRC − ω′

SRC|−1 � τD, where τD denotes the
dissipation timescale induced by the action of the bath and
ωSRC denotes the Bohr frequencies of the extended system
SRC. A rough analysis show that τD ∼ (πγUDωS )−1, so that
one expects the secular approximation to become unjustified
for growing γUD, and thus a steady state increasingly distinct
from ρ th

SRC. This question has been analyzed in great detail
in Ref. [6], and one of the conclusions actually limits the
strength of this last argument: The authors show that the
reaction coordinate mapping of the steady state might actually
be valid way beyond the supposed validity of the secular
approximation.

As a rule of thumb, from observations coming from the
above plots and additional plots (not shown), one can con-
sider that the reaction coordinate steady state performs well,
meaning dmap,UD

pop/coh � 0.1, as long as the spectral width γUD is
smaller than ∼3/	β.

10 20 30 40 50

−0.1

−0.05

0.05

0.1

dmap, UD/OD
coh/pop

FIG. 8. Plots of dmap,UD/OD
coh (yellow thin line) and dmap,UD/OD

pop

(black thick line) as a function of the inverse temperature β (in unit
of ωS) for 	/ωS = 1/β, γUD = 20 (any value larger than 20 gives the
same plot), rz = √

0.75, and r = rx + iry = 0.5. The plots of dmap,OD
coh

and dmap,UD
coh (dmap,OD

pop and dmap,UD
pop ) are indistinguishable. Addition-

ally, we chose λ = 1.5ωS , but the plots are actually independent of λ

as shown in Fig. 7.

2. Universal faithful mapping of the steady state
at high temperature

Contrasting with the breakdown of the reaction coordinate
mapping of the steady state for broad bath spectral densities
at arbitrary temperatures, the mapping seems to be always
faithful at high temperatures [see Fig. 7(d)]. This can be
seen as follows. Assuming that the bath spectral density J (ω)
vanishes for ω � 2/β, the correlation function can be approx-
imated by

cB(u) := TrBρ th
B B(u)B

=
∫ ∞

0
dωJ (ω)[e−ωu(nω + 1) + eωunω]

∼
∫ ∞

0
dωJ (ω)

2

ωβ
= 2Q

β
, (43)

where we use the approximation e−ωu(nω + 1) + eωunω ∼ 2
ωβ

valid for ωβ � 2 (noting that the variable u belongs to [0; β]).
Then, applying this result to the bath spectral densities we
have been considering, JOD(ω) and JUD(ω), both vanishing
for ω � 	, one expects to have cB(u) ∼ 2Q

β
for both spec-

tral densities as soon as 	 � 2/β. Additionally, considering
the effective spectral density representing the reaction coor-
dinate JRC (ω) = δ(ω − 	), we have cB(u) ∼ 2Q

β
when 	 �

2/β. Thus, for 	 � 2/β, G(ωs, β ), and therefore G′(ωs, β ),
become independent of the form of the bath spectral den-
sity, retaining only a dependence on Q. Then, for 	 � 2/β,
we should have the same steady state for any bath spectral
densities of same reorganization energy Q. This is what we
observed in Fig. 7(d), and confirmed in Fig. 8, as soon as

	β � 1. (44)

This holds for arbitrary spectral width γUD and might also
hold for arbitrary coupling strength (again, according to our
conclusions from Fig. 7).

V. CONCLUSION

We compare the perturbative expansion of the mean force
Gibbs state with the approximate steady state (25) from the
reaction coordinate mapping. We reach our first objective by
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showing the agreement of these two approaches, for some
ranges of parameters and focusing on the spin-boson model,
see Figs. 1–3.

In a second time, we focus on the crucial task of explor-
ing and understanding their respective range of validity. To
achieve that, we use one approach to benchmark the other.
We establish and test successfully a validity criterion (41) for
the perturbative expansion depending only on the inverse bath
temperature β and on the reorganization energy Q (11).

Regarding the reaction coordinate mapping and its ap-
proximate steady state (27), we quantify its performance and
derived a validity criterion (44) involving only the inverse
bath temperature β and the reaction coordinate frequency 	,
holding for arbitrary spectral width γUD and arbitrary coupling
strength. This criterion relies on analytical arguments which
were confirmed numerically.

Thanks to these validity criteria, one has in hand practical
tools to assess the validity range of these two techniques. Al-
though these validity criteria were numerically tested for the
spin-boson model, they can be extended to arbitrary systems,
and the curious fact that they do not involve the system’s en-
ergy scale might suggest that they do work for other systems.
It would be interesting to test that.

Additionally, it would also be instructive and useful to
extend this comparative analysis to other techniques like pseu-
domode [34–37], as well as to the ultrastrong coupling regime
[47,52,58].
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APPENDIX A: EXPRESSION OF THE FUNCTION g(ν, ν′ )

The function g(ν, ν ′) introduced in the main text is defined
by g(ν, ν ′) := ∫ β

0 du1
∫ u1

0 du2e−νu1+ν ′u2 cB(u1 − u2). Rewrit-
ing its expression and introducing the variable v2 = u1 − u2,
we obtain

g(ν, ν ′) =
∫ β

0
du1

∫ u1

0
du2e−νu1+ν ′u2 cB(u1 − u2)

=
∫ β

0
du1

∫ u1

0
dv2e−νu1 eν ′(u1−v2 )cB(v2)

=
∫ β

0
du1

∫ u1

0
dv2e(ν ′−ν)u1 e−ν ′v2 cB(v2)

=
∫ β

0
dv2

∫ β

v2

du1e(ν ′−ν)u1 e−ν ′v2 cB(v2)

=
∫ β

0
dv

e(ν ′−ν)β − e(ν ′−ν)v

ν ′ − ν
e−ν ′vcB(v)

= β

∫ 1

0
dv

e(ν ′−ν)β − e(ν ′−ν)vβ

ν ′ − ν
e−ν ′vβcB(vβ )

= β

ν ′ − ν

∫ 1

0
dv[e(ν ′−ν)βe−ν ′vβ − e−νvβ ]cB(vβ )

= β

ν ′ − ν

[
e(ν ′−ν)β

∫ 1

0
due−ν ′βucB(uβ )

−
∫ 1

0
due−νβucB(uβ )

]
. (A1)

We are then led to compute

G(ν, β ) :=
∫ 1

0
due−νβucB(uβ ). (A2)

In order to obtain analytical expressions for the underdamped
and overdamped bath spectral density, it will be convenient to
decompose G(ν, β ) in the following way:

G(ν, β ) = C(−ν) + e−βνC(ν), (A3)

where

C(ν) :=
∫ ∞

0
dωJ (ω)

[
nω + 1

β(ω − ν)
− nω

β(ω + ν)

]
, (A4)

=
∫ ∞

0
dωJ (ω)

νcoth(ωβ/2) + ω

β(ω2 − ν2)
. (A5)

Then, from (A1), we obtain

g(ν, ν ′) = β

ν ′ − ν
[e(ν ′−ν)βG(ν ′, β ) − G(ν, β )], (A6)

for ν �= ν ′, and for ν ′ = ν,

g(ν) := g(ν, ν) = β[βG(ν, β ) + G′(ν, β )], (A7)

where G′(ν, β ) := ∂
∂ν

G(ν, β ) = −C′(−ν) − βe−νβC(ν) +
e−νβC′(ν) and C′(ν) is the partial derivative with respect to ν,

C′(ν) := ∂C(ν)

∂ν

=
∫ ∞

0
dωJ (ω)

[
nω + 1

β(ω − ν)2
+ nω

β(ω + ν)2

]
. (A8)

Alternatively, in term of the function C(ν), we have g(ν) =
β[βC(−ν) − C′(−ν) + e−βνC′(ν)].

1. Exact expression of C(ωS) and C′(ωS)

a. Overdamped (Lorentz-Drude) spectral density

For JOD(ω) = α
ωω2

c
ω2+ω2

c
, we have

COD(ν) =
∫ ∞

0
dωJ (ω)

νcoth(ωβ/2) + ω

β(ω2 − ν2)

= αω2
c

β

∫ ∞

0
dω

ω

ω2 + ω2
c

ν coth ωβ/2 + ω

ω2 − ν2

= αω2
c

β

( ∫ ∞

0
dω

ω

ω2 + ω2
c

ω

ω2 − ν2

+ 2ν

β

+∞∑
n=−∞

∫ ∞

0
dω

ω

ω2
c + ω2

1

ω2 − ν2

ω

ω2 + ν2
n

)

(A9)
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with νn = 2πn/β, called the Matsubara frequencies [1]. For
the first term we have

∫ ∞

0
dω

ω

ω2 + ω2
c

ω

ω2 − ν2

= 1

ω2
c + ν2

∫ ∞

0
dω

(
ω2

c

ω2 + ω2
c

+ ν2

ω2 − ν2

)

= ω2
c

ω2
c + ν2

π

2ωc
. (A10)

Generalizing that to situations where ωc is a complex number
(which will be useful for underdamped spectral densities, see
the following), we have

∫ ∞

0
dω

ω

ω2 + ω2
c

ω

ω2 − ν2

=
⎧⎨
⎩

ω2
c

ω2
c +ν2

π
2ωc

if Reωc > 0,

− ω2
c

ω2
c +ν2

π
2ωc

if Reωc < 0.
(A11)

For the second term, we have
∞∑

n=−∞

∫ ∞

0
dω

ω

ω2
c + ω2

1

ω2 − ν2

ω

ω2 + ν2
n

=
∞∑

n=−∞

1

ν2 + ν2
n

∫ ∞

0
dω

[
ν2

n

ω2
c − ν2

n

(
1

ω2 + ν2
n

− 1

ω2 + ω2
c

)
+ ν2

ν2 + ω2
c

(
1

ω2 − ν2
− 1

ω2 + ω2
c

)]

=
∞∑

n=−∞

1

ν2 + ν2
n

[
ν2

n

ω2
c − ν2

n

(
π

2|νn| − π

2(±ωc)

)
+ ν2

ν2 + ω2
c

(
0 − π

2(±ωc)

)]

= π

2

∞∑
n=−∞

1

ν2 + ν2
n

1

±ωc

( |νn|
±ωc + |νn| − ν2

ν2 + ω2
c

)
= π

±2ωc

( ∞∑
n=−∞

1

ν2 + ν2
n

|νn|
±ωc + |νn| − ν2

ν2 + ω2
c

∞∑
n=−∞

1

ν2 + ν2
n

)

= π

±2ωc

(
2

∞∑
n=1

1

ν2 + ν2
n

νn

±ωc + νn
− 1

ν2 + ω2
c

− 2ν2

ν2 + ω2
c

∞∑
n=1

1

ν2 + ν2
n

)

= − π

±2ωc

1

ν2 + ω2
c

+ π

±2ωc

(
2

β2

4π2

∞∑
n=1

1

n2 + ν2β2

4π2

n

n ± ωcβ

2π

− 2ν2

ν2 + ω2
c

β2

4π2

∞∑
n=1

1

n2 + ν2β2

4π2

)

= − π

±2ωc

1

ν2 + ω2
c

+ π

±ωc

β2

4π2

(
2π2

β2

1

ν2 + ω2
c

F (νβ,±ωcβ ) − ν2

ν2 + ω2
c

νβ

2 coth νβ

2 − 1
ν2β2

2π2

)

= − π

±2ωc

1

ν2 + ω2
c

+ π

±2ωc

1

ν2 + ω2
c

(
F (νβ,±ωcβ ) − νβ

2
coth

νβ

2
+ 1

)

= π

±2ωc

1

ν2 + ω2
c

[
F (νβ,±ωcβ ) − νβ

2
coth

νβ

2

]
, (A12)

where ±ωc stands for the possibility of ωc being complex, where in such case one has to choose the sign corresponding to
Re(±ωc) > 0, and

F (νβ,±ωcβ ) = 1

2π

[
−(±ωc + iν)β�

(
1 + i

νβ

2π

)
− (±ωc − iν)β�

(
1 − i

νβ

2π

)
± 2ωcβ�

(
1 + ±ωcβ

2π

)]
, (A13)

with �(x) being the Digamma function. All together we obtain (changing the variable in the argument from ν to ω),

COD(ω) = π

±2ωc

α

β

ω2
c

ω2
c + ω2

[
ω2

c − ω2coth(ωβ/2) + 2ω

β
F (ωβ,±ωcβ )

]
. (A14)

For C(0) = ∫ ∞
0 dω J (ω)

βω
= Q

β
, we simply have

COD(0) = QOD

β
= π

2

α(±ωc)

β
. (A15)

Then, C′
OD(ω) is “just” the derivative of COD(ω), which

gives

C′
OD(ω) = π

2

α

β

ω2
c

ω2
c + ω2

( −2ωωc

ω2
c + ω2

[1 + coth(ωβ/2)]
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− ω2β

2ωc
coth′(ωβ/2) + 2

ωcβ

ω2
c − ω2

ω2
c + ω2

F (ωβ,ωcβ )

+ 2ω

ωcβ
F ′(ωβ,ωcβ )

)
, (A16)

where coth′(x) := ex

sinhx (1 − cothx) is simply the derivative of
coth(x), and

F ′(ωβ,ωcβ ) := ∂

∂ω
F (ωβ,ωcβ )

= β

2π

[
− i�

(
1 + i

ωβ

2π

)
+ i�

(
1 − i

ωβ

2π

)

+ (ω − iωc)
β

2π
� ′

(
1 + i

ωβ

2π

)

+ (ω + iωc)
β

2π
� ′

(
1 − i

ωβ

2π

)]
(A17)

with � ′ is the derivative of the Digamma function.
Again, if ωc is complex, then we simply have

C′
OD(ω) = π

±2ωc

α

β

ω2
c

ω2
c+ω2

( −2ωω2
c

ω2
c + ω2

[1 + coth(ωβ/2)]

− ω2β

2
coth′(ωβ/2)+ 2

β

ω2
c − ω2

ω2
c + ω2

F (ωβ,±ωcβ )

+ 2ω

β
F ′(ωβ,±ωcβ )

)
. (A18)

b. Underdamped spectral density

We now consider an underdamped spectral density of the
form JUD(ω) (22),

JUD(ω) := ω
2

π

γUD	2λ2

(	2 − ω2)2 + (γUD	ω)2
. (A19)

Such spectral densities can lead to difficulties related to
analytical integration. This can be circumvented by ex-
pressing JUD as the difference of two overdamped spectral
densities,

JUD(ω) = J−
OD(ω) − J+

OD(ω), (A20)

where

J±
OD(ω) := 2

π

γUD	2λ2

ω2+ − ω2−

ω

ω2 + ω2±
, (A21)

with ω2
± := 	2

( γ 2
UD
2 − 1 ± γUD

√
γ 2

UD
4 − 1

)
, always positive for

γUD � 2, and complex for γUD < 2. Using this mapping, we
straightforwardly obtain

CUD(ω) = C−
OD(ω) − C+

OD(ω),
(A22)

C′
UD(ω) = C′−

OD(ω) − C′+
OD(ω),

where C±
OD(ω) and C′±

OD(ω) are given by the above expres-
sions (A14) and (A16) substituting ω2

c by ω2
±, and α by
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FIG. 9. On the left-hand side, plots of dexp
pop (large purple dots)

and dexp
coh (small green dots); on the right-hand side plots of the

criteria cri, all in function of λ (unit of ωS). The color convention
for the criteria is the same as in the main text, namely, cr1 (black
solid line), cr2 (blue solid line), cr3 (green solid line), and cr4 (red
dashed line). The other parameters are as follows:(a) 	/ωS = 1,
ωSβ = 0.5; (b) 	/ωS = 0.1, ωSβ = 0.5; (c) 	/ωS = 1, ωSβ = 20;
(d) 	/ωS = 0.1, ωSβ = 20. The remainder of the parameters are
chosen as in figures of the main text, namely γUD = 0.1, rz = √

0.75,
and r = rx + iry = 0.5.

α± := 2
π

γUD	2λ2/ω2
±

ω2+−ω2−
= λ2

π	2 f±(γUD) with

f±(γUD) = 1( γ 2
UD
2 − 1 ± γUD

√
γ 2

UD
4 − 1

)√ γ 2
UD
4 − 1

. (A23)

However, one has to be careful [see (A11)] for γUD < 2 since
ω2

± becomes complex. One can verifies that for all γUD > 0,

Re
√

ω2± > 0, so that the above expressions (A22) still hold
without change of signs, namely

CUD(ω) = π

2ω−

α−
β

ω2
−

ω2− + ω2

[
ω2

− − ω2coth(ωβ/2)

+ 2ω

β
F (ωβ,ω−β )

]
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FIG. 10. On the left-hand side, plots of dexp
pop (large purple dots)

and dexp
coh (small green dots); on the right-hand side plots of the

criteria cri, all in function of β (unit of ω−1
S ). The color convention

for the criteria is the same as in the main text, namely, cr1 (black
solid line), cr2 (blue solid line), cr3 (green solid line), and cr4 (red
dashed line). The other parameters are as follows:(a) 	/ωS = 10,
λ/ωS = 0.1; (b) 	/ωS = 1, λ/ωS = 0.1; (c) 	/ωS = 0.1, λ/ωS =
0.1; (d) 	/ωS = 10, λ/ωS = 1.5; (e) 	/ωS = 1, λ/ωS = 1.5. The
remainder of the parameters are chosen as in figures of the main text,
namely γUD = 0.1, rz = √

0.75, and r = rx + iry = 0.5.

− π

2ω+

α+
β

ω2
+

ω2+ + ω2

[
ω2

+ − ω2coth(ωβ/2)

+ 2ω

β
F (ωβ,ω+β )

]
, (A24)

and similarly for C′
UD(ω).

As a side note, we also show that the reorganisation energy
is given by QUD = λ2

	
. From the above mapping into over-

damped spectral densities, we have

QUD = QOD,− − QOD,+

= π

2
α−

√
ω2− − π

2
α+

√
ω2+

= γUD	2λ2

ω2+ − ω2−

(
1

ω−
− 1

ω+

)
, (A25)

since

1

ω2+ − ω2−

(
1

ω−
− 1

ω+

)

= 1

ω2+ − ω2−

ω+ − ω−
ω+ω−

= 1

ω+ + ω−

1

ω+ω−

= 1

ω+ + ω−

1

	2

= 1

	3

[⎛
⎝γ 2

UD

2
− 1 + γUD

√
γ 2

UD

4
− 1

⎞
⎠

1/2

+
⎛
⎝γ 2

UD

2
− 1 − γUD

√
γ 2

UD

4
− 1

⎞
⎠

1/2]−1

= 1

	3

1

γUD
. (A26)

Note that one can easily see the last line by taking the square
of what is in the square bracket. Then, we finally obtain

QUD = λ2

	
, (A27)

Finally, note some useful identities with ω2
±,

ω+ω− = 	2

ω+ + ω− = 	γUD. (A28)

APPENDIX B: SOME ADDITIONAL PLOTS
OF dext

coh/pop AND CRITERIA cri

In this section we provide some additional plots in Figs. 9
and 10, showing unambiguously that the criterion cr4 = βQ
(as well as cr1) accurately predicts the validity range of the
perturbative expansion.
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