
PHYSICAL REVIEW E 105, 024123 (2022)

Nonuniform convergence in moment expansions of integral work relations

Hila Katznelson * and Saar Rahav †

Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 3200008, Israel

(Received 2 September 2021; accepted 19 January 2022; published 17 February 2022)

Exponential averages that appear in integral fluctuation theorems can be recast as a sum over moments of
thermodynamic observables. We use two examples to show that such moment series can exhibit nonuniform
convergence in certain singular limits. The first example is a simple model of a process with measurement and
feedback. In this example, the limit of interest is that of error-free measurements. The second system we study
is an ideal gas particle inside an (infinitely) fast expanding piston. Both examples show qualitative similarities;
the low-order moments are close to their limiting value, while high-order moments strongly deviate from their
limit. As the limit is approached the transition between the two groups of moments is pushed toward higher and
higher moments. Our findings highlight the importance of the ordering of limits in certain nonequilibrium-related
calculations.
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I. INTRODUCTION

The theory of stochastic thermodynamics [1] offers a
unifying description of out-of-equilibrium systems such as
molecular motors and driven colloidal particles. One of the
main elements of the theory is the ability to consistently assign
a thermodynamic observable, X [γ ], to a single realization of
a process, γ . Often X is either the work done in the pro-
cess or the entropy production. X fluctuates due to random
interactions with an environment, and therefore the theory
focuses on the distribution of X in a given process, P(X ).
Such distributions were found to satisfy several fundamental
relations.

One of the major achievements of stochastic thermo-
dynamics is a family of results known as fluctuation
theorems [2–9]. Fluctuation theorems express ratios of proba-
bilities of (possibly rare) conjugate events, e.g., P(X )/P(−X ),
in terms of thermodynamic quantities. In fact, the discov-
ery of this family of results, which holds far from thermal
equilibrium, motivated the development of stochastic ther-
modynamics. The different fluctuation theorems and work
relations come with associated integral counterparts, which
take the form of exponential averages

〈e−X 〉 ≡
∫

dXP(X )e−X = e−B. (1)

X is a fluctuating quantity obtained from a realization of
an out-of-equilibrium process, and B has a physical mean-
ing depending on the setup of interest. Several examples of
such integral relations are known; one of them, the Jarzynski
equality, describes a system that is driven away from thermal
equilibrium [8]. In that case X is proportional to the work
done during the process W , while B is the difference between
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two equilibrium free energies ΔF . (Here and in the following
we use units where β = 1

kBT = 1 for convenience.) When the
process involves measurements and feedback, X becomes a
sum of the work and a measure of the amount of information
gained from the outcome of the measurements I [10,11]. Fi-
nally, in the steady-state fluctuation theorems X is the entropy
production of a realization while B = 0 [7].

In this work, we wish to highlight an interesting mathemat-
ical property of exponential averages. Specifically, we show
that the associated series of moments can exhibit nonuniform
convergence when some physically motivated limits are con-
sidered. One can evaluate the exponential average in Eq. (1)
by recasting it as a series of moments

〈e−X 〉 =
∞∑

n=0

(−1)n

n!
Mn, (2)

where Mn ≡ 〈X n〉. We assume that the process of interest de-
pends on some physically relevant parameter y. For instance,
y can refer to the probability to make a measurement error,
the strength of coupling between two subsystems, or the rate
of which a parameter is varied.

Consider a family of processes where y can approach some
limiting value y0, and let us denote the corresponding limiting
value of the moments by Mn(y0) = limy→y0 Mn(y). For some
specific values of y0 the limiting series of moments violates
the integral fluctuation theorem,

∞∑
n=0

(−1)n

n!
Mn(y0) �= e−B.

This violation can happen if one is not allowed to interchange
the order of the y-limit and summation over moments,

lim
y→y0

∞∑
n=0

(−1)n

n!
Mn(y) �=

∞∑
n=0

(−1)n

n!
Mn(y0). (3)
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Such noncommutativity of operations points to a nonuniform
convergence of the moments. The moments of any given order
have a well-defined limit limy→y0 Mn(y) = Mn(y0). Yet when
examining all moments for a given value of y one finds a range
of moment orders n > ñ(y) for which the difference |Mn(y) −
Mn(y0)| is very large, although y � y0.

In this paper we use two examples to demonstrate that such
nonuniform convergence appears in physically interesting
processes (and limits). The first is a process with measurement
and feedback, which was used in the past to illustrate the
validity of work relations for such processes [12,13]. Here
y is the probability to make a measurement error, and the
nonuniform convergence occurs in the limit of error-free mea-
surements. The second example is a model of a single particle
of an ideal gas in an expanding piston, which was studied in
detail by Lua and Grosberg [14]. In this model, the parameter
of interest is the piston’s velocity. Nonuniform convergence is
observed in the limit of an infinitely fast moving piston. For
both examples, we characterize the asymptotic behavior of the
moments and how they affect the series on the right-hand side
of Eq. (2) as the parameter approaches its limiting value.

We note that the noncommutativity of limits in some expo-
nential averages was previously pointed out in several works.
Pressé and Sibley [15], who studied a free energy perturbation
theory (sudden changes of a potential), considered the limit
of infinitely many particles. They found that this thermody-
namic limit may not commute with the limit of infinitely large
changes in the potential. In another work, Quan and Jarzynski
studied the validity of the Jarzynski relation in an expanding
quantum piston [16]. They identified a so-called dynamic con-
tribution to the transition probability that is completely missed
by the sudden approximation, resulting in an apparent viola-
tion of the Jarzynski relation. They then showed how a more
careful calculation, for finite piston velocity, allows one to re-
cover the correct value of the exponential average. Gupta and
Sabhapandit studied the partial and apparent entropy produc-
tion in a specific system of two Brownian particles connected
to several thermal environments, as well as to each other [17].
They found that the steady-state fluctuation theorem behaves
in a nontrivial way in the limit of vanishing coupling between
the particles. The results described below are built upon theirs
by introducing additional examples of noncommutative limits.
Importantly, we point out that such noncommuting limits are
associated with nonuniform behavior of the series of moments
that is obtained by expanding the exponential average.

An important application of the Jarzynski equality is as
a tool for calculating equilibrium free-energies from repeti-
tions of an out-of-equilibrium process. However, it is now
understood that such calculations can suffer from poor con-
vergence. Such slow convergence originates from the bias of
the exponential factor in the average, e−X , which may assign
incredibly large weights to rare realizations. A large body of
work was devoted to the investigation of the convergence of
calculations based on Eq. (1) and the development of methods
to improve them [18–27]. A physically intuitive interpretation
of the underlying reasons for slow convergence was given
by Jarzynski [28]; the rare dominant realizations that are
needed to be sampled are the typical realizations of a reversed
process. Our results are tangentially related to this impor-
tant application of the integral fluctuation theorem, since the

vicinity of the singular limit is where convergence is most
difficult.

The paper is organized as follows. In Sec. II we study a
simple example of a process with measurement and feedback.
We show that nonuniform convergence occurs as the proba-
bility for measurement errors approaches zero. In Sec. III we
study a process involving a single-particle gas in an expand-
ing piston, and analyze the asymptotic behavior of moments
when the piston’s velocity approaches infinity. We conclude
in Sec. IV.

II. AN INFORMATION ENGINE IN THE LIMIT OF
ERROR-FREE MEASUREMENTS

The relation between information and thermodynamics
has been fascinating researchers since Maxwell’s celebrated
thought experiment [29]. Further important contributions to
the field were made by Szilard [30], Landauer [31], Ben-
nett [32], and others. In an important work, Sagawa and
Ueda have showed that such fundamental questions can be
studied from the viewpoint of stochastic thermodynamics.
Specifically, they derived an integral fluctuation theorem for
processes with measurements and feedback [10]. It takes the
form

〈e−w−I〉 = e−ΔF , (4)

with

I = ln
P(x|m)

P(x)
= ln

P(m|x)

P(m)
. (5)

x denotes the state of the system at the time of measurement,
while m is the outcome of the measurement. I is a fluctu-
ating measure of information. It expresses one’s ability to
update the knowledge on the state of the system based on
the measurement outcome. After the measurement, feedback
is applied by driving the system according to the outcome.
Equation (4) assumes a process with a single measurement,
but one can readily generalize the result for processes with
many consecutive measurements [11]. Sagawa and Ueda’s
work has opened a new field of research, focusing on the
nonequilibrium dynamics of processes in which information
is manipulated [33].

In this section we study a simple example of an out-of-
equilibrium process with a measurement and feedback. This
example have been used before to illustrate the validity of
the integral work relation (4) [12,13]. Here our goal is to
show that the moments on the right-hand side of Eq. (2)
converge in a nonuniform manner when the limit of error-free
measurements is taken.

Consider a system with two discrete states, which we term
left and right (x = L, R, respectively). Let us assume that we
can control the energies of these states EL,R(t ). In the process
we examine, the system is initially in thermal equilibrium
with temperature T , and the energies of the two states are
EL(0) = ER(0) = 0. At time t = 0 a measurement is made
to determine if the system is in the left or right state. The
measuring device is not perfect, hence occasionally it makes
errors. We characterize this property using the conditional
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FIG. 1. A heuristic illustration of the process. The figure depicts
a realization with an accurate measurement; a measuring device
measures the state of a system at time t = 0. Feedback is applied
immediately by reducing the measured state energy by �E and
increasing the other energy by the same amount. Afterwards, the
system undergoes quasistatic relaxation to its initial energies, closing
the cycle.

probability to find outcome m when the system is in state x,
P(m|x). Specifically, we use

P(L|L) = P(R|R) = 1 − ε, (6)

P(L|R) = P(R|L) = ε, (7)

where ε is the probability to make a measurement error. Note
that the setup has a right-left symmetry that is used to simplify
the calculations.

Feedback is applied immediately following the measure-
ment in an attempt to extract energy from the system;
specifically, the energy of the state m is reduced to Em(0+) =
−�E , while the energy of the other state is increased to +�E .
The energies EL,R(t ) are subsequently relaxed back to 0 in a
quasistatic and isothermal process to complete a cycle. For
small ε, the probability that the system is indeed at the site
m at t = 0, when the site’s energy is lowered, is larger than
the probability to occupy this site during the isothermal pro-
cess. This aspect of the process allows one to extract energy
from the information gained by measurements in the cycle.
A realization with an accurate measurement (x = m = L) is
illustrated in Fig. 1.

The work done on the system has two contributions: from
the sudden change of energy and from the quasistatic segment
of the cycle. In the quasistatic segment, the work done is
exactly w = F (∞) − F (0+) = ln cosh �E . Here we use the
fact that the work distribution of quasistatic isothermal dis-
tributions is a δ function centered at w = �F [34,35]. As
a result, the work done during a realization is determined
by the presence or absence of a measurement error. If the
measurement is accurate, the sudden change contributes −�E
to the work. Otherwise the contribution is +�E . The two
possible values of work are

Wa = −�E + ln cosh �E (8)

and

Wi = +�E + ln cosh �E . (9)

The value of Ia = ln 2(1 − ε) or Ii = ln 2ε also depends on
whether the measurement is accurate or not. The need to
consider only two possible values of w + I makes this process

easy to analyze. This is the reason it has been previously used
to illustrate the validity of fluctuation relations for processes
with measurement and feedback [13]. One can then readily
verify that

〈e−w−I〉 =
∑
x,m

P(x, m)e−w(x,m)−I (x,m)

= (1 − ε)e−Wa−ln 2(1−ε) + εe−Wi−ln 2ε = 1, (10)

as one expects since ΔF = 0 for cyclic processes.
We now demonstrate that this simple information engine

exhibits nonuniform convergence in the limit ε → 0. This
nonuniformity expresses itself as sensitivity to the order in
which the limit and various summations and integrations are
taken. Below we use the moment expansion of the exponential
average in Eq. (4) to illustrate this mathematical property.

Let us examine the nth moment of 〈e−w−I〉,
Mn(ε) = 〈[w + I]n〉 = M (a)

n + M (i)
n , (11)

where M (a)
n (ε) ≡ (1 − ε)[Wa + ln 2(1 − ε)]n and M (i)

n (ε) ≡
ε[Wi + ln 2ε]n. All the moments have a well-defined value in
the limit ε → 0,

Mn(0) = M (a)
n (0) = (Wa + ln 2)n. (12)

However, substituting the limit of these moments in the series
clearly leads to a wrong result since

∞∑
n=0

(−1)nMn(0)

n!
= e−Wa−ln 2 �= 1. (13)

This apparent violation of Eq. (10) occurs because

lim
ε→0

∞∑
n=0

(−1)n

n!
Mn(ε) �=

∞∑
n=0

(−1)n

n!
lim
ε→0

Mn(ε). (14)

The nonuniform convergence can be illuminated by exam-
ining the value of the moments as a function of both ε and n.
Figure 2(a) depicts a logarithmic plot of Mn(ε) as a function
of n. Different curves correspond to different values of the
measurement error ε. The dashed linear line is the limiting
value Mn(0). Mn(ε) clearly follows Mn(0) for a range of n’s
but starts to deviate sharply from its limiting value for large
enough n. Crucially, as the value of ε is decreased, the point
at which the curves of Mn(ε) start to deviate from Mn(0) is
pushed to higher and higher moments. This behavior results
from terms of the form ε lnn ε that appear in M (i)

n (ε). Such
terms have vastly different behavior depending on which of
the limits ε → 0 and n → ∞ is taken first. Specifically for
any fixed value of n, ε lnn ε → 0 when ε → 0. Alternatively,
ε| ln ε|n → ∞ when ε 	 1 and n → ∞.

This behavior is consistent with the validity of the ex-
ponential average in Eq. (4); we demonstrate it by plotting
(−1)nMn(ε)/n! as a function of n. The result is depicted in
Fig. 2(b). After a few points with alternating signs the curve
exhibits a fairly smooth and wide peak that is centered around
high moments. The factor of 1/n! is important as it suppresses
the contribution from even larger orders of n. This peak orig-
inates from the same term that causes the deviation of Mn(ε)
from Mn(0), ε lnn ε. We infer this conclusion from the second
line in the figure, (−1)n

n! M (i)
n , which is indistinguishable from

the exact result in the region of the peak. This is demonstrated
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FIG. 2. (a) A logarithmic plot of the nth moment, Mn(ε), as a
function of n. Different curves correspond to different values of ε.
The dashed curve shows the limiting value of the moments, Mn(0).
(b) A comparison between the terms of the series (−1)n

n! Mn(ε) and the
corresponding contribution using only realizations with inaccurate
measurements. Here ε = 10−8. n∗ � 16.3, marked by an arrow, is the
simple estimate for the center of the peak (15). Note that M0(ε) = 1,
which is out of range on this graph. In both panels ΔE = β = 1. The
inset depicts the ratio M (i)

n (ε)/Mn(ε) as a function of n.

in the inset of Fig. 2(b), which shows the ratio of between
M (i)

n (ε) and Mn(ε). This ratio is very close to 1 for the relevant
moments.

The center of the peak can be estimated by taking the
logarithm of (−1)n

n! M (i)
n and finding its maximum. With the help

of Stirling’s approximation, this short calculation leads to

n∗ � −�E − ln 2 cosh �E − ln ε. (15)

The peak’s width can be estimated using a Gaussian approxi-
mation

δn � √
n∗. (16)

The value of n∗ is marked in Fig. 2(b) and is indeed fairly close
to the center of the peak, as expected. Equations (15) and (16)
clarify how the peak changes as ε is varied; the center of the
peak moves to higher moment orders for smaller values of ε,
and its width increases.

FIG. 3. An illustration of the expansion process. The initial
length of the cylinder is L, and the expansion is halted when it
reaches a value of (1 + b)L. The piston moves with a fixed velocity
V throughout the process. The particle is initially at point x, with a
velocity v taken out of a Maxwell-Boltzmann distribution.

In conclusion, the nonuniform convergence manifests itself
through the behavior of the moment sequence and of Eq. (2).
In particular, a parameter-dependent peak is found. When the
limit ε → 0 is taken the center of the peak is pushed towards
higher moment orders, and its width increases. The apparent
violation of the exponential average results from the shift in
the peak as ε is decreased; taking the limit ε → 0 first and
only then summing over all moments misses the contribution
from the peak entirely. This contribution, which ultimately
comes from realizations with measurement errors, is respon-
sible for the correct convergence of the exponential average
and the validity of the work relation.

III. A PARTICLE IN AN EXPANDING PISTON

The second example we consider is that of a single gas par-
ticle in an expanding piston. This process is simple enough to
be exactly solvable. It was studied by Lua and Grosberg [14],
who have calculated the work distribution of the process and
demonstrated that it satisfies the Jarzynski equality

〈e−w〉 = e−�F . (17)

In this section, we use their results to discuss the behavior
of moments of the work distributions in the singular limit of
infinitely fast expansion.

Consider a single gas particle in a piston of initial length L.
The setup can be viewed effectively as one-dimensional since
motion in transverse directions does not play a role. Initially,
the system is brought to equilibrium with a heat reservoir
with inverse temperature β = 1. At time t = 0 the system is
disconnected from this environment, and the piston is pushed
outwards with a fixed velocity V . The process ends at time
t = b L/V , when the piston reaches a size of (1 + b)L. b is an
expansion factor. This process is depicted in Fig. 3.

During the process the energy of the gas particle can
change only due to collisions with the piston. The change in
the kinetic energy of the gas is therefore equal to the work that
is done on the piston. This work depends only on the particle’s
initial position x and velocity v, and can be calculated by
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solving the equation of motion. It is simply expressed in terms
of the initial velocity, v, and the number of times that the
particle collides with the piston, l ,

wl = Ek, f − Ek,i = 2l2V 2 − 2lV v. (18)

For |v| < V there are no collisions during the process, and as a
result w = 0. In an expansion process |v| decreases after each
collision so that wl < 0. We note that our definition of work
differs from Lua’s and Grosberg’s by a sign because they have
considered the work that the particle has done on the piston as
positive.

The probability to observe a given amount of work can
be calculated by integrating over all the initial conditions
that lead to the same value of l . This problem was solved
exactly by Lua and Grosberg [14]. They found that the work
distribution of the expansion process is given by

P(w) = P0δ(w) +
∞∑

l=1

1√
2π lV

e− 1
2 (lV − w

2lV )2
f (w). (19)

Each term of the summation matches a specific number of
collisions l , while P0 is the probability that no collisions
occur in the process. The explicit expression for P0 is rather
cumbersome and is not be needed for the calculations below.
f (w) is an overlap factor

f (w) =

⎧⎪⎪⎨
⎪⎪⎩

−(l − 1)
(

b
2 + 1

) − bw
4lV 2 , −2lV 2(l − 1) − 4l2V 2

b < w � −2lV 2
(
1 + 2

b

)
(l − 1)

1, −2lV 2(l + 1) − 4l2V 2

b < w � −2lV 2(l − 1) − 4l2V 2

b

(l + 1)
(

b
2 + 1

) + bw
4lV 2 , −2lV 2

(
1 + 2

b

)
(l + 1) < w < −2lV 2(l + 1) − 4l2V 2

b

, (20)

that is built from separate segments originating from realiza-
tions with different numbers of collisions between the particle
and piston. Note that 0 � f (w) � 1.

We use a slightly different parametrization of the expansion
process when compared to that of Lua and Grosberg [14].
Specifically, since we want to take the limit V → ∞ while
keeping the same free energy difference, the expansion pro-
cess ends when the piston reaches a predetermined length
of (1 + b)L. Equations (19) and (20) have therefore been
rewritten in a form that explicitly depends on V and b.

Lua and Grosberg showed that this work distribution sat-
isfies the Jarzynski equality (17) [14], which here takes the
form 〈e−w〉 = 1 + b. They also noticed that the limit V → ∞
is singular. This can be easily seen from a naive estimation of
the limit. When V → ∞ the probability that the particle will
collide with the piston vanishes, and as a result P(w) → δ(w).
This naive argument suggests that

lim
V →∞

〈e−w〉 =
∫

dwδ(w)e−w = 1.

This incorrect result implies that one can not change the order
of the V → ∞ limit and integration over w. Lua and Grosberg
then showed that the Jarzynski equality is restored once the far
tails of P(w) are taken into account. Below we show that this
phenomenon can be recast as a nonuniform convergence of the
moments of the work distribution. Moreover, these moments
exhibit the same qualitative behavior as the series of moments
that was studied in Sec. II.

We are interested in the moments of the work distribution

Mn = 〈wn〉 =
∫

dwwnP(w).

The Jarzynski equality (17) can be recast as
∞∑

n=0

(−1)n

n!
Mn = 1 + b. (21)

The naive argument discussed above can be rephrased in
terms of the moments. If one simply takes the V → ∞ limit

for each moment, one finds that limV →∞ Mn = δn0, so that
limV →∞

∑∞
n=0

(−1)n

n! Mn = 1. We now turn to study the asymp-
totic behavior of the moments and of the series (21) for
large V .

The calculation of the moments involves an integral of a
product of two factors, namely, P(w) and wn. The exponents
in P(w) are maximal for wl = 2l2V 2 � 1. These express the
small probability to find collisions for large V , and give large
weight to realizations with small |w|. The factor of |w|n can
counteract this, by giving weight for realizations with large
|w|. For very high moments, with n ∼ V 2, the two terms
balance each other, resulting in a dominant contribution to the
integral over w that comes from inside the domain of integra-
tion. It is these moments that can account for the convergence
of the series (21).

The complicated form of P(w) makes the full character-
ization of the asymptomatic behavior of the moments quite
involved, since different numbers of collisions and work val-
ues may become dominant for different parameters. In our
analysis we choose a regime of parameters (b < 2) where the
considerations becomes simpler. When 0 < b < 2, the con-
vergence of the series (21) is dominated by realizations with a
single collision and work that is in the range − 4V 2

b � w � 0.
Higher moments with n � V 2 can exhibit different asymp-
totic behavior, but the factor of 1/n! in the series (21) ensures
that their contribution is subdominant.

We therefore approximate the moments by using the com-
ponent of these relevant work values in P(w),

Mn � −
∫ 0

− 4
b V 2

bwn+1

4V 3
√

2π
e− 1

8 V 2( w

V 2 −2)2

dw. (22)

Equation (22) is expected to be a good approximation for
the moments n = 1, 2, . . . , ñ, where ñ � (2/b + 4/b2)V 2 and
to break down for moments with n > ñ. This approximation
can be improved by including contributions with additional
collisions and a larger domain of work values. However, as we
show below, the n < ñ moments suffice for the convergence of
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the Jarzynski equality. Changing variables to y = − w
V 2 results

in

Mn
∼= (−1)n b

4
√

2π
V 2n+1

∫ 4
b

0
yn+1e− 1

8 V 2(y+2)2
dy. (23)

The asymptotic behavior of the integral in (23) depends on n
and V through the ratio α = n+1

V 2 . Several distinct regimes of
moments are possible depending on the value of α.

α 	 1 is obtained when one fixes the order of the moment
n while taking V → ∞. In this case, the integral is dominated
by y values satisfying y 	 1. This detail allows us to Taylor
expand the exponent and neglect the quadratic term in y,
giving

Mn(α 	 1) ∼= (−1)n b√
2π

V 2n+1e− 1
2 V 2

∫ 4
b

0
yn+1e− 1

2 V 2y dy.

(24)
Extending the upper limit of this integral to infinity leads to
an integral representation of the 
 function. One finds

Mn(α 	 1) ∼= (−1)n b√
2πV 3

2n(n + 1)!e− 1
2 V 2

. (25)

In the second regime, n is in the same order of magnitude as
V 2, so α ∼ 1. The component yn+1 in the integrand of Eq. (23)
becomes relevant and should not be assumed to be small in
comparison to the exponent. Thus, we rewrite Eq. (23) as

Mn
∼= (−1)n b

4
√

2π
V 2n+1

∫ 4
b

0
e− 1

2 V 2[ 1
4 (y+2)2−2α ln y] dy. (26)

The function 1
4 (y + 2)2 − 2α ln y in the exponent has a local

minimum at y∗ = −1 + √
1 + 4α. As long as y∗ is inside

the domain of integration, one can obtain an approximation
for the moment by following several simple steps. First, we
Taylor expand this function around y∗ up to its second or-
der, neglecting higher-order terms, and then expand the range
of integration to infinity. This standard asymptotic evalua-
tion [36] results in

Mn(α ∼ 1) ∼= (−1)n b

2
V 2n

√
1 + 2α − √

1 + 4α

1 + 4α − √
1 + 4α

× e− 1
2 V 2[ 1

2 (1+2α+√
1+4α)−2αln(−1+√

1+4α)]. (27)

This approximation clearly breaks down for y∗ � 4
b , which

is equivalent to α � 2
b + 4

b2 . Thus, the asymptotic expres-
sion (27) fails for moments with n > V 2( 2

b + 4
b2 ) = ñ.

Finally, when α � 1, y � 4
b becomes the dominant part of

the integral as y∗ shifts to a value beyond the upper limit of
the integral; one can naively estimate the integral in (26) by
expanding around y = 4

b , resulting in

Mn(α�1)∼= (−1)n bV 2n−1

2
√

2π
(

bα
2 − 2

b − 1
)e− 1

2 V 2[ 1
4 ( 4

b +2)2−2αln 4
b ].

However, this expression is not a good approximation of
the moment Mn, since the neglected contributions from w <

− 4
bV 2 become larger than the contributions that were ac-

counted for. Importantly, a better estimation of these moments
is not needed for the main purpose of this discussion. As we

show next, when b < 2, the moments with α ∼ 1 are those
responsible for the convergence of the Jarzynski equality.

We now examine the contributions of moments in these
three regimes to the series

∑∞
n=1

(−1)n

n! Mn when V � 1 and
determine which is the most dominant. This series must con-
verge to b because the zeroth moment already contributes
1. First, we estimate the contribution of moments with fixed
n > 0 (the regime is α 	 1) and show that their contribution
to the sum is small. Consider all the moments from n = 1 to
n = γV 2, where γ is a number satisfying γ 	 1. One can
then use Eq. (25) for these moments and obtain

Iα	1 =
γV 2∑
n=1

(−1)n

n!
Mn

∼=
√

2

π

γ b

V
eV 2(γ ln2− 1

2 ). (28)

This sum approaches 0 as V → ∞. This result just expresses
the fact that every given moment in this regime satisfies
limV →∞ Mn = 0. It matches the convergence of Eq. (17) to
the wrong value of 1 when the wrong order of limits is used.

For the regime of α ∼ 1, the contribution of moments to
the series (2) can be estimated with the help of Eq. (27). We
focus on the sum

Iα∼1 ≡
nh∑

n=nl

(−1)n

n!
Mn. (29)

Here nl and nm are chosen so that they bracket the dominant
part of the series in this sum, while they also stay in range
of validity of Eq. (27). We recast Iα∼1 by using Stirling’s
approximation, and subsequently replace the summation over
n by an integral. The latter operation is justified because
discrete changes in n are mapped to extremely small changes
in α = n+1

V 2 . This series of steps leads to

Iα∼1
∼= bV

2
√

2π

∫ αh

αl

√
α

1 + 2α − √
1 + 4α

1 + 4α − √
1 + 4α

e− 1
2 V 2h(α)dα,

(30)

where

h(α) = 1
2 (1 + 2α + √

1 + 4α)

− 2αln(−1 + √
1 + 4α) + 2αlnα − 2α. (31)

The function h(α) has a minimum at α∗ = 2 with h(2) = 0.
As a result, the integrand has a maximum there, and its value
drops sharply with |α − α∗|. Thus, for any fixed values of
αl < 2 and αh > 2, the leading order asymptotics of Eq. (31)
can be found by expanding h(α) to second order around
its minimum, and substituting α = α∗ in the pre-exponential
term. One finds

Iα∼1 � bV

2
√

2π

√
α

1 + 2α − √
1 + 4α

1 + 4α − √
1 + 4α

∣∣∣∣∣∣
α=2

× e− 1
2 V 2h(2)

∫ αh

αl

e− 1
4 V 2 ∂2h

∂α2 |α=2(α−2)2

dα

� bV

2
√

3π

∫ ∞

−∞
dαe− 1

12 V 2(α−2)2 = b. (32)

024123-6



NONUNIFORM CONVERGENCE IN MOMENT EXPANSIONS … PHYSICAL REVIEW E 105, 024123 (2022)

In the transition from the first to the second line we extend the
limits of integration to ±∞ because this action makes only
asymptotically small corrections.

Crucially, this analysis demonstrates that the contribution
from moments with α < αl , and in particular with α > αh, to
the sum (21) is subdominant when V � 1. The only exception
is the zeroth moment, whose value is always 1. By adding the
two contributions, we find

I � 1 + Iα∼1 = 1 + b, (33)

which is the correct result. The reason for our choice of b < 2
should be clear now. It ensures that the dominant contributions
to the moment series come from moments whose asymptotic
behavior is captured by Eq. (27). Considering also processes
with b > 2 would have required a more refined asymptotic
analysis of higher moments. Such analysis is not needed for
the purpose of showing an example of nonuniform conver-
gence, as the higher moments’ behavior would be identical.

The considerations above show how nonuniform conver-
gence is expressed in the series of moments. Each individual
moment satisfies limV →∞ Mn = 0. However, moments of or-
der that scale as n � V 2 can be large enough to contribute
to the series (21). The appearance of the factor 1/n! is im-
portant in determining the dominant part of the sum, as well
as in suppressing the contribution from even higher orders.
For b < 2, the moments with α � 2 are these that restore
the Jarzynski equality. The calculation above shows that the
dominant moments are of orders that lie in a region of width
δn ∼ √

6V around n∗ = 2V 2. As V is increased this dominant
region is pushed to higher and higher moments and becomes
wider. This behavior is the cause for the inability to exchange
the order between taking the limit and the summation over
moments. This is the same qualitative behavior that was found
for the information engine in Sec. II.

IV. CONCLUSIONS

In this work we highlight an interesting property of the
moment expansion of exponential averages, namely, the oc-
currence of nonuniform convergence in certain physically
interesting limits. The nonuniform behavior of the moments
appears in situations where the limit of interest does not com-
mute with other operations, such as summation over moments

or integration over the thermodynamic observable of interest.
We give two quite different examples for this behavior. We
first consider a model of a simple information engine, which
exhibits nonuniform convergence in the limit of error-free
measurements. We then study a model of a gas particle in
an expanding piston. Here the interesting limit is that of an
infinitely large piston velocity. While the importance of order
of limits has been pointed out before [15,17], our results high-
light a different aspect associated with such singular limits.

The nonuniformity manifests itself through the asymptotic
behavior of the series of moments. For each value of y � y0

there is a range of moments whose distance from their limiting
value is small. At the same time, there is a range of moments
with |Mn(y) − Mn(y0)| � 1. As y approaches y0 the transition
between the two regions is pushed towards higher and higher
moment orders, as seen in Fig. 2(a). Naively taking the y → y0

limit and replacing each moment by its limiting value Mn(y0)
may result in an apparent violation of the associated integral
work relation.

Taking a closer look at the moment expansion of the ex-
ponential average, one finds that the sum is dominated by
a well-defined group of moments. This group is responsible
to the validity of the integral work relation when the limit
of interest is taken. The factor of 1/n! has a crucial role in
determining these dominant moments; it helps to create a peak
that is centered around moments of order n∗(y). In both exam-
ples we studied, the center of this region, n∗(y), was pushed
towards arbitrarily large values as y → y0. Interestingly, in
both cases the width of this dominant region scales as

√
n∗.

This is consistent with moment whose asymptotic behavior
is dominated by an expression of the form Mn ∼ f n(y). The
nonuniform behavior of the moments helps to illuminate the
importance of order of mathematical operations. Naively tak-
ing the y → y0 limit first assigns each moment its limiting
value, which ultimately misses the contributions due to devia-
tions from this limiting behavior. Crucially, the latter includes
dominant moments necessary for convergence to the correct
value of the exponential average.

Although we demonstrated the nonuniformity in just two
models, we believe this property is more general and can
easily be found in other processes. It will be interesting to
search for similar phenomena when considering limits in
which particle masses, or observation times, approach infinity.
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