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The Ising spin-glass model on the three-dimensional (d = 3) hierarchical lattice with long-range ferromag-
netic or spin-glass interactions is studied by the exact renormalization-group solution of the hierarchical lattice.
The chaotic characteristics of the spin-glass phases are extracted in the form of our calculated, in this case
continuously varying, Lyapunov exponents. Ferromagnetic long-range interactions break the usual symmetry
of the spin-glass phase diagram. This phase-diagram symmetry breaking is dramatic, as it is underpinned by
renormalization-group peninsular flows of the Potts multicritical type. A Berezinskii-Kosterlitz-Thouless (BKT)
phase with algebraic order and a BKT-spin-glass phase transition with continuously varying critical exponents
are seen. Similarly, for spin-glass long-range interactions, the Potts mechanism is also seen, by the mutual
annihilation of stable and unstable fixed distributions causing the abrupt change of the phase diagram. On one
side of this abrupt change, two distinct spin-glass phases, with finite (chaotic) and infinite (chaotic) coupling
asymptotic behaviors are seen with a spin-glass to spin-glass phase transition.
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I. INTRODUCTION: LONG-RANGE SPIN GLASSES

Spin-glass systems [1], composed of frozen randomly
distributed competing interactions such as ferromagnetic and
antiferromagnetic interactions or, more recently [2–4], left
and right chiral (i.e., helical [5,6]) interactions, exhibit phases
with distinctive spin-glass order. A prime characteristic of the
spin-glass phase is the chaotic behavior [7–17] of the effective
temperature under scale change, which also means the major
changes of the macroscopic properties under minor changes
of the external paramater such as temperature [18]. In this
study, we consider the spin-glass system of Ising spins on a
three-dimensional (d = 3) hierarchical lattice [19–21], with
the inclusion of long-range interactions [22–28]. We study,
in turn, ferromagnetic and spin-glass long-range interactions.
Much qualitatively new behavior emerges from the inclusion
of these long-range interactions. There are infinitely many
types [19–21] of hierarchical lattices, and those with odd b
and above the lower critical dimension dc � 2.431 [29–35]
have a spin-glass phase. The rich behavior found here can be
expected to occur in these hierarchical lattices. References
[36–43] are recent works using exactly soluble hierarchical
models.

Our model, with nearest neighbor spin-glass interactions
and long-range ferromagnetic or spin-glass interactions, is
defined by the Hamiltonian

−βH =
∑

〈i j〉
Ji jsis j +

∑

LR

Ki jsis j, (1)

where β = 1/kT , si = ±1 at each site i of the lattice, and the
sum 〈i j〉 is over all pairs of nearest neighbor sites. Because
of the factor β = 1/kT on the left side of the equation, J−1

can be used as a (dimensionless) temperature. The bond Ji j

is ferromagnetic +J > 0 or antiferromagnetic −J with prob-
abilities 1 − p and p, respectively. The long-range interaction
LR is between all spins pairs beyond the first neighbors. The
interaction K is thus between all pairs of spins other than the
nearest neighbor pairs of spins. The long-range interaction
here gives convergent statistical mechanics [22–28], since,
on hierarchical lattices, the number of long-range bonds de-
creases by a factor of b−d at each consecutive length scale
increase of b. The nearest neighbor spins already have the
interaction J , and K can be considered included J . There is
no need to include two identical interaction terms into the
Hamiltonian. We have studied the two cases where, for all
further neighbor spin pairs, the long-range interaction is (a)
ferromagnetic Ki j = K > 0 or (b) frozen ferromagnetic or
antiferromagnetic Ki j = ±K with equal probability, namely
a spin-glass interaction. By symmetry, and a simple reflection
(which is meaningful, as the phase diagrams become asym-
metric) of the phase diagrams about the p = 0.5 line, case
(a) is equivalent to antiferromagnetic Ki j = −K < 0 interac-
tion for all further neighbor spin pairs. As seen in Fig. 1,
the introduction of long-range interaction qualitatively affects
the system, introducing a new phase (the BKT phase) and a
new mechanism of phase collapse (the peninsular Potts flow
renormalization-group mechanism).

II. CONSTRUCTION OF THE HIERARCHICAL LATTICE
AND RENORMALIZATION-GROUP EXACT SOLUTION

The construction of the hierarchical lattice is explained
in Fig. 2. The number (in this case 27) of nearest neighbor
interactions replacing a single nearest neighbor interaction
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FIG. 1. Calculated phase diagrams of the Ising spin glass with
long-range ferromagnetic interaction K in the d = 3 hierarchical
lattice. In the left panel, the phase diagram that starts leftmost
is for K = 0, no long-range interaction, and is the standard spin-
glass phase diagram with ferromagnetic-antiferromagnetic symmetry
about the p = 0.5 line. The ferromagnetic, antiferromagnetic, and
spin-glass phases are marked respectively as F, A, and SG. Be-
tween these phases, there are the spin-glass and disordered phases,
respectively at low and high temperatures. In the next phase dia-
gram to the right in the left panel, for long-range ferromagnetic
interaction K = 0.01453, the phase diagram is slightly deformed and
loses the ferromagnetic-antiferromagnetic symmetry. For K > 0, the
disordered phase is replaced by a Berezinskii-Kosterlitz-Thouless
(BKT) phase with algebraic order. At K = 0.01453, the BKT phase
precipitously disappears, by the renormalization-group mechanism
of the peninsular Potts flows, explained in the text and in Fig. 3. For
K > 0.01453, there is a direct phase transition between the ferro-
magnetic and antiferromagnetic phases, as seen for K = 0.05, the
rightmost phase diagram in the left panel of this figure. In the right
panel of this figure, the evolution of this phase diagram is seen from
the phase diagrams for K = 0.05, 0.1, 0.4, 0.8, from top to bottom.
In summary, for 0 < K � 0.01453, between F and A, there are the
SG phase at low temperature and the BKT phase at high temperature,
and there is no disordered phase. For K > 0.01453, the BKT phase
disappears and, at high temperature, there is a direct phase transition
between F and A.

gives the dimensionality as bd , where b is the length-rescaling
factor, namely the number of bonds in the shortest path be-
tween the external sites of the graph. In the present case, b = 3
and therefore d = 3 on this hierarchical lattice.

FIG. 2. The hierachical lattice is constructed by the repeated
self-imbedding of a graph into bond [19]. The dashed line in the
graph represents the long-range interaction. The renormalization-
group exact solution proceeds in the opposite direction: Summation
over the spins on the internal sites (full circles) of the graph gives the
renormalized interaction J ′ between the spins on the external sites
(open circles) as a function of the interactions J and K on the graph,
namely the recursion relation J ′ = J ′({Ji j}, K ), where {Ji j} are the
nearest neighbor interactions, in general with different values, inside
the graph.

The renormalization-group transformation is effected by
expressing the nearest neighbor interaction as a 2 × 2 trans-
fer matrix, Ti j (si, s j ) = eEi j (si,s j ), where the energy Ei j (si, s j )
is initially as given in the first term of Eq. (1). For each
renormalization-group trajectory, initially 4000 unrenormal-
ized transfer matrices {Ti j} are generated randomly from the
double-δ distribution characterized by the probability p as
explained above. In each consecutive renormalization-group
transformation, a new (renormalized) set of 4000 transfer
matrices {T ′

i j} is generated, using the recursion relation ex-
plained in Fig. 2 and in (A–G) below, randomly choosing
each of the bd unrenormalized transfer matrices Ti j inside
the graph from the 4000 transfer matrices generated from
the previous renormalization-group transformation. Thus, a
renormalization-group flow of the quenched probability dis-
tribution of the interactions [44] is obtained.

The generation of a set of renormalized transfer matrices is
broken into binary steps [45–47] that accomplish the dictate
of Fig. 2:

(A) First, the starting set of tranfer matrices is combined
with itself, by randomly choosing two transfer matrices, T(1)

and T(2), from the set and multiplying matrix elements at each
position, T (1)

i j ∗ T (2)
i j , thus obtaining a new transfer matrix;

4000 such new matrices are generated.
(B) The set generated in (A) is combined with itself, using

the procedure described in (A).
(C) The set generated in (B) is combined with itself, using

the procedure described in (A).
(D) The set generated in (C) is combined with the initial

set used in (A), using the procedure described in (A). This
completes the combination of bd−1 = 9 parallel bonds shown
in each bubble in Fig. 2.

(E) The set generated in (D) is combined with itself, by
randomly choosing two transfer matrices, T(1) and T(2), from
the set and matrix multiplying, T(1) · T(2).

(F) The set generated in (E) is combined with the initial
set used in (E), using the procedure described in (E). This
completes the elimination of the internal sites in Fig. 2 by
decimation.

(G) The antidiagonals of each transfer matrix in the set are
multiplied by exp −2K .

This also completes the renormalization-group transforma-
tion, obtaining the set of 4000 renormalized transfer matrices
{T′} from the set of 4000 unrenormalized transfer matrices
{T}. This renormalization-group transformation is repeated
many times to obtain a renormalization-group trajectory of the
quenched probability distribution.

With no loss of generality, each time that a transfer matrix
is constructed as described in the previous paragraphs, the
matrix elements are divided by the largest element, so that
eventually all matrix elements are between 1 and 0, inclu-
sive. This allows the repetition of the renormalization-group
transformation as much as necessary (in practice, thousands
of times) without running into numerical overflow problems,
needed for the determination of thermodynamic phase sinks,
runaway exponents, and the Lyapunov exponents of chaos.

For trajectories starting at (J, K, p) in the ferromagnetic
phase, all transfer matrices in the set asymptotically renor-
malize to 1 in the diagonals and 0 in the antidiagonals.
For trajectories starting at (J, K, p) in the antiferromagnetic
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phase, all transfer matrices in the set asymptotically renor-
malize to 0 in the diagonals and 1 in the antidiagonals. For
trajectories starting at (J, K, p) in the spin-glass phase, all
transfer matrices in the set asymptotically renormalize to 1 in
the diagonals or antidiagonal randomly, simultaneously with
0 in the antidiagonals or diagonals. For trajectories starting in
the algebraically ordered BKT phase, all transfer matrices in
the set asymptotically renormalize to 1 in the diagonals and to
a value between 1 and 0 in the antidiagonals, continuously
varying based on the initial (J, K, p) of the trajectory. For
the trajectories starting in the disordered phase, all transfer
matrices in the set renormalize to 1 in the diagonals and
antidiagonals. Phase boundaries in (J, K, p) are obtained by
numerically determining the boundaries of these different
asymptotic behaviors.

III. POTTS-PENINSULAR RENORMALIZATION-GROUP
MECHANISM AND PRECIPITOUS PHASE DIAGRAM

Quenched randomness amplifies in renormalization-group
trajectories starting in the spin-glass phase and shows chaotic
rescaling behavior. Quenched randomness deamplifies in
renormalization-group trajectories starting in the four other
phases. In this case, the recursion relation constructed in the
previous section becomes

J ′ = tanh−1{[tanh(9J )]3} + K. (2)

Solving Eq. (2) for J ′ = J ≡ J∗ gives the fixed point interac-
tions J∗ as a function of K , shown in the upper right panel of
Fig. 3. Taking the derivative of Eq. (2) at the fixed point,

dJ ′

dJ
= 27[tanh(9J )]2

1 + [tanh(9J )]2 + [tanh(9J )]4
= by, (3)

the eigenvalue exponents y at the fixed point are obtained.
These are shown in the lower left panel of Fig. 3.

The peninsular Potts renormalization-group flow mecha-
nism and the precipitous phase diagram are given in Fig. 3.
The upper left panel shows the lines of fixed points as a
function of the long-range interaction K , calculated from
Eq. (2). This calculation is done in the nonrandom limit where
all renormalization-group trajectories flow, from phases out-
side the spin-glass phase. In this upper left panel, the lower
curve is the fixed line, unstable to the renormalization-group
flows, giving the phase boundary between the antiferromag-
netic phase and, for K < 0.01453 where the upper flows hit
the stable branch of the peninsula, the BKT phase and, for
K > 0.01453 where the upper flows miss the peninsula be-
yond its tip, the ferromagnetic phase. Therefore, the BKT
phase precipitously disappears for at K = 0.01453. Due to
this catastrophic changeover [48], in Fig. 3, part of the phase
boundary between the ferromagnetic and BKT phases should
be and is calculated to be vertical.

In the upper left panel of Fig. 3, the lower branch of the
peninsula is a fixed line, stable to the renormalization-group
flows, constituting the sink of the algebraically ordered BKT
phase. The upper branch of the peninsula is a fixed line, unsta-
ble to the flows, giving the phase transition between the BKT

FIG. 3. The peninsular Potts renormalization-group flow mech-
anism and the precipitous phase diagram. The upper left panel
shows the asymptotic flows of the renormalization-group trajectories
which have started at high temperature and intermediate values of
p. The quenched randomness has renormalized out of the system,
leaving a nonrandom value of the nearest neighbor interaction J,
which can be positive or negative (Sec. III). The upper left panel
shows the lines of fixed points, also indicating the directions of
the renormalization-group flows. In the lower left panel, the upper
line gives the eigenvalue exponents y for the phase transitions from
the antiferromagnetic phase. The positive part of the lower curve
gives the eigenvalue exponents for the phase transitions between the
algebraically ordered and ferromagnetic phases. The negative part
of the lower curve gives the eigenvalue exponents for the attractive
sinks of the algebraically ordered phase. The phase diagram on the
right is calculated at constant temperature J−1 = 0.1. Because of the
Potts-peninsular mechanism, explained in the Sec. III, part of the
phase boundary between the ferromagnetic and BKT phases should
be and is calculated to be vertical here.

phase and the ferromagnetic phase. The renormalization-
group flows are indicated with the arrows. The flows at the
upper and lower edges of the panel proceed to J = +∞ and
J = −∞, constituting the sinks of the ferromagnetic and an-
tiferromagnetic phases respectively. The unstable fixed lines
give the phase transitions. As seen in the lower left panel
of Fig. 3, the eigenvalue exponent y (where dJ ′/dJ = by at
the fixed point) and therefore the critical exponents (e.g.,
the correlation-length critical exponent ν = 1/y, where the
correlation length diverges as |T − Tc|−ν as the critical tem-
perature is approached) [49,50] vary continuously along the
phase boundaries. This peninsular renormalization-group flow
mechanism previously has only been seen in Potts models
in d dimensions, realizing the changeover from second- to
first-order phase transitions of the Potts models [51–56].

The comparison is as follows: As a result of the peninsu-
lar renormalization-group flow mechanism, (1) in the Potts
models [51], the second-order and tricritical fixed points
annihilate, and therefore the phase boundary renormalization-
group flows flow into the first-order fixed point. Thus, a phase
transition abruptly changes its nature. (2) In the current work,
the BKT sink and the BKT second-order fixed points an-
nihilate, and therefore the phase sink renormalization-group
flows flow into the ferromagnetic sink. Thus, a phase abruptly
changes its nature.
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IV. ASYMMETRIC PHASE DIAGRAMS WITH
ALGEBRAICALLY ORDERED

BEREZINSKII-KOSTERLITZ-THOULESS PHASE

Calculated phase diagrams of the Ising spin glass with
long-range ferromagnetic interaction K in the d = 3 hierar-
chical lattice are shown in Fig. 1. In the left panel, the phase
diagram that starts leftmost is for K = 0, no long-range in-
teraction, and is the standard spin-glass phase diagram with
ferromagnetic-antiferromagnetic symmetry about the p = 0.5
line. The ferromagnetic and antiferromagnetic phases are
marked respectively as F and A. Between these phases,
there are the spin-glass and disordered phases, respectively,
at low and high temperature. In the next phase diagram
to the right, for long-range ferromagnetic interaction K =
0.01453, the phase diagram is slightly deformed and loses
the ferromagnetic-antiferromagnetic symmetry. For K > 0,
the disordered phase is replaced by a Berezinskii-Kosterlitz-
Thouless (BKT) phase with algebraic order. This phase has
algebraic order, since its sink line continuously varies and is
at nonzero and noninfinite interactions. In general, the cor-
relation length at a fixed point is either zero, or infinite, due
to the scale-free nature of this point. In the present case, the
zero option is eliminated by the fixed-point interactions being
nonzero and noninfinite. Therefore, the BKT attractive fixed
line (phase sink) and all points flowing to it under renormal-
ization group have infinite correlation length and algebraic
order [57–62].

At K = 0.01453, the BKT phase precipitously disappears,
by the renormalization-group mechanism of the peninsular
Potts flows, explained in Sec. III and in Fig. 3. Thus, our phase
diagram calculations (Fig. 1) with global renormalization-
group flows exactly yield and confirm the peninsular tip
obtained from the fixed-point calculation using Eq. (2)
(Fig. 3). For K > 0.01453, there is a direct phase transition
between the ferromagnetic and antiferromagnetic phases, as
seen for K = 0.05, the rightmost phase diagram in the left
panel of Fig. 1. In the right panel of Fig. 1, the evolution
of this phase diagram is seen from the phase diagrams for
K = 0.05, 0.1, 0.4, 0.8, from top to bottom.

V. CHAOS CONTINUOUSLY VARYING WITHIN
THE SPIN-GLASS PHASE: LYAPUNOV EXPONENT

AND RUNAWAY EXPONENT

The spin-glass phase is a phase induced by competing
quenched randomness and that does not otherwise exist. The
competing interactions can be ferromagnetic versus antifer-
romagnetic, as here, or left and right chiral interactions. A
distinctive characteristic of the spin-glass phase is chaos under
scale change [7]. In the present work, the asymptotic chaotic
trajectory continuously varies quantitatively with the long-
range interaction K .

The asymptotically chaotic renormalization-group trajec-
tories starting within the spin-glass phase are shown for
various values of the long-range interaction K in Fig. 4, where,
for each K , the consecutively renormalized (combining with
neighboring interactions) values at a given location 〈i j〉 are
followed. The strength of chaos is measured by the Lyapunov

FIG. 4. The chaotic renormalization-group trajectory of the
interaction Ji j at a given location 〈i j〉, for various long-range inter-
actions K . The calculated Lyapunov exponents λ are also given and
increase with ferromagnetic long-range interaction K . The calculated
runaway exponent is yR = 0.24, showing simultaneous strong-chaos
and strong-coupling behaviors.

exponent [63,64]

λ = lim
n→∞

1

n

n−1∑

k=0

ln

∣∣∣∣
dxk+1

dxk

∣∣∣∣, (4)

where xk = Ji j/J at step k of the renormalization-group tra-
jectory and J is the average of the absolute value of the
interactions in the quenched random distribution. We cal-
culate the Lyapunov exponents by discarding the first 1000
renormalization-group steps (to eliminate crossover from ini-
tial conditions to asymptotic behavior) and then using the next
9000 steps. For a given K value, the initial (J, p) values do
not matter, as long as they are within the spin-glass phase. In
the absence of long-range interaction, K = 0, the Lyapunov
exponent is calculated to be λ = 1.93, as in previous work
[46,65]. With increasing long-range ferromagnetic interac-
tion, the Lyapunov exponent and therefore chaos increase, to
the value of λ = 1.99 for K = 0.8.

In addition to chaos, the renormalization-group trajectories
show asymptotic strong coupling behavior,

J ′ = byR J, (5)
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FIG. 5. Calculated phase diagrams of the Ising spin glass with
long-range spin-glass interaction ±K in the d = 3 hierarchical
lattice. From top to bottom, the phase diagrams are for K =
0.1, 0.4, 0.8. The ferromagnetic and antiferromagnetic phases are
marked respectively as F and A. Between these phases, for K = 0.1,
there are the weak-coupling and strong-coupling spin-glass phases,
respectively, at high and low temperatures. The weak-coupling spin-
glass phase occurs for 0 < K < 0.1883 and abruptly disappears at
K = 0.1883 by the Potts renormalization-group flow mechanism
generalized to quenched random interactions, namely by the unstable
fixed distribution of the phase boundary between the two spin-glass
phases and the stable fixed distribution sink of the weak-coupling
spin-glass phase (Fig. 6) merging and annihilating. Thus, for K >

0.1883, only the strong-coupling spin-glass phase occurs between
the ferromagnetic and antiferromagnetic phases.

where yR > 0 is the runaway exponent [33]. Again using 9000
renormalization-group steps after discarding 1000 steps, we
find yR = 0.24 for all values of K . In fact, yR = 0.24 was also
found previously for all values of the spin s [65].

VI. LONG-RANGE SPIN-GLASS INTERACTIONS AND
SPIN-GLASS-TO-SPIN-GLASS PHASE TRANSITIONS

Calculated phase diagrams of the Ising spin glass with
long-range spin-glass interaction ±K in the d = 3 hierarchi-
cal lattice are given in Fig. 5. From top to bottom, the phase
diagrams are for K = 0.1, 0.4, 0.8. The ferromagnetic and
antiferromagnetic phases are marked respectively as F and
A. Between these phases, for K = 0.1, there are the weak-
coupling and strong-coupling spin-glass phases, respectively,
at high and low temperatures.

Fixed distributions and chaos for these two spin-glasses
with long-range spin-glass interaction ±K in the d = 3 hier-
archical lattice are given in Fig. 6. The left and right columns
are for K = 0.1 and 0.1883 respectively. The top row gives
the stable fixed distribution, i.e., sink, for the weak-coupling
spin-glass phase. The bottom row gives the stable fixed distri-
bution, i.e., sink, for the strong-coupling spin-glass phase. The
middle row gives the unstable fixed distribution for the phase
transition between the weak- and strong-coupling spin-glass
phases.

FIG. 6. Fixed distributions for the Ising spin glass with long-
range spin-glass interaction ±K in the d = 3 hierarchical lattice.
The left and right columns are for K = 0.1 and 0.1780 respectively.
The top row gives the stable fixed distribution, i.e., sink, for the
weak-coupling spin-glass phase. The bottom row gives the stable
fixed distribution, i.e., sink, for the strong-coupling spin-glass phase.
The middle row gives the unstable fixed distribution for the phase
transition between the weak- and strong-coupling spin-glass phases.
At the very top are the Lyapunov exponents for the weak-coupling
sinks. At the very bottom are the Lyapunov exponents for the strong-
coupling sinks.

As K is increased, the stable sink fixed distribution for the
weak-coupling spin-glass phase and the unstable fixed distri-
bution for the phase transition approach each other, meaning
perforce become identical (note the similarity the two distri-
butions on the right top and middle of Fig. 6, as compared with
the left side), and annihilate each other, clearing the way for
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the renormalization-group flows to the strong-coupling spin-
glass sink. The weak-coupling spin-glass phase disappears
and is replaced by the extended strong-coupling spin-glass
phase, as seen for K = 0.4 and 0.8 in Fig. 5. This abrupt
phase diagram change and its renormalization-group mecha-
nism is the generalization to quenched random systems of the
stable-unstable fixed-point annihilation (Fig. 3) of the Potts
peninsular flow mechanism.

At the very top and bottom are the chaos and Lyapunov ex-
ponents for the weak-coupling and strong-coupling spin-glass
phases. Amazingly, as measured by the Lyapunov exponents,
the weak-coupling spin-glass phase is more chaotic than the
strong-coupling spin-glass phase.

We have also calculated phase diagrams of the Ising spin
glass with decaying long-range spin-glass interaction ±K/r,
where r is the separation between the spins in units of the
nearest-neighbor separation in the original unrenormalized
lattice. As seen in Fig. 7, as K is increased from 0, the
strong-coupling spin-glass phase fully broadens becoming an
intermediate phase between the ferromagnetic (antiferromag-
netic) and disordered phases, and finally wholly replaces the
disordered phase.

We have calculated the decaying long-range spin-glass
interactions ±K/r as the simplest power-law decay and ob-
tained distinctive results, as seen in the sequence of different
regimes in Fig. 7. Other types of decay should give similar
results: These interactions will affect the phase boundaries,
but cannot introduce new phases, as they decay under repeated
renormalization-group transformations and thus cannot af-
fect the phase sinks. For a study of decaying long-range
interactions on hierarchical lattices, see Ref. [22]. For a
wide description of long-range power-law decaying inter-
actions on hypercubic lattices, see the extensive review in
Ref. [66].

FIG. 7. Calculated phase diagrams of the Ising spin glass with
decaying long-range spin-glass interaction ±K/r, where r is the sep-
aration between the spins in units of the nearest neighbor separation
in the original unrenormalized lattice. The ferromagnetic (F), anti-
ferromagnetic (A), strong-coupling spin-glass (SG), and disordered
(D) phases are marked. As K is increased from 0, the strong-coupling
spin-glass phase fully broadens becoming an intermediate phase be-
tween the ferromagnetic (antiferromagnetic) and disordered phases
(K = 0.45), and finally wholly replaces the disordered phase (K =
0.80).

VII. CONCLUSION

We have seen that the introduction, to the spin-glass
system, of long-range ferromagnetic or spin-glass inter-
actions reveal a plethora of new phases, spin-glass to
spin-glass phase transitions, algebraic order, continuously
varying runaway and nonrunaway chaos, Potts-peninsular
renormalization-group flows and precipitous phase diagrams,
and fixed-distribution annihilation. The spin glasses are
clearly a rich repository of complex-system behaviors.
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