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Emergence of cooperation through chain-reaction death
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We generalize the Bak-Sneppen model of coevolution to a game model for evolutionary dynamics which pro-
vides a natural way for the emergence of cooperation. Interaction between members is mimicked by a prisoner’s
dilemma game with a memoryless stochastic strategy. The fitness of each member is determined by the payoffs
π of the games with its neighbors. We investigate the evolutionary dynamics using a mean-field calculation and
Monte Carlo method with two types of death processes, fitness-dependent death and chain-reaction death. In the
former, the death probability is proportional to e−βπ where β is the “selection intensity.” The neighbors of the
death site also die with a probability R through the chain-reaction process invoked by the abrupt change of the
interaction environment. When a cooperator interacts with defectors, the cooperator is likely to die due to its low
payoff, but the neighboring defectors also tend to disappear through the chain-reaction death, giving rise to an
assortment of cooperators. Owing to this assortment, cooperation can emerge for a wider range of R values than
the mean-field theory predicts. We present the detailed evolutionary dynamics of our model and the conditions
for the emergence of cooperation.
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I. INTRODUCTION

Why do people cooperate even when they can apparently
get more by defecting? This “cooperation puzzle” is ubiqui-
tous. On the gene level, a selfish gene survives by copying
itself more than its competitors do. At the individual level,
the fitter has more offspring. In the coarse-grained level of
“quasispecies,” the fitter survives longer. Hence, on any level,
it seems that we can thrive by choosing the strategies which
increase our own fitness. Since the cooperation accompanies
cost in general, our fitness is expected to decrease when we
cooperate. However, we see cooperation everywhere. Why is
this so?

There have been extensive studies and explanations for this
cooperation puzzle. They can be categorized (arguably) into
five rules: direct reciprocity, indirect reciprocity, kin selection,
network reciprocity, and group selection [1–5]. The coopera-
tive phenomena in nature would probably emerge due to the
combined effects of these five mechanisms [6–8] although the
degree of contribution from each mechanism varies from case
to case.

Most of the known mechanisms for the evolution of al-
truism have a common process, an assortment of individuals
carrying the cooperative phenotypes [9,10]. Here we con-
sider the rather common phenomena of a chain reaction [11]
and argue that they might be highly effective ways to de-
velop cooperation through such an assortment for the spatial
reciprocity [6,7,12–15].

Most biological systems, from individuals to huge eco-
logical systems to human societies, are complex in their
compositions and interactions. Therefore, a failure of one
part usually results in malfunctions on the interconnected
neighbors. For example, extinction of a species may result in
another extinction of a species that had a strong interaction

with the former. We can find chain-reaction phenomena in
economic systems also. A bankruptcy of a firm may induce
another bankruptcy. This “chain-reaction bankruptcy” may
result in an economic catastrophe. Here we argue that the
catastrophe can boost cooperation and may turn out to be good
for the system in the long run although the individuals who are
involved in this catastrophe are in pain.

The structure and interaction between members in bio-
logical and social systems are complex in general. Yet the
essence of the competition for survival in many cases can be
often reduced to a social dilemma game in which self-interest
favors defection while the best for the system is cooperation.
The prisoner’s dilemma (PD) game is a standard example that
represents interactions in this kind of social dilemma. In the
PD game, the payoff of mutual cooperation is better than that
of mutual defection, but one gets more payoff when it defects
no matter what the opponent does. If all players are rational,
i.e., if they behave to maximize their own payoffs, they will
arrive at the Nash equilibrium of mutual defection.

It is still under debate whether the rationality assumption
of human behaviors is valid. However, rationality develops
naturally over generations in the game theory approach of
biological evolution where the fitness of a player is given as
an increasing function of its payoff [16]. Usually the fitness
of an individual is interpreted as its fecundity, the number of
its expected offspring. Hence, a population is to evolve on the
one consisting of rational players.

In this work we study the evolution of memoryless stochas-
tic strategies of PD games on structured populations. We
mainly consider the cycle, which is one of the simplest struc-
tures for the sake of mathematical analysis. The results on a
scale-free network structure are given in Appendix D. The
fitness f of each member is given by f = eβπ where π is
the total payoffs of PD games with its nearest neighbors.
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Here “inverse temperature” or “selection intensity” β repre-
sents how strongly the fitness of a member depends on the
payoffs of the gamelike interactions with its neighbors. Our
model is different from the conventional game dynamics in
both death and birth processes. We have two types of death
processes: fitness-dependent death (FDD) and chain-reaction
death (CRD). In the former, the death rate of a member with
fitness f = eβπ is proportional to 1/ f = e−βπ . If an FDD hap-
pens, the immediate neighbors of the FDD site may also die
with a probability R through the chain-reaction process. We
think that the CRD process may have an element that is hard to
be counted via payoff adjustments [17]. When a member dies
by either process, it is replaced by a new member, which has
a random strategy (rather than the offspring of the neighbors),
so that the fitness affects population dynamics only through
the death process as in the Bak-Sneppen model [18]. In this
sense, a member of the population in our model may represent
a quasispecies rather than an individual for a biological system
[11,18]. On the other hand, when it applies to an economic
system, replacement by a new member can be interpreted as a
foundation of a new firm rather than an expansion of a nearby
firm. In this paper, CRD is applied to the nearest neighbors
of the FDD site only. We may consider a model with iterative
CRD. However, we expect its result would not be qualitatively
different from the one presented here for the sufficiently large
population because the process would end at a finite number
of steps unless the bare CRD probability is one.

The CRD is a crucial element for the evolution of coop-
eration in our model. The fitness in our model is interpreted
as longevity (instead of fecundity), and selection acts on
death through the FDD. If a player switches its action from
cooperation to defection, its death probability in the FDD
process decreases while the FDD probabilities of its game
partners increase regardless of the strategies of the neigh-
bors. In other words, the competition occurs directly between
game partners as in the conventional Birth-Death process [19],
and network reciprocity cannot be invoked in the FDD pro-
cess alone [10,20]. However, in the CRD process, defectors
have fewer chances to survive. The neighbors of defectors
have lower payoffs on average, i.e., a high chance to disap-
pear by FDD. In other words, defectors are more likely to
be located at the neighbors of FDD sites and hence likely
to disappear by CRD. In our model, the FDD and CRD
processes suppress cooperators and defectors, respectively.
Hence, depending on the value of chain-reaction probability
R, population can be either cooperative or defective. Using
the mean-field (MF) approximation, we first investigate the
MF boundary values, RMF

b between the cooperative and the
defective phases. We then study the evolutionary dynamics
for strongly assortative populations which occurs when β

is large. For strong selection, a cooperator is likely to die
by FDD when its neighbors are defectors. Subsequently, the
exploiter, who makes the cooperator die, is also prone to
die through CRD. Therefore, heterogeneous domains in the
population disappear first and then patches of homogeneous
communities with similar cooperating probabilities evolve.
Once these strong assortments are established, group selection
arguments can boost the evolution of cooperation. Cooperat-
ing communities survive longer than defecting communities
due to their high payoffs. For strong selection, we will see
that populations become cooperative in a wide range R values

including the regions where MF theory predicts the defective
population.

In the following section, we introduce and define our model
precisely. Then we use the MF theory and Monte Carlo (MC)
simulation to analyze dynamics and the steady-state proper-
ties of our model. In Sec. III we explain these methods and
provide the results. A summary and concluding remarks are
presented in the final section.

II. MODEL

We consider a PD game as an interaction between two
competitive members in a population. Each player has two
possible actions in a single PD game: cooperation (C) or de-
fection (D). The payoff of a player depends on the opponent’s
action, as well as his own action. We consider a simplified PD
game, called a “donation game,” in which the payoffs are cal-
culated by the cost c and the benefit b of a cooperative action.
If one player defects while the other cooperates, the defector
receives benefit without any cost, whereas the cooperator pays
cost and its payoff becomes −c. For mutual cooperation both
get a benefit but pay a cost and their payoffs become b − c,
while the payoffs for mutual defection are 0. Without loss of
generality, we set b = 1. The payoff matrix then becomes

C D
C
D

(
1 − c − c

1 0

)
.

Here 0 < c < 1. When the (equal) gain from switching (from
C to D) c is positive, defection is the individual’s optimal
choice, while the social optimum is cooperation as long as
the cost is less than the benefit (c < 1).

We consider a simple population structure, a cycle of N
sites with game interaction between the nearest neighbors
only [8,21,22]. Here a cycle means a finite one-dimensional
(1D) lattice with periodic boundary conditions. We assume
that each member has a history-independent stochastic strat-
egy, and the phenotype of member i, the inhabitant at site i, is
represented by its cooperation probability qi. The determinis-
tic strategies, “pure C” and “pure D,” correspond to qi = 1 and
qi = 0, respectively. The fitness fi of member i is determined
by the (expected) total payoffs πi from the games with its
neighbors. On the cycle population, πi is given by

πi = qi−1 + qi+1 − 2cqi, (1)

where i±1 should be read as i±1 modulo N . The sum of the
first two terms qi−1 + qi+1 of Eq. (1) is the expected benefit
from the cooperation of the neighbors. The last term 2cqi

is the expected cost of cooperation of member i. Note that
the payoffs of all members in the population at time t are
specified by the population profile of cooperation probabilities
{qi(t )|i ∈ {1, . . . , N} }.

The members in the population die with the two types of
death processes, FDD and CRD. In the former, the death rate
of member i is proportional to 1/ fi = e−βπi where β is the
selection intensity. In the limit of β goes to zero, members
die randomly regardless of their fitness while only the least
fit (minimum payoff) member dies for infinite β. When FDD
occurs at a site, its neighbors may also die by CRD, which
occurs with a probability R. Neighbors of the death site are
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expected to be harmed due to abrupt changes in the interaction
environment. Once a member dies by either process, its site is
occupied by a new member with a random cooperation prob-
ability [11,18] which is chosen from the uniform distribution
in the interval [0 1].

III. METHODS AND RESULTS

We study the evolution of the population strategy with MF
theory and MC simulations on a cycle of N sites. The initial
state of the population is given as a random configuration, i.e.,
qi ∈ [0 1] with the uniform distribution for i = 1, . . . , N . At
each time step, we calculate the payoffs of all members in
the population and choose one site for FDD with a probabil-
ity pd

i = 1
Z e−βπi where the superscript d stands for “death.”

Here πi is the payoff of member i given by Eq. (1), and
Z = ∑

i e−βπi is the normalization factor. The cooperation
probability for the chosen site is updated with a new random
number. The cooperation probabilities of the two neighbors
of the FDD site are updated with the probability R each.
We then measure the mean cooperation Q = 〈 1

N

∑N
i=1 qi〉 as

a function of time, where 〈x〉 means “ensemble average” of
x. The mean cooperation converges to a steady-state value
Qs = Qs(β, c, R) at sufficiently late time for a given set of
parameters, β, c, and R. The cooperation region in the R-c
parameter space is then obtained using the condition Qs >

1/2. We find that the phase diagrams (of the cooperative and
defective phases in the R-c parameter space) are considerably
different depending on selection intensity. In the weak selec-
tion limit of β → 0, Qs is larger than 1/2 when R > c. On the
other hand, cooperation emerges for a wide range of R (unless
c is close to 1) for strong selection.

We first consider the MF dynamics. In the MF approxi-
mation, all neighbors of a given individual are assumed to
show the average behaviors of the population. The MF results
are expected to be valid in the weak selection limit where
the survival probability of a member is almost independent
of its strategy, and hence no correlation between neighboring
members is developed. The MF study for strong selections
also can be useful. By comparing the MC dynamics with
MF approximation, we may have a better understanding of
how strong cooperation evolves on the population with strong
selection. For these reasons, we present the MF calculation
before presenting the MC results.

A. Mean-field approximation

In the MF approximation, all neighbors of a given member
have the same average cooperation probability QMF. For a
given qi, the payoffs πi and πi±1 become

πi = 2QMF − 2cqi, πi±1 = qi + QMF − 2cQMF, (2)

where we have replaced qi±1 and qi±2 by QMF in Eq. (1). The
death rates rFDD

i and rCRD
i of member i for the FDD and CRD

processes satisfy

rFDD
i ∝ e−βπi ∝ e2βcqi ,

rCRD
i ∝ R(e−βπi+1 + e−βπi−1 ) ∝ 2Re−βqi . (3)

When member i dies, qi is replaced by a new random number
chosen from the uniform distribution between 0 and 1. Hence,

FIG. 1. Evolution of the PDF p(q, t ) and the mean cooperation
QMF(t ) in the MF theory. For two different selection intensities,
(a) β = 1 and (b) β = 10, p(q, t ) for R = 1 at five different times,
t = 0, 0.1, 1, 10, and 100, are shown. In (c) and (d), QMF is plotted
against time t in a semilog scale for six different values of R = 0.0,
0.2, 0.4, 0.6, 0.8, and 1.0 for β = 1 and β = 10, respectively. The
y-axis labels and legends in (a) and (c) are applied to (b) and (d),
respectively. For all cases, we use c = 0.5.

the probability density function (PDF) p(q, t ) in the MF the-
ory evolves [23] as

p(q, t +�t ) = p(q, t )+ 1 + 2R

N
− 1

N

e2βcq p(q, t )∫ 1
0 e2βcq p(q, t ) dq

− 2R

N

e−βq p(q, t )∫ 1
0 e−βq p(q, t ) dq

, (4)

from the initial distribution p(q, 0) = 1 for 0 � q � 1. Here
N is the population size and �t = 1/N since we take N such
updates as unit time. Once we get a PDF p(q, t ), we can cal-
culate the mean cooperation QMF(t ) in the MF approximation
by

QMF(t ) =
∫ 1

0
q p(q, t ) dq. (5)

Figure 1 shows the evolution of the PDF p(q, t ) and the
mean cooperation QMF(t ) for c = 0.5 in the MF theory. In
Figs. 1(a) and 1(b), p(q, t ) for R = 1 are shown at five differ-
ent times, t = 0, 0.1, 1, 10, and 102 with β = 1 and β = 10,
respectively. Initially, the distributions are uniform as indi-
cated by the red dotted lines. The PDF p(q, t ) for t > 0 is
obtained by Eq. (4) (with N = 200). As shown in (a), p(q, t )
for β = 1 initially increases for q > q∗ ≈ 0.422 and decreases
for q < q∗ with time. The population then reaches a steady
state around t = 10. The PDF at t = 102 is almost identical to
that at t = 10. Hence, we believe that the black solid line of
t = 102 represents the steady-state PDF. Similarly, we calcu-
late the PDF for β = 10 and show this in (b). In this strong

024116-3



JIWON BAHK AND HYEONG-CHAI JEONG PHYSICAL REVIEW E 105, 024116 (2022)

FIG. 2. The MF boundaries between cooperative and defective
phases in the R-c parameter space are presented for β = 0, 1, 4, 10,
and 15.

selection case, PDF for large q near 1 is also decreasing such
as that for small q initially. The decreasing range for a small
q region increases with time for a while and then reaches the
steady-state PDF. As one can see from the black solid line in
(b), the steady-state PDF for β = 10 is narrow compared to
the β = 1 case and has a single peak around q = 0.667.

The mean cooperation QMF(t ) is then calculated using
Eq. (5). Figures 1(c) and 1(d) show QMF(t ) for β = 1 and β =
10, respectively. Initially, the mean cooperation is QMF(0) =
0.5 because the population starts from the uniform PDF. When
R = c = 1/2, QMF(t ) remains as 0.5 always for all β as shown
in Appendix A. We expect QMF(t ) to increase (decrease) with
time for R > 1/2 [R < 1/2] because the larger R implies
the more CRD processes which diminish the exploiters and
promote cooperators. We can confirm such behaviors for both
selection intensities as shown in Figs. 1(c) and 1(d). As R
deviates from 1/2, so does the mean cooperation value QMF

s
in the steady states.

We now investigate the cooperative region in the R-c pa-
rameter space by finding the condition for QMF

s to be larger
than 1/2. For a given selection intensity β, we vary the cost c
from 0 to 1 with �c = 0.1 steps and calculate QMF

s for a series
of R values to find RMF

b (β, c) such that QMF
s (β, c, RMF

b ) = 1/2.
This MF boundaries RMF

b between the cooperative and defec-
tive regions in the R-c parameter space are mostly obtained
numerically except for the weak selection limit of β → 0.
In this limit, the boundary between two regions is given by
RMF

b = c as shown in Appendix B.
Figure 2 shows the RMF

b lines for four different values of
selection intensities, β = 1, 4, 10, and 15 together with the
analytic solution for β → 0. The black line of RMF

b = c is
the boundary for the weak selection limit of β → 0. The red
dotted line of β = 1 is almost identical to RMF

b = c except
for the large c region. For strong selection, RMF

b behaves
differently depending on the cost values. As β increases, RMF

b
also increases for c < 1/2, but it decreases for c > 1/2. These
behaviors are quite opposite to what is observed in the MC
simulations. As we will see below, the correlations between
FDD sites, which are ignored in the MF theory, play an im-
portant role for strong selection cases and make the population
evolve differently from MF theory.
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FIG. 3. Evolution of (a) cooperation probability qi and (b) payoff
πi from t = 0 to t = 1000 for i ∈ {0, . . . , 50}. Their values are repre-
sented by colors indicated by the right panels. Here c = 0.5, R = 1,
β = 100, and N = 50.

B. Monte Carlo simulation

In this section, our Monte Carlo (MC) methods and results
are presented. We perform a series of MC simulations and
measure the mean cooperations Q(t ) for various selection
intensities β, cost values c, and chain-reaction probabilities
R. The detailed MC procedure is as follows. (1) Construct a
cycle population of size N . (2) Choose a random number from
the uniform distribution in the interval [0 1] and assign it as
qi for i = 1, . . ., N . (3) Calculate the payoff πi of member i
using Eq. (1) for i = 1, . . . , N . (4) Choose an FDD site i with
the probability

pd
i = 1∑

j e−βπ j
e−βπi , (6)

and assign a new random number qi. (5) Assign new random
numbers qi−1 and qi+1 with the probabilities R for each. (6)
The N repeats of (4) and (5) are defined as a MC step (MCS)
which is taken as a unit time.

Figure 3 shows the configurations of cooperation probabil-
ities qi and payoff πi for an initial 1000 MCS of a population
of size N = 50. Parameters used in this example are c = 0.5,
R = 1, and β = 100. The cooperation probability qi and the
payoff πi at the site i are represented by colors, as shown in
the right panels. Initially (t = 0), all qi values are selected
from a uniform distribution from 0 to 1. A sudden change
of the color in a vertical column implies the death and re-
placement of the member at the site. We first note that overall
structure evolves to a cooperative (green) population. Green
sites are more common for a later time. Also, we find that
green columns tend to aggregate as time goes by. In other
words, the population develops assortments of cooperators.
The average lifetime of the defective [red (dark gray)] sites
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FIG. 4. The mean cooperation Q(t ) measured in MC (symbols)
are compared with the MF values (lines). MC data are obtained using
the population of size N = 200 with c = 0.5 at six different values
of R = 0, 0.2, 0.4, 0.6, 0.8, and 1 for (a) β = 1 and (b) β = 10. For
β = 1, MC results are consistent with MF calculation, but deviation
from the MF is manifested for β = 10.

is much smaller than that of cooperative [green (light gray)]
sites. The death and replacement activities are localized near
the red sites. These features explain qualitatively how coop-
eration evolves in our model at large β values. A cooperator
in the middle of defectors has a small fitness and tends to die
out by FDD. Newcomers at the site cannot survive unless they
are defectors. Hence, the defector abundant regions become a
homogeneous defective (D) community. On the other hand, a
cooperator in the middle of cooperators lives long due to its
high payoff and forms a cooperative (C) community easily.
Therefore, the population develops strong assortments in a
relatively short time. In the long run, the population becomes
cooperative since the average lifetime of the members in a D
community is shorter than that in a C community.

For a quantitative analysis, we now repeat M independent
simulations and measure the average of the mean cooperation
Q(t ) at time t defined by

Q(t ) =
〈

1

N

N∑
i=1

qi(t )

〉
= 1

MN

M∑
m=1

N∑
i=1

q(m)
i (t ), (7)

where q(m)
i (t ) is the cooperation probability of member i

at time t in the mth simulation. Figure 4 shows the mean
cooperation Q(t ) with c = 0.5 for two different values of
selection intensities (a) β = 1 and (b) β = 10 together with
the MF data from Figs. 1(c) and 1(d). In both cases, the mean
cooperation values are measured for six different values of the
chain-reaction probabilities, R = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.
The mean cooperation values are plotted in a semilog scale to
show the initial dynamics in detail, as well as the long-time
evolutions.

The strategies of the initial population are given randomly.
Hence, Q(t ) is expected to follow the MF dynamics at the
beginning. In fact, we see that the mean cooperation Q(t ) for
β = 10 as well as for β = 1 follows the MF values in the
early time (t < ti ≈ 0.1). At a sufficiently later time, Q(t )
converges to its steady-state value Qs although the time to
reach Qs depends on β and R values. For β = 1, MC results
are consistent with the MF calculation quite well for all time.
Even in the steady states, mean cooperations Qs are not much
different from the MF values QMF

s . However, for a strong
selection, deviations from the MF values are manifested for

FIG. 5. Distribution d (s) of the distances s between successive
FDD sites for five different selection intensities β = 2, 10, 50, 100,
and ∞. For all cases, populations of N = 2048 are used with the
parameters c = 0.5 and R = 1.

t > ti. After following the initial MF-like dynamics, Q(t ) for
β = 10 becomes larger than MF values in most cases. The
only exception is the steady-state value Qs of R = 0. It is
almost the same as the MF value. These results are consistent
qualitatively with our previous observation on the configura-
tion evolution in Fig. 3. Before the correlation between FDD
sites develops, the population evolves with MF dynamics, but
once the FDD correlation is established, dynamics deviates
from MF quite drastically. First, it takes longer to get into the
steady state since not all FDD sites are independent. Second,
FDD correlation induces an assortment of cooperators for
R > 0 so that it boosts the cooperation. For β = 10 shown
in Fig. 4(b), the mean cooperation becomes larger than 1/2 at
a later time even for R = 0.2 (red triangles) while RMF

b is only
0.3. For R = 0, FDD correlation is developed, but it does not
promote cooperation due to a lack of the CRD process. Hence,
the time to reach the steady state is longer than the MF case’s,
but Qs is almost identical to QMF

s .
We now measure the distance distributions between suc-

cessive FDD sites in the steady states to find correlation
lengths [11,18]. Figure 5 shows the distribution d (s) of the
distances s between successive FDD sites measured for c =
0.5 and R = 1 at five different values of selection intensities,
β = 2, 10, 50, 100, and ∞ using the population of N = 2048.
When the distributions d (s) are plotted against s in a log-log
scale, they lie on a single line indicating power-law distribu-
tions d (x) ∼ x−α up to the correlation lengths ξ which depend
on the selection intensities. From the figure, we estimate the
correlation lengths ξ = 3.88, 4.73, 28.4, 64.5, and ∞ for β =
2, 10, 50, 100, and ∞, respectively. The power-law exponent
α is around α = 3.2 ± 0.1. This exponent is similar to the
known exponent α = 3.15 ± 0.05 of the 1D BS model [18].
The power law for β = ∞ indicates that the evolution occurs
in a dynamical criticality [18,24].

As in the MF calculation, we use the criterion of Qs > 1/2
to identify the cooperative region in the R-c parameter space.
We choose five different values of selection intensities, β = 1,
4, 10, 100, and ∞, and perform a series of Monte Carlo
simulations to find Rb such that Qs(β, c, Rb) = 1/2 for nine
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FIG. 6. The boundaries between cooperative and defective
phases in the R-c parameter space are presented for β = 1 (pluses), 4
(circles), 10 (crosses), 102 (diamonds), and ∞ (triangles). Rb values
are obtained at c = 0.1, 0.2, . . ., 0.9 for each β. N = 200 for all
cases.

different cooperation costs, c = 0.1, 0.2, . . . , 0.9 for each
selection intensity. Figure 6 shows the boundaries between
the cooperative region (Qs > 1/2) and the defective region
(Qs < 1/2) in the R-c parameter space. They are obtained by
MC simulations on a population of size N = 200. The plus,
circle, diamond, and triangle symbols are used to denote the
Rb values for β = 1, 4, 10, 100, and ∞, respectively.

We would like to emphasize that Rb values in Fig. 6 are
obtained from the simulations on the population of finite
size (N = 200). We believe that the boundaries between the
cooperative and defective regions for N = ∞ would not be
much different from those in Fig. 6 for β = 1, 4, 10, and 100
cases. For finite selection intensities, the correlation lengths
are smaller than the population size used here (see Fig. 5.).
However, the correlation length for the β = ∞ case seems
to diverge. Hence, N = 200 is not big enough to estimate Rb

for β = ∞. As one can see in Fig. 6, for the strong selec-
tion limit, Rb (from simulation on the N = 200 population)
is practically zero for c < cc ≈ 0.6 but finite for c > cc. We
believe that Rb for the infinite population is also zero for
c < cc. For large costs (c > cc), we cannot predict with cer-
tainty whether Rb is finite or not, but we speculate that it may
remain finite. In Appendix C, the Rb values for the infinite
population are investigated for c = 0.8 and 0.9 using a series
of populations with increasing sizes. They are well fitted by
Rb(N ) = R∞

b − AN−γ with R∞
b = 0.38 and 0.78 for c = 0.8

and 0.9, respectively, with γ = 0.65 for both cases. We do not
know if this trend will continue to the infinite population, but
these results make us think that R∞

b remains as finite at least
for some large cost values.

Note that Rb values in Fig. 6 for large cost values for strong
selections are larger than RMF

b values in Fig. 2. For example,
for β = 10, Rb = 0.975, while RMF

b = 0.617 at c = 0.9. We
think this is because the assortment of cooperators is not good
enough for the population to be cooperative for a large cost.
When c is large, the assortment does not seem to prevent the
invasion of defectors. The CRD process in our model still pre-
vents an invasion of defectors in the middle of a C community,
but it can be vulnerable to attack at the boundary. Imagine a

population consisting of two uniform communities, coopera-
tors at i � N/2 (with the cooperation probability qC > 1/2)
and defectors at i > N/2 (with the cooperation probability
qD < 1/2) on a 1D lattice. The payoff πBC at the boundary
site k = N/2 of the C community is given by

πBC = (qC + qD) − (2cqC) = (1 − 2c)qC + qD. (8)

On the other hand, the payoff πD of a defector in the middle
of the D community is given by

πD = 2(1 − c)qD. (9)

Therefore, πBC is smaller than πD for c > 1/2 and a k = N/2
site is likely to be an FDD site for large β. Let us assume that
it has died by an FDD process and a newly assigned qk is a
midpoint between qC and qD, i.e., qN/2 = (qC + qD)/2. Then
site n = N/2 − 1 becomes the new boundary of C community,
and its payoff is given by

πn = qC + (qC + qD)/2 − 2cqC

= 1
2 [(3 − 4c)qC + qD]. (10)

Comparing it with πD = 2(1 − c)qD, we see that πn is smaller
than πD for c > 3/4. Hence, in this hypothetical population,
the C community can be invaded by a defector for c > 3/4.
In real simulations, both C and D communities do not have
the uniform cooperation probabilities, but this example may
explain why the assorted population can be less cooperative
than the MF prediction for large c. The CRD processes invoke
the correlation between FDD sites and help the cooperators
and defectors make their own communities, but D communi-
ties rather than C communities proliferate when the cost to
benefit ratio is close to 1.

IV. SUMMARY AND CONCLUDING REMARKS

We have generalized Bak-Sneppen model to an evolution-
ary game theory and showed that the chain-reaction element
of the Bak-Sneppen dynamics could provide a natural way
for the evolution of cooperation. In most conventional studies,
the success of a strategy was measured by its payoff only.
Here, using the concept of chain-reaction bankruptcy, we
introduced the CRD process in addition to the FDD process
to the evolutionary dynamics. Considering the disadvantage
of an abrupt interaction environment change, we think that
CRD is a natural phenomenon which can be widely found in
many evolutionary systems. It provides one of the simplest
ways to suppress the proliferation of defectors. However, to
the authors’ knowledge, it has not been studied seriously as a
mechanism for the evolution of cooperation. We have devel-
oped the MF theory and performed a series of MC simulations
for strategy evolution when the CRD process coexisted with
the FDD process and provided a phase diagram in the R-c
parameter space. For strong selection, we showed that the
CRD process introduced strong spatiotemporal correlations
between strategies. These correlations invoked the assortment
of cooperators and made the population more cooperative than
the MF theory predicted for most cases.

In this work, we investigated a rather small strategy space,
memoryless stochastic strategies on a simple population struc-
ture. However, we believe that our main results, the emergence
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of strong cooperation through the assortment of cooperators
invoked by the CRD, would be valid for population structure
variation as well as the strategy space extension. Preliminary
results with the extended strategy space show that the coop-
eration emerges more easily and rapidly when we included
reactive strategies.

Our study may also have natural implication in economical
systems because the chain-reaction bankruptcy is a quite fea-
sible scenario. The interaction network is in the real world
is complex and far from a simple cycle structure, but we
can still define the distance between two firms in terms of
minimum number of edges to connect them. It might be
worthwhile analyzing bankruptcy data to see if they show
any criticality characterized by the power-law distribution in
the size of bankruptcy and the correlation between successive
bankruptcy. Future research may also investigate the ecologi-
cal data on the correlation of death tolls.
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APPENDIX A: MEAN COOPERATION IN MF THEORY
FOR c = R = 1/2

We show that the mean cooperation Q is 1/2 always for
c = R = 1/2 in MF theory for all β. For c = 1/2 and R =
1/2, we see that �p ≡ p(q, t +�t ) − p(q, t ) is given by

�p(q, t ) = 1

N
[1 − DF + 2R(1 − DC)] (A1)

= 1

N
[2 − DF − DC] (A2)

from Eq. (4). Here DF and DC are the probability densities to
die by FDD and CRD processes per unit time, respectively.
They are given by

DF(q, t ) = eβq p(q, t )∫ 1
0 eβq p(q, t ) dq

, (A3)

DC(q, t ) = e−βq p(q, t )∫ 1
0 e−βq p(q, t ) dq

. (A4)

If the distribution p(q, t ) has the mirror symmetry of p(q, t ) =
p(1 − q, t ), we have

DF(1 − q, t ) = eβ(1−q) p(1 − q, t )∫ 1
0 eβq p(q, t ) dq

(A5)

= eβe−βq p(1 − q, t )

eβ
∫ 1

0 e−β(1−q) p(q, t ) dq
(A6)

= eβe−βq p(q, t )

−eβ
∫ 0

1 e−βs p(1 − s, t ) ds
(A7)

= eβe−βq p(q, t )

eβ
∫ 1

0 e−βs p(s, t ) ds
(A8)

= DC(q, t ). (A9)

By substituting q = 1 − q in Eq. (A9), we also get DC(1 −
q, t ) = DF(q, t ) and �p(1 − q, t ) = �p(q, t ). This implies
that if the distribution p(q) has the mirror symmetry at t , so it
does at t + �t . We start from the uniform distribution, which
certainly satisfies p(1 − q, 0) = p(q, 0). Therefore, p(q, t )
has the mirror symmetry, and the mean cooperation QMF is
given by

QMF =
∫ 1

0
qp(q) dq (A10)

= 1

2

[∫ 1

0
q p(q) dq +

∫ 1

0
(1 − q) p(1 − q) dq

]
(A11)

= 1

2

∫ 1

0
[q + (1 − q)]p(q) dq (A12)

= 1

2

∫ 1

0
p(q) dq (A13)

= 1

2
(A14)

for all t .

APPENDIX B: MF CALCULATION OF RMF
b FOR β → 0

For the weak selection limit of β → 0, we calculate p(q, t )
and QMF(t ) in the linear order of β with initial uniform distri-
bution. When the initial distribution is uniform, i.e., p(q, 0) =
1 for 0 � q � 1, the distribution change �p0 between t = 0
and t = �t = 1/N is given by

�p0 = p(q,�t ) − p(q, 0) (B1)

= 1

N

[(
1− e2βcq∫ 1

0e2βcq dq

)
+2R

(
1− e−βq∫ 1

0 e−βq dq

)]
(B2)

= β

N
(c − R)(1 − 2q), (B3)

where we used Eq. (4) and ignored the O(β2) term. Now
we calculate �p1 using Eq. (4) and p(q,�t ) = 1 + �p0 and
obtain

�p1 = p(q, 2�t ) − p(q,�t ) (B4)

= β

N

(
1− 1 + 2R

N

)
(c−R)(1−2q) (B5)

and

p(q, 2�t ) = p(q,�t )�p1 (B6)

= 1 + �p0 + �p1. (B7)

Applying this process iteratively, we get

�pk = p(q, (k + 1)�t ) − p(q, k�t ) (B8)

= β

N

(
1 − 1 + 2R

N

)k

(c − R)(1 − 2q) (B9)

and

p(q, k�t ) (B10)

= 1 +
k−1∑
j=0

�p j (B11)
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= 1 + β(c − R)(1 − 2q)

N

k−1∑
j=0

(
1 − 1 + 2R

N

)k

(B12)

= 1 + β(c − R)(1 − 2q)

1 + 2R

[
1 −

(
1 − 1 + 2R

N

)k]
. (B13)

Since �pk goes to zero as k goes to infinity, the steady-
state distribution ps is obtained by taking k → ∞ limit of
Eq. (B13). It is given by

ps(q, k�t ) = lim
k→∞

p(q, k�t ) (B14)

= 1 + β(c − R)(1 − 2q)

1 + 2R
. (B15)

Now we get the mean cooperation QMF
s in the steady state by

QMF
s =

∫ 1

0
q

[
1 + β(c − R)(1 − 2q)

1 + 2R

]
dq (B16)

= 1

2
+ β(R − c)

6 + 12R
(B17)

and see that RMF
b in the weak selection limit is given by

RMF
b = c (B18)

since QMF
s − 1/2 is positive, zero, and negative for R > c, R =

c, and R < c, respectively.

APPENDIX C: SYSTEM SIZE DEPENDENCE
OF Rb FOR β = ∞

We find Rb for c = 0.8 and c = 0.9 in the strong selection
limit (β = ∞) for five different population sizes of N = 50,
100, 200, 400, and 800 each. They are plotted against 1/N in
Figs. 7(a) and 7(b). The boundary values Rb decreases with in-
creasing population sizes. The finite-size effect does not seem
to follow a 1/N correction. In Figs. 7(c) and 7(d), we adjust
the exponent γ so that data lie on straight lines when they are
plotted against 1/Nγ . The lines in Figs. 7(c) and 7(d) are given
by Rb = R∞

b + AN−γ with γ = 0.65, A = 2.35 and Rb = 0.38
for Fig. 7(c) and with γ = 0.65, A = 1.35 and Rb = 0.78
for Fig. 7(d). If this trend continues to infinite N , we get
the boundary value of the infinite population R∞

b = 0.38 for
c = 0.8 and 0.78 for c = 0.9.

APPENDIX D: CHAIN-REACTION DEATH
ON A SCALE-FREE NETWORK

We study the chain-reaction death model on scale-free
(SF) networks which are generated by Barabási-Albert (BA)
algorithm [25]. We grow the network from an initial seed of
two (connected) nodes by attaching new nodes one by one.
When we add a node, we select two nodes in the network
proportionally to their current degrees and connect the new
node to the selected nodes. The network grows until its size
becomes N = 200.

Unlike the cycles considered in the main text, nodes on the
SF networks have different numbers of neighbors. Due to this
heterogeneity in degrees, individuals in the SF network play a
different number of games. Now we need to consider the cost
g to play a game in addition to the cost c of cooperation. The

FIG. 7. System size dependence of Rb for c = 0.8 and c = 0.9
in the strong selection limit of β = ∞. The boundary values Rb are
measured for N = 50, 100, 200, 400, and 800 and plotted plotted
against 1/N for (a) c = 0.8 and (b) c = 0.9. In (c) and (d), they are
plotted against 1/Nγ with γ = 0.65 for both (c) and (d). The lines in
(c) and (d) are given by Rb = R∞

b + AN−γ with γ = 0.65, A = 2.35,
and Rb = 0.38 for (c) and with γ = 0.65, A = 1.35, and Rb = 0.78
for (d).

payoff matrix becomes

C D
C
D

(
1 − c − g − c − g

1 − g − g

)
,

(D1)

where we normalize the benefit of cooperation b as a unit
value as in the main text. The total payoff πi of member i
is now given by

πi = −ki(cqi + g) +
∑
j∈Si

q j (D2)

= π0
i − gki, (D3)

where ki is the degree of member i, Si is the set of neighbors
of member i, and π0

i is the payoff without the game cost g.
For cycles, all members have the same degree ki = 2, and the
game cost g does not affect strategy evolution since the death
probability of member i

pd
i = 1

Z
e−βπi =

¯

1

e2βg Z0
e−βπ0

i +2βg (D4)

= 1

Z0
e−βπ0

i (D5)

is independent of g. Here Z0 = ∑
i e−βπ0

i . However, for
SF networks, the death probability pd

i ∝ e−βπi = eβgki e−βπ0
i

strongly depends on g especially for hubs whose degree ki is
large.

We investigate the evolution dynamics with two different
values of the game cost, g = 0 and g = 1−c

2 . The latter is
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FIG. 8. The phase boundaries between cooperative and defective
regions in the R-c parameter space for g = 0. Rb values for β = 0.1
(pluses), 1 (circles), 4 (crosses), 10 (diamonds), and ∞ (triangles)
are represented at c = 0.1, 0.2, ..., 0.9.

chosen such that the average payoff per game is zero when
players decide their actions randomly. In other words, the
death probability pd

i of member i becomes independent of its
degree ki when all members choose their actions at random.

For a given set of parameters c, g, R, we perform M = 1000
independent simulations and measure the average cooperation
probability of the population in the steady states. Each simu-
lation is performed on a different SF network which is grown
independently with the BA algorithm.

Figure 8 shows the phase boundaries between cooperative
and defective regions in the R-c parameter space for g = 0.
For given c and β (with g = 0), we measure the mean coopera-
tion Qs in steady states for a series of R values and find Rb such
that Qs(R = Rb) = 0.5. Rb values for β = 0.1, 1, 4, 10 and
∞ are denoted by plus, circle, cross, diamond, and triangle
symbols, respectively, at c = 0.1, 0.2, . . ., and 0.9 in Fig. 8.

There are two notable features in this figure. First, the
cooperative region is smaller comparing to Fig. 6 for the
cycle population in the main text. At first glance, this looks
like a puzzle. A selfish player on a hub is more likely to be
eliminated through a CRD than a selfish player on a peripheral
site because the former has more potential FDD sites in its
neighbors. Since the influence of hubs is more significant than
that of peripheral sites in general, we naturally expect CRD
processes may promote cooperation more efficiently on SF
networks. However, Fig. 8 shows that the cooperative regions
are smaller on SF networks than on cycles. For example, when
β = ∞ and c = 0.5, the SF population evolves to cooperation
only for R � 0.45 while the cycle population does for almost
any positive R.

To understand this unexpected feature, we analyze the pay-
off distribution at hub sites. For g = 0, the payoff of member
i can be written as

πi = ki(Qi − cqi ), (D6)

where Qi = 1
ki

∑
j∈Si

q j is the average cooperation probability
of the neighbors of member i. When qi is smaller than Qi/c,
Qi − cqi is positive and πi becomes very large for ki � 1.
Hence the player at a hub site (say, site i) is unlikely to die by
FDD if qi < Qi/c. On the other hand, if the hub is cooperative,

FIG. 9. The boundaries between cooperative and defective
phases in the R-c parameter space are presented for β = 0.1 (pluses),
1 (circles), 4 (crosses), 10 (diamonds), and ∞ (triangles). Rb values
are obtained at c = 0.1, 0.2, . . . , 0.9 for each β and N = 200 for all
cases.

than it can avoid CRD by providing enough payoff to its
neighbors. Therefore, unless c is close to 1, a cooperative hub
with selfish defective neighbors becomes stable when

Qi < qi < Qi/c. (D7)

For c = 1/2, the above inequality becomes

Qi < qi < 2Qi, (D8)

which holds, for example, when qi = 0.6 and Qi = 0.4. In this
case, the population lies in a defective phase since the number
of hubs is much smaller than the number of their neighbors.

This observation also explains the other feature of our
model on SF network (with g = 0). According to Fig. 8, the
defective regions in the R-c parameter space decrease as c
increases for c � 0.6 and β � 1. Recall that the cost c is
the “equal gain” of switching from C to D, i.e., the level of
the temptation for defection. Hence it is natural to expect
the defective region to increase as c increases. However, for
c � 0.6, Fig. 8 shows the opposite when β is large. Note that
the larger the c value, the smaller the range of qi that satisfies
inequality (D7). Therefore, the defective community consists
of an altruistic hub surrounded by selfish neighbors becomes
unstable, and the defective phase regions decrease as the cost
c increases for large c.

We now consider the case of g = 1−c
2 in which the payoff

matrix of Eq. (D1) becomes

C D

C

D

⎛
⎝ 1−c

2
−1−c

2
1+c

2
−1+c

2

⎞
⎠.

(D9)

The sum of all elements in the matrix is zero. Therefore,
when all members choose their actions randomly, the average
payoff is zero, and the probability to be an FDD site becomes
independent of the degree of the site. As in the case of g = 0,
we perform MC simulations for a series of c and R values
and measure the population average of the cooperation prob-
abilities to obtain the phase boundary between cooperative
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and defective regions. Figure 9 shows the phase diagram. The
plus, circle, cross, diamond, and triangle symbols denote the
Rb values for β = 0.1, 1, 4, 10, and ∞, respectively.

Note that the unusual negative slopes of Rb(c) (observed in
Fig. 8) disappear in Fig. 9, and the defective region monoton-
ically grows as the cost c increases. For c = 1, the game cost
g = (1 − c)/2 = 0 and hence the Rb values are the same as in
Fig. 8. As c decreases from 1, g increases and the cost for the

games kig for the hubs becomes large. This makes it hard for
the hub to be an altruist unless it receives enough cooperation
from its neighbors. An altruistic hub with selfish neighbors is
prone to be an FDD site since it pays costs for its cooperative
actions in addition to game costs. This makes the exploitation
of altruistic hub become unstable. Therefore, assortments be-
tween cooperators are enhanced, and the cooperative region
increases as c decreases.
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