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Extreme value statistics and arcsine laws for heterogeneous diffusion processes
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Heterogeneous diffusion with a spatially changing diffusion coefficient arises in many experimental systems
such as protein dynamics in the cell cytoplasm, mobility of cajal bodies, and confined hard-sphere fluids. Here,
we showcase a simple model of heterogeneous diffusion where the diffusion coefficient D(x) varies in a power-
law way, i.e., D(x) ∼ |x|−α with the exponent α > −1. This model is known to exhibit anomalous scaling of the
mean-squared displacement (MSD) of the form ∼t

2
2+α and weak ergodicity breaking in the sense that ensemble

averaged and time averaged MSDs do not converge. In this paper, we look at the extreme value statistics of this
model and derive, for all α, the exact probability distributions of the maximum spatial displacement M(t ) and
arg-maximum tm(t ) (i.e., the time at which this maximum is reached) till duration t . In the second part of our
paper, we analyze the statistical properties of the residence time tr (t ) and the last-passage time t�(t ) and compute
their distributions exactly for all values of α. Our study unravels that the heterogeneous version (α �= 0) displays
many rich and contrasting features compared to that of the standard Brownian motion (BM). For example, while
for BM (α = 0), the distributions of tm(t ), tr (t ), and t�(t ) are all identical (á la “arcsine laws” due to Lévy),
they turn out to be significantly different for nonzero α. Another interesting property of tr (t ) is the existence of
a critical α (which we denote by αc = −0.3182) such that the distribution exhibits a local maximum at tr = t/2
for α < αc whereas it has minima at tr = t/2 for α � αc. The underlying reasoning for this difference hints at
the very contrasting natures of the process for α � αc and α < αc which we thoroughly examine in our paper.
All our analytical results are backed by extensive numerical simulations.

DOI: 10.1103/PhysRevE.105.024113

I. INTRODUCTION

Many real-world systems involve the motion of tracer
particles in a heterogeneous medium with substantial spatial
variations of the diffusion coefficient. For example, in [1,2],
the dynamics of protein in the cell cytoplasm was shown to
exhibit a systematic spatial variation of the diffusion coeffi-
cient by using mesoscopic numerical methods. Similarly, the
mobility of cajal bodies (nuclear organelles) inside living cells
develops heterogeneity due to their interactions with other
nuclear components [3]. Other examples of heterogeneous
diffusion include particles moving between nearly parallel
plates [4], diffusion in the presence of a temperature gradient
[5], diffusion in nanoporous solids [6], confined hard-sphere
fluids [7], and so on. Descriptions with a space-dependent
diffusion coefficient have also been useful in modeling the dif-
fusion in turbulent media [8] and on fractal objects [9]. Quite
recently, several studies on heterogeneous diffusive processes
(HDPs) have revealed anomalous scaling of the mean-squared
displacement (MSD) and weak ergodicity breaking between
time averaged and ensemble averaged MSDs [10–16]. Persis-
tent properties of HDPs have also been investigated in [17].
Extensions of HDPs driven by colored noises were considered
in [18–20]. Rigorous efforts have also been made to under-
stand the combined effect of HDPs and other models such as
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fractional Brownian motion [21] and scaled Brownian motion
[22].

In this paper, we analyze a simple model of one-
dimensional HDPs where the diffusion coefficient has a
power-law dependence on the position of the particle, i.e.,
D(x) ∼ |x|−α with α > −1. For α = 0, it reduces to the ho-
mogeneous case of standard Brownian motion (BM). While
the BM is extensively studied in the literature and a large
number of results are known, the amount of studies for HDPs
is still far from exhaustive. In an attempt toward this direction,
we here investigate the extreme value statistics (EVS) of the
HDP with power-law form for D(x). In particular, we study
how heterogeneity ramifies the statistics of the maximum
M(t ) of the trajectory x(t ) observed till time t and the time
tm(t ) at which this maximum is achieved. A schematic illus-
tration of M(t ) and tm(t ) for a trajectory is shown in Fig. 1.

For one-dimensional BM (α = 0), the marginal distribu-
tions of M(t ) and tm(t ) read [23]

Pm(M|t ) = 1√
πD0t

exp

(
− M2

4D0t

)
, (1)

Pm(tm|t ) = 1

π
√

tm(t − tm)
, (2)

where D0 is the diffusion coefficient. Beyond BM, such stud-
ies have also been performed for other stochastic processes
such as constrained Brownian motion, random walks and their
generalizations [23–31], random acceleration [32–34], active
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FIG. 1. A schematic illustration of the maximum distance M
attained by the process x(τ ) (shown in red) in Eq. (5) till duration t ,
i.e., M(t ) = max[{x(τ )}], where 0 � τ � t . The time tm represents
the time at which this maximum is attained. The time tr represents
the amount of time for which x(τ ) stays in the positive semiaxis and
the duration t� is the last time that the process changes its sign (or
crosses the origin).

particles [35,36], fractional Brownian motion [37–39], con-
tinuous time random walks [40], random matrices [41–43],
fluctuating interfaces [44–46], transport models [47–49], fi-
nance [50], and other physical systems [51–55] (see [56–65]
for review). The subject of extreme value statistics has found
applications in ecology [66], computer science [67–69], and
convex hull problems [70]. Generalizing these studies, the
statistics of the time between maximum and minimum spa-
tial displacements was also recently considered for Brownian
motion and random walks in [71,72].

Even though there has been a substantial amount of study
on EVS, most of these studies, are based on a homogeneous
setup. On the other hand, we saw above that, in many phys-
ical situations, the heterogeneous description becomes more
relevant. A natural question then is, what happens to the
distributions of M(t ) and tm(t ) in Eqs. (1) and (2) when the
dynamics takes place in a heterogeneous medium? Our work
aims to provide a systematic understanding to this question
in the context of HDPs with a power-law form of D(x). Our
study demonstrates that the extremal statistics of this model is
rather rich and possesses many contrasting features compared
to that of the BM.

In the second part of our paper, we investigate the prop-
erties of the following two quantities measured along a
trajectory x(t ) observed till time t : (i) residence time tr (t )
spent on the positive (or negative) semiaxis and (ii) the last
time t�(t ) that the particle crosses the origin. For a tra-
jectory of the particle, these two quantities are illustrated
in Fig. 1. The celebrated arcsine laws for one-dimensional
Brownian motion state that the probability distributions of
tm(t ), tr (t ), and t�(t ) are all exactly the same and given
by [23,73]

Pi(ti|t ) = 1

π
√

ti(t − ti )
, (3)

where ti ∈ {tm, tr, t�}. The corresponding cumulative probabil-
ity has the “arcsine” form

Prob[ti � t] = 2

π
arcsine

(√
ti
t

)
, (4)

and hence the name arcsine laws. Over the years, these quan-
tities have been studied in different contexts such as Brownian
motion, random walks and their generalizations [73–80], ran-
dom acceleration [32,81], continuous time random walks
[40,82], fractional Brownian motion [38], run-and-tumble
particles [35,83], finance [50,84,85], renewal processes, and
other processes [86–90]. Quite recently, arcsine laws have
also been studied both experimentally and theoretically in
stochastic thermodynamics [91,92]. The statistics of residence
time has also been used to classify the nonergodicity in
continuous-time random walk models [93,94]. Here, we look
at the statistics of tr (t ) and t�(t ) in conjunction with tm(t ) for
the HDPs with a power-law form of D(x). More specifically,
our interest is to study the ramifications of heterogeneity on
the distributions of these three observables. We find that while
their distributions are exactly the same for α = 0 (BM), they
turn out to be significantly different for nonzero α. Our work
provides the exact expression of the probability distributions
of M(t ), tm(t ), tr (t ), and t�(t ) for all α > −1.

The remainder of paper is structured as follows: We define
our model in Sec. II and also present all our main results here.
Section III presents the derivation of the joint distribution
of M(t ) and tm(t ) which is then used to obtain the marginal
distribution of M(t ) in Sec. III C and that of tm(t ) in Sec. III D.
We next compute the distributions of residence time tr (t ) and
last-passage time t�(t ) in Secs. IV and V, respectively. Finally,
we conclude in Sec. VI.

II. MODEL AND SUMMARY OF RESULTS

We study the motion of a particle in one dimension
moving in a heterogeneous medium. The heterogeneity is
administered by considering the position-dependent diffusion
coefficient D(x). The time evolution equation for the position
of the particle reads

dx

dt
=

√
2D(x)η(t ), (5)

where η(t ) is the Gaussian white noise with zero mean and
correlation 〈η(t )η(t ′)〉 = δ(t − t ′). In this paper, we focus on
the power-law form of the diffusion coefficient:

D(x) = D0lα

|x|α , with α > −1, (6)

where D0 is a positive constant that sets the strength of the
noise and l is the length scale over which D(x) changes. The
exponent α quantifies the strength of the gradient of D(x).
Throughout this paper, we consider α > −1 and choose the
starting position at the origin (unless specified). Note that
for α = 0, D(x) = D0 is just a constant and we recover the
standard Brownian motion (BM). However, our main interest,
in this paper, lies in α �= 0 and comparing it with the BM.

Recall that the Langevin equation (5) does not uniquely
specify the model for the position-dependent diffusion co-
efficient and one also needs to specify the sense in which
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the stochastic integration of Eq. (5) is carried out [95,96].
Throughout this paper, we will interpret Eq. (5) in the Ito
sense. Another problem that one encounters in simulation is
that D(x) diverges as |x| → 0 for α > 0 while it tends to zero
for α < 0. This will cause the shooting off of particles to the
infinity for α > 0 or accumulation around x = 0 for α < 0.
In order to avoid this problem in simulation, we deploy the
following form of D(x) in simulation:

D(x) = lim
xoff→0+

D0lα

(|x| + xoff )α
(for simulation). (7)

On the other hand, for all our analytic calculations, we take
the form of D(x) in Eq. (6). Such xoff considerations of D(x)
with power-law form have also been studied in [10–12]. For
general α, the mean-squared displacement of x(t ) in Eq. (5)
scales with time as 〈x2(t )〉 ∼ t

2
2+α implying subdiffusive be-

havior for α > 0, superdiffusive for α < 0, and diffusive for
α = 0 [11]. Recently, this model was shown to display weak
ergodicity breaking in the sense that time averaged and en-
semble averaged MSDs are not identical [10].

Here, we look at the statistical properties of the maximum
value M(t ) that the position x(t ) of the particle attains till
duration t , i.e., M(t ) = max[{x(τ )}], where 0 � τ � t (see
Fig. 1). In conjunction to this, we also investigate the statistics
of the time tm(t ) at which this maximum is reached. Exploiting
the path-decomposition method for Markov processes [24],
we derive exact expression for the joint distribution of M(t )
and tm(t ) for all values of α. Marginalizing this joint distri-
bution provides the exact form of the distributions of M(t )
and tm(t ).

Next, we also look at the statistics of residence time tr (t )
which refers to the amount of time that the particle stays in the
x > 0 region till duration t . Formally, it is written as tr (t ) =∫ t

0 dτ�(x(τ )), where �(x) denotes the Heaviside theta func-
tion. Using the Feynman-Kac formalism [73,97], we compute
the exact probability distribution of tr (t ) for all values of α.
Finally, we study the last time t�(t ) that the process x(τ ) in
Eq. (5) changes sign (or crosses the origin) till duration t
and derive exact probability distribution for t�(t ). A schematic
illustration of M, tm, tr , and t� for a typical trajectory of the
particle is shown in Fig. 1. Here, we summarize our main
results:

(1) For general α, we derive the exact probability dis-
tribution of the maximum M. Denoting this distribution by
Pm(M|t ), we show that it possesses a scaling behavior of the
form

Pm(M|t ) = 1

(Dαt )
1

2+α

Fα

(
M

(Dαt )
1

2+α

)
, (8)

where Dα is a constant given in Eq. (24) and the scaling
function Fα (z) is defined as

Fα (z) =
H 1

2+α
(0)

z3+α

∫ ∞

0
dw e− w

z2+α H 1
2+α

(
√

w), (9)

with H 1
2+α

(0) = 2
1

2+α

	( 1+α
2+α

)
and the function Hβ (w) given in

Eq. (B2). For large z, we find that the scaling function decays
as Fα (z) ∼ zαe−z2+α/4.

(2) We next calculate the probability distribution of the
time tm(t ) and show that it possesses the scaling structure

Pm(tm|t ) = 1

t
Gα

m

(
tm
t

)
, (10)

with the scaling function Gα
m(z) defined as

Gα
m(z) =

(2 + α)H 1
2+α

(0)

2z
1+α
2+α (1 − z)

1
2+α

∫ ∞

0
dw

Xα

(√
1−z

zw2+α

)
H 1

2+α

(
w

2+α
2

) . (11)

The functions Hβ (x) and Xβ (x) are defined, respectively, in
Eqs. (23) and (B3). For BM, it follows from Eq. (2) that the
scaling function Gα

m(z) is symmetric under the transformation
z → 1 − z. However, as evident from Eq. (11), this symmetry
is no longer present for general α. This is further exemplified
by the behavior of the scaling function as z → 0 and z → 1
for which we later show divergences of the form Gα

m(z → 0) ∼
z− 1+α

2+α and Gα
m(z → 1) ∼ (1 − z)−

1
2 .

(3) We also compute the distribution Pr (tr |t ) of the res-
idence time tr for general α showing that it has the scaling
form

Pr (tr |t ) = 1

t
Gα

r

(
tr
t

)
, (12)

where the scaling function Gα
r (z) is given by

Gα
r (z) = sin

(
π

2+α

)
π [z(1 − z)]

1+α
2+α

× 1

z
2

2+α + (1 − z)
2

2+α + 2 cos
(

π
2+α

)
[z(1 − z)]

1
2+α

.

(13)

This scaling function diverges as Gα
r (z) ∼ z− 1+α

2+α as z → 0 and
as Gα

r (z) ∼ (1 − z)−
1+α
2+α as z → 1.

(4) Finally, we derive the probability distribution P�(t�|t )
of the last-passage time t� which also possesses the scaling
structure

P�(t�|t ) = 1

t
Gα

�

(
t�
t

)
, (14)

with the scaling function Gα
� (z) given by

Gα
� (z) = z− 1+α

2+α (1 − z)−
1

2+α

	
(

1+α
2+α

)
	

(
1

2+α

) . (15)

Here, once again, we find that the scaling function does
not retain symmetry under the transformation z → 1 − z for
α �= 0. Consequently, we get different behaviors of Gα

� (z) for

z → 0 and z → 1, viz. Gα
� (z → 0) ∼ z− 1+α

2+α and Gα
� (z → 1) ∼

(1 − z)−
1

2+α .
We remark that for α = 0, all scaling functions written

above converge to that of the BM in Eqs. (1) and (3). Also,
note that that the distributions of tm, tr , and t� are completely
different for general α and they are identical only for α = 0.
Another interesting property contrary to that of the BM is that
the distributions of tm and t� for α �= 0 have asymmetric peaks
(divergences) as ti → 0+ and ti → t−, where ti ∈ {tm, t�}. All
these observations exemplify that the properties of M, tm, tr ,
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FIG. 2. Schematic of a typical trajectory of the particle in which
it reaches M − ε at time tm for the first time and remains below M
in the remaining time t − tm. The trajectory can be decomposed into
two parts: from 0 to tm (shown in red) and from tm to t (shown in
blue).

and t� for α �= 0 are remarkably different than that of the
BM. In the following, we provide a detailed analysis of these
quantities and point out the key differences for α �= 0.

III. EXTREME VALUE M AND TIME tm

TO REACH MAXIMUM

Let us begin with the joint distribution P (M, tm|t ) of the
maximum displacement M and the time tm at which the max-
imum is attained till duration t . The initial position is fixed
to the origin. To compute this distribution, we decompose the
trajectory in two parts: (i) the part from 0 to tm and (ii) the part
from tm to t . They are shown schematically in Fig. 2, where
the red half corresponds to part (i) and the blue half represents
part (ii). Since the process is Markovian, the two parts are
statistically independent.

Let us now calculate the contribution of each part. In
part (i), the particle reaches x = M at time tm for the first
time given that it was at the origin initially. Therefore, the
probability weight in this part is just the first-passage time
distribution FM (tm|0) to reach M for the first time at tm given
that the particle was initially at x = 0. In part (ii), the process
remains below x = M in the interval t − tm such that it was at
x = M at time tm. Hence, the weight of this part is given by
the survival probability SM (t − tm|M ) where we have used the
notation Sxm (τ |x0) to denote the probability that the particle
has not crossed x = xm up to time τ starting from x = x0.
Note that the process remains below x = M in both parts.
As remarked before, these two contributions are statistically
independent due to the Markovianity of the process. However,
as shown later, it turns out that SM (τ |M ) = 0 for all nonzero
τ which implies that the contribution from part (ii) is zero. To
circumvent this problem, we follow the procedure in [24,32]
where we compute FM−ε (tm|0) and SM (t − tm|M − ε) instead
of FM (tm|0) and SM (t − tm|M ) and later take the ε → 0+ limit.
The joint distribution P(M, tm|t ) can then be written as

P (M, tm|t ) = FM−ε (tm|0)SM (t − tm|M − ε)

N (ε)
. (16)

Here 1/N (ε) is the proportionality constant independent of
t and tm and fixed by the normalization condition. For later
calculations, it turns out useful to take the double Laplace
transformation of Eq. (16) with respect to tm(→ p) and
t (→ s):

P̄(M, p|s) = F̄M−ε (s + p|0)S̄M (s|M − ε)

N (ε)
, (17)

where P̄(M, p|s) is the double Laplace transformation of
P (M, tm|t ). Quite remarkably, using the Markovian property,
we have completely specified the joint distribution of M and
tm in terms of its survival probability and first-passage time
distribution. In what follows, we use the standard techniques
to calculate these distributions and probabilities and then use
Eq. (17) to compute the joint distribution.

A. Survival probability SM (t|x0)

Let us focus on the survival probability SM (t |x0) for our
model in Eq. (5). For simplicity, we consider M � 0 and x0 �
M which is also consistent with our main aim of computing
the joint distribution in Eq. (17). In the Ito setup, SM (t |x0)
obeys the backward Fokker-Planck equation [98]

∂t SM (t |x0) = D(x0)∂2
x0

SM (t |x0), (18)

with D(x0) defined in Eq. (6). Our aim is to solve this equation
for general α. In order to solve this equation, we have to
specify the appropriate initial condition and boundary condi-
tions. Initially, the particle starts from the position x0 which
is different from the position of the absorbing wall at x = M.
Consequently, the particle always survives and we get

SM (0|x0) = 1. (19)

Next, we specify the boundary conditions which read

SM (t |x0 → M−) = 0, (20)

SM (t |x0 → −∞) = 1. (21)

To understand the boundary condition in Eq. (20), note that
if the particle initially starts from x0 → M−, then it will
immediately get absorbed. This results in the zero survival
probability. On the other hand, if the particle is initially very
far from the origin (x0 → −∞), then it will survive the barrier
at x = M for all finite time. This gives rise to the second
boundary condition in Eq. (21). Solving Eq. (18) [see Sec. I
of the Supplemental Material (SM) [99] for details], we obtain
the Laplace transformation of SM (t |x0) for x0 � 0 and α > −1
as

S̄M (s|x0) = 1

s

[
1 −

H 1
2+α

(
(asx0)

2+α
2

)
H 1

2+α

(
(asM )

2+α
2

)
]
, (22)

where the functions Hβ (x0) and as are defined as

Hβ (x0) = xβ

0 [Iβ (x0) + I−β (x0)], (23)

as =
(

s

Dα

) 1
2+α

, with Dα = D0lα (2 + α)2

4
. (24)
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Here, Iβ (x0) is the modified Bessel function of first kind.
In the next section, we proceed to use the Laplace trans-
form S̄M (s|x0) from Eq. (22) to calculate the joint distribution
P̄(M, p|s) in Eq. (17).

B. Joint probability distribution P (M, tm|t )

Coming to the expression of P̄(M, p|s) in Eq. (17), we need
to specify the Laplace transforms S̄M (s|M − ε) and F̄M−ε (s +
p|0) in the limit ε → 0+. Using Eq. (22), these Laplace trans-
forms can be easily calculated. We refer to Eqs. (A1) and (A2)
in Appendix A for the rigorous expression of these Laplace
transforms. Plugging them into Eq. (17) gives P̄(M, p|s) as

P̄(M, p|s) =
εH 1

2+α
(0)

N (ε)sH 1
2+α

(
(as+pM )

2+α
2

)

×
∂M

[
H 1

2+α

(
(asM )

2+α
2

)]
H 1

2+α

(
(asM )

2+α
2

) . (25)

The task now is to evaluate the function N (ε). For this, we
use the normalization condition of P (M, tm|t ) which in terms
of the Laplace transform P̄(M, p|s) becomes∫ ∞

0
P̄(M, p = 0|s)dM = 1

s
. (26)

Plugging P̄(M, p = 0|s) from Eq. (25), it is easy to show that
N (ε) = ε. Substituting this in Eq. (25) yields

P̄(M, p|s) =
H 1

2+α
(0)

sH 1
2+α

(
(as+pM )

2+α
2

)

×
∂M

[
H 1

2+α

(
(asM )

2+α
2

)]
H 1

2+α

(
(asM )

2+α
2

) . (27)

To summarize, we have exactly computed the Laplace trans-
formation P̄(M, p|s) of the joint distribution of M and tm for
all values of α. To get the distribution in the time domain, one
has to perform double inverse Laplace transformations which,
unfortunately, turns out to be challenging. However, one could
still obtain the explicit expressions of the marginal distribu-
tions of M(t ) and tm(t ) by appropriately integrating P̄(M, p|s)
in Eq. (27). In what follows, we use P̄(M, p|s) to obtain the
marginal distribution of the maximum M(t ) followed by that
of the arg-maximum tm(t ).

C. Marginal distribution Pm(M|t ) of M(t )

To get the marginal distribution Pm(M|t ) of the maximum
M, we integrate the joint distribution P (M, tm|t ) over all tm.
In terms of the Laplace variables p and s, this is equivalent
to putting p = 0 in the expression of P̄(M, p|s) in Eq. (27)
which then gives the Laplace transformation P̄m(M|s) of the
distribution Pm(M|t ). One finds

P̄m(M|s) = P̄(M, p = 0|s)

= −dJ̄ (M, s)

dM
, with (28)

FIG. 3. Scaling function Fα (z) in Eq. (9) is plotted for two values
of α. In both panels, solid black line represents the analytic expres-
sion in Eq. (9) and the symbols represent simulation data. We have
chosen D0 = 0.1 and l = 1.

J̄ (M, s) =
H 1

2+α
(0)

sH 1
2+α

(
(asM )

2+α
2

) , (29)

where the function Hβ (x0) in the last equation is defined in
Eq. (23). We now proceed to perform the inverse Laplace
transformation of P̄m(M|s) in Eq. (28). Fortunately, this in-
version can be exactly carried out. We refer to Sec. II of the
SM [99] for the details of this calculation. The distribution
Pm(tm|t ) possesses the scaling structure as written in (8) with
the scaling function Fα (z) defined in (9).

A few remarks are in order. First, for α = 0 in Eq. (9), we
find that H 1

2
(w) in Eq. (B2) has the simple form

H 1
2
(w) =

√
2

π
sin(w). (30)

Plugging this in the expression of the scaling function Fα (z)
in (9) and performing the integration over w yields

Fα (z) = e−z2/4

√
π

(for α = 0). (31)

This matches with the distribution of M for the standard
Brownian motion in Eq. (1). However, for general α, the
scaling function is given in Eq. (9). We also remark that the
scaling of the maximum with time as M ∼ t

1
2+α in Eq. (8) is

quite expected since the position scales as x ∼ t
1

2+α . However,
our analysis goes beyond this scaling behavior and also
provides an exact form of the associated scaling function for
all values of α.

In Fig. 3, we have plotted Fα (z) and compared it against
the simulation for two different values of α. For each value,
we have conducted simulation for three different values of t .
We see an excellent match of our analytic result in Eq. (9)
with the simulations. To contrast these results with that of
the standard Brownian motion, we look at the asymptotic
behavior of Fα (z) for different z. In particular, for α �= 0, we
have shown in Sec. III of the SM [99] that the scaling function
has the following asymptotic forms:\vskip-2pt

Fα (z) � 1

Cα	
(

1+α
2+α

) − 2z

C2
α	

(
α

2+α

) , as z → 0, (32)

�
(2 + α)H 1

2+α
(0)

2
3+2α
2+α

zαe− z2+α

4 , as z → ∞, (33)
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FIG. 4. Schematic of the trajectories that give rise to various
values of the maximum M. For red trajectory, the particle stays
below origin for all t . Consequently M = 0. Similarly, for blue
and green trajectories, the values of maximum are M1(� t

1
2+α ) and

M2(
 t
1

2+α ), respectively.

where Cα = 22/2+α

(2+α)
	( 1

2+α
)

	( 1+α
2+α

)
. On the other hand for α = 0, one

gets from Eq. (31)

F0(z) � 1√
π

(
1 − z2

4

)
, as z → 0, (34)

= e−z2/4

√
π

, as z → ∞. (35)

We see that while, for α = 0, the scaling function decreases
quadratically with z as z → 0, it changes linearly for α �= 0
[see Eq. (32)]. Also, the small-z behavior is rather different
for α < 0 and α > 0. For α < 0, we see, in Fig. 3 (left panel),
that Fα (z) rises initially with z, attains a maximum value, and
then decreases again for large z. On the other hand, for α > 0,
we see that Fα (z) initially decreases with z, then rises at some
intermediate z until it attains a local maximum. After that, it
again decreases for large z [see Fig. 3 (right panel)]. Quite
interestingly, we see a nonmonotonic dependence of Fα (z) on
z for all α �= 0 (see Fig. 3). However, as illustrated in Eq. (31),
the scaling function decreases monotonically with z for the
BM for all values of z.

To understand the nonmonotonic nature of the scaling
function Fα (z), let us analyze the trajectories that give rise
to different values of the maximum M(t ). For simplicity, we
focus on α < 0. In Fig. 4, we have shown a schematic illus-
tration of three colored trajectories which contribute to three
different maxima. The red trajectory stays below origin for all
time which contributes to M = 0. On the other hand, the blue
trajectory contributes nonzero M1(� t

1
2+α ). Since for α < 0,

the particle typically stays near the origin, it is more likely that
it crosses the origin some number of times. Consequently, the
likelihood of finding a red trajectory (where particle does not
cross the origin) is less compared to a blue trajectory (where it
crosses the origin a few times). In terms of the maximum M,
this amounts to a smaller value of the distribution Pm(M|t ) for
M = 0 as compared to the nonzero M [see Fig. 3 (left panel)].
However, to obtain large values of M, the fluctuations have to
be sufficiently strong to take it far away from the origin on the
positive side (see green trajectory in Fig. 4). Such fluctuations

FIG. 5. We have plotted the scaling function Gα
m(z) of arg-

maximum tm for three different values of α. The symbols represent
the simulation data for t = 5 which are compared with the analytic
expression (shown by solid line) in Eq. (11). Parameters chosen are
D0 = 0.1 and l = 1.

for α < 0 are extremely rare which results in smaller values
of the distribution Pm(M|t ) for large M. Overall, we obtain
a nonmonotonic nature of Pm(M|t ) [or equivalently Fα (z)].
Although we have presented the physical reasoning for α < 0,
it is easy to extend it for α > 0 also.

D. Marginal distribution Pm(tm|t ) of tm(t )

This section deals with the probability distribution
Pm(tm|t ) of the arg-maximum tm. Let us denote its double
Laplace transformation by P̄m(p|s). Marginalizing P̄(M, p|s)
in Eq. (27) by integrating over all M, we find

P̄m(p|s) =
∫ ∞

0
dM

H 1
2+α

(0)

sH 1
2+α

(
(as+pM )

2+α
2

)

×
∂M

[
H 1

2+α

(
(asM )

2+α
2

)]
H 1

2+α

(
(asM )

2+α
2

) . (36)

Recall that the function Hβ (x0) is defined in Eq. (23). To
get the distribution in the time domain, one then needs
to perform the double inverse Laplace transformation of
Eq. (36). In Sec. IV of the SM [99], we have explicitly
carried out this inversion. The final form of the distri-
bution shows that Pm(tm|t ) possesses the scaling form as
quoted in Eq.(10) where the scaling function Gα

m(z) is given
in Eq. (11).

In Fig. 5, we have illustrated this scaling behavior for dif-
ferent values of α. For all values, we see excellent agreement
of our analytic results with the numerical simulations. To
recover the arcsine law for α = 0, we notice that Xα (x) = π−1

from Eq. (B3) and H 1
2
(x) =

√
2
π

ex from Eq. (23). Plugging
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these forms in the expression of Gα
m(z) in Eq. (11) and per-

forming the integration over w, we get

Gα
m(z) = 1

π
√

z(1 − z)
(for α = 0),

which matches with the arcsine law in Eq. (2). Curiously,
the scaling function Gα

m(z) is symmetric under the transfor-
mation z → 1 − z only for α = 0. On the other hand, for
nonzero α, we see that Gα

m(z) is not symmetric under this
transformation. This is also exemplified in Fig. 5. To see
this clearly, let us look at the form of Gα

m(z) for z → 0 and
z → 1. For general α, we find (see Sec. V of the SM [99])
that the scaling function diverges as Gα

m(z → 0) ∼ z− 1+α
2+α and

Gα
m(z → 1) ∼ (1 − z)−

1
2 . Clearly, the divergences at two ends

of z are asymmetric for all α �= 0. Surprisingly, the divergence
of the scaling function as z → 1 is completely universal, char-
acterized by an α-independent exponent 1/2. The prefactor,
however, may depend on the value of α as illustrated in Sec. V
of the SM [99]. Heuristically, this α-independence divergence
can be understood as follows: From Eq. (16), we see that
the joint distribution P (M, tm|t ) is proportional to the sur-
vival probability SM (t − tm|M − ε) which for tm → t− scales
as SM (t − tm|M − ε) ∼ (t − tm)−1/2 for all values of α [via
Eq. (A1)]. Consequently, the marginal distribution Pm(tm|t )
also diverges as (t − tm)−1/2 for all values of α.

IV. RESIDENCE TIME DISTRIBUTION Pr(tr|t )

Residence time refers to the amount of time that the par-
ticle spends in the x > 0 region till duration t . Formally, it
is defined as tr (t ) = ∫ t

0 dτ�(x(τ )), where �(x) denotes the
Heaviside theta function. For standard Brownian motion, the
distribution of tr is given in Eq. (3). This expression reveals
that the distribution peaks (diverges) as tr → 0+ and tr → t−,
whereas it exhibits minimum value at tr = t/2. This implies
rather a counter-intuitive property of the Brownian motion
where once it crosses the origin on positive or negative side,
it is reluctant to come back [73]. A natural question is, what
happens to this property for general α? In order to answer this
question, we look at the residence time distribution for general
α in this section.

Let us denote the distribution of tr by Pr (tr, x0|t ) where
x0 is the initial position and t is the total observation time.
We later take x0 = 0. Denoting the Laplace transformation of
Pr (tr, x0|t ) with respect to tr as Q(p, x0|t ), we have

Q(p, x0|t ) = 〈e−ptr 〉 (37)

=
∫ ∞

0
dtre−ptrPr (tr, x0|t ). (38)

The Laplace transform Q(p, x0|t ) satisfies the following back-
ward master equations [73]:

∂tQ(p, x0|t ) = [
D(x0)∂2

x0
− p�(x0)

]
Q(p, x0|t ), (39)

where D(x0) is defined in Eq. (6). In order to solve this equa-
tion, we need to specify the appropriate initial and boundary
conditions. For initial condition, we note that if t → 0, then
the residence time tr also tends to zero, i.e., tr → 0. Using
this in Eq. (37), we obtain

Q(p, x0|t → 0) = 1. (40)

FIG. 6. Scaling function Gα
r (z) in Eq. (13) for the occupation

time distribution is plotted and compared with the numerical sim-
ulation for three different values of α. The analytic expression in
Eq. (13) is shown in solid line and the simulation data are shown by
symbols. We have chosen D0 = 0.1, l = 1, and t = 5.

On the other hand, for any finite t , we have the following
boundary conditions:

Q(p, x0 → −∞|t ) = 1, (41)

Q(p, x0 → ∞|t ) = e−pt . (42)

Note that the first boundary condition follows from the fact
that if x0 → −∞, then the particle essentially stays in the
x < 0 region for all finite t . Consequently tr = 0 which from
Eq. (37) leads to Q(p, x0 → −∞|t ) = 1. On the other hand, if
x0 → ∞, then the particle stays in x > 0 region for all finite
t and tr = t . Plugging this in Eq. (37) results in the second
boundary condition in Eq. (42).

We now proceed to solve the backward equation (39) with
these initial and boundary conditions. To this aim, we take
another Laplace transformation of Q(p, x0|t ) with respect to
t and denote it by Q̄(p, x0|s). One can then appropriately
transform the backward equation in terms of Q̄(p, x0|s) and
solve it. To maintain continuity of the presentation, we have
relegated these details to Sec. VI of the SM [99]. The final
solution for x0 = 0 reads

Q̄(p|s) = 1

s
− p

s(s + p)

[
1 +

(
s

s + p

) 1
2+α

]−1

, (43)

where we have used the short-hand notation Q̄(p|s) =
Q̄(p, x0 = 0|s). One now has to perform the double inverse
Laplace transformation of Q̄(p|s) to get the distribution in
the time domain. Fortunately, this inversion can be performed
for all α > −1 [82,90]. The distribution Pr (tr |t ) indeed has
the scaling form in Eq. (12) and the scaling function Gα

r (z) is
given in Eq. (13).

For α = 0, we recover the arcsine law in Eq. (3) for dis-
tribution Pr (tr |t ) in Eq. (12). In Fig. 6, we have illustrated
the scaling function Gα

r (z) for three different values of α and
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compared it against the simulation. We find excellent agree-
ment between them. Contrary to the arg-maximum tm(t ), we
see that Gα

r (z) is symmetric about z = 1
2 for all values of α.

In fact, from Eq. (13), we see that it diverges as z− 1+α
2+α and

(1 − z)−
1+α
2+α as z → 0 and z → 1 respectively. Interestingly, in

Fig. 6, we see that the scaling function exhibits local maxima
at z = 1/2 for α = −0.5 which is in contrast to the other two
values of α for which one finds minima at z = 1/2. To under-
stand this behavior, we analyze Gα

r (z) in the vicinity of z =
1/2. Expanding Gα

r (z) in Eq. (13) for z = 1+ε̄
2 with ε̄ → 0,

we get

Gα
r

(
1 + ε̄

2

)
� 2

π
tan

(
π

2(2 + α)

)
+ K(α)ε̄2

2π
, (44)

where the function K(α) is defined as

K(α) =
[
2 + α(4 + α) + (2 + α)2 cos

(
π

2+α

)]
(2 + α)2 sin−1

(
π

2+α

)
sec−4

(
π

2(2+α)

) . (45)

Now, Gα
r (z) will exhibit local maxima or minima at z = 1/2

depending on whether K(α) is positive or negative. Defining
the critical value of α as

K(αc) = 0 ⇒ αc � −0.3182, (46)

we find that K(α) > 0 for α � αc and K(α) < 0 for α < αc.
Therefore, we expect a local maxima at z = 1/2 for the scal-
ing function Gα

r (z) for α < αc. Quite remarkably, this implies
that for α � αc, the particle, starting from the origin, typically
stays entirely on the positive side or entirely on the negative
side. The paths in which the particle spends equal amounts of
time on the positive and negative sides are relatively rare. This
“stiff” property (or reluctance to cross the origin) has been
long known for BM [73]. Here, we have shown that it gets
extended for all α � αc. On the other hand, for α < αc, this
“stiffness” is reduced which results in the local maximum of
Gα

r (z) at z = 1/2. In fact, as α → −1+, the scaling function
simply becomes δ(z − 1/2). This implies that the particle
typically spends equal amounts of time on the positive and
negative sides of the origin which is in sharp contrast to the
standard Brownian motion.

V. LAST-PASSAGE TIME DISTRIBUTION P�(t�|t )

We now study the probability distribution P�(t�|t ) of time
t� that the particle crosses the origin for the last time till
duration t . As illustrated in Fig. 1, we can analyze this prob-
lem by decomposing the trajectory into two parts. In the first
part, the particle reaches the origin at time t� after starting
its motion initially from the origin. The weight of this part is
just the free probability distribution P (0, t�|0). In the second
part, the particle does not cross the origin in the remaining
time interval (t − t�) given that it was at the origin at time tl .
Then, the contribution of this part to P�(t�|t ) is the survival
probability S0(t − t�|0). Since the process is Markovian, these
two contributions are statistically independent.

However, one encounters a similar problem as encountered
for the case of of extreme value statistics in Sec. III. Recall
from this analysis of extreme value statistics that S0(t − t�|0)
is exactly equal to zero for all t − t�. In order to circumvent
this problem, we instead compute the quantities P (ε, t�|0)

and S0(t − t�|ε) and take the ε → 0+ limit at an appropriate
stage of the calculation. Then, the distribution P�(t�|t ) can be
written as

P�(t�|t ) = P (ε, t�|0)S0(t − t�|ε)

NL(ε)
, (47)

where the function NL(ε) is just the normalization factor. It is
instructive to take the double Laplace transformation of this
equation with respect to t�(→ p) and t (→ s) to get

P̄�(p|s) = P̄ (ε, s + p|0)S̄0(s|ε)

NL(ε)
. (48)

In this equation, we have used the notation P̄�(p|s) and
P̄ (ε, s|0) to denote the Laplace transform of P�(t�|t ) and
P (ε, t |0), respectively. Interestingly, Eq. (48) implies that the
problem of the last-passage time has now been reduced to the
problem of computing survival probability and distribution in
an infinite line. The Laplace transforms P̄ (ε, s|0) and S̄0(s|ε)
can be explicitly obtained (see Sec. VII of the SM [99] for
details) to be

P̄ (ε, s|0) � AL(ε)

s
1

2+α

, (49)

S̄0(s|ε) � BL(ε)

s
1+α
2+α

, (50)

where AL(ε) and BL(ε) are functions of ε whose explicit
forms are given, respectively, in Eqs. (S105) and (S107) of
the SM [99]. Next, we insert Eqs. (49) and (50) in Eq. (48) to
write P̄�(p|s) as

P̄�(p|s) � AL(ε)BL(ε)

NL(ε)

1

s
1+α
2+α (s + p)

1
2+α

. (51)

We now have to specify the normalization factor NL(ε).
To evaluate this factor, we use the normalization condition
P̄�(0|s) = 1/s from which it is easy to show that NL(ε) =
AL(ε)BL(ε). This leads us to write P̄�(p|s) as

P̄�(p|s) = 1

s
1+α
2+α (s + p)

1
2+α

. (52)

Finally, performing the double inverse Laplace transformation
of this equation, we find that the distribution P�(t�|t ) of the
last-passage time t�, for α > −1, indeed possesses the scaling
behavior of Eq. (14) with the scaling function Gα

� (z) defined
in Eq. (15) for general α. In Fig. 7, we have plotted Gα

� (z)
for three values of α and compared against the numerical
simulations. We observe an excellent match for all α.

One again, we see from Eq. (15) that Gα
� (z) possesses

z → 1 − z symmetry only for α = 0. However, the symmetry
is absent for nonzero values for α as elucidated in Fig. 7.
Consequently, we get different divergences of the scaling
function at the two ends, i.e., Gα

� (z → 0) ∼ z− 1+α
2+α and Gα

� (z →
1) ∼ (1 − z)−

1
2+α . Physically, this asymmetric nature can be

understood in the following way: For α > 0, the particle typ-
ically stays away from the origin due to the large values of
the diffusion coefficient around the origin. This gives rise to
the smaller values of t�. As a result, the distribution P�(t�|t ) is
sharply peaked at the smaller values of t�. On the other hand,
for α < 0, the particle typically stays near the origin which
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FIG. 7. Scaling function Gα
� (z) in Eq. (15) for the last passage

time distribution is plotted and compared with the numerical sim-
ulation for three different values of α. The analytic expression in
Eq. (15) is shown in solid line and the simulation data are shown by
symbols. We have chosen D0 = 0.1, l = 1, and t = 5.

enhances its chances to cross the origin. This essentially gives
rise to the large values of t� and peaking of P�(t�|t ) at these
values.

VI. CONCLUSION

To conclude, we have studied a model of anomalous dif-
fusion in which a single particle moves in a one-dimensional
heterogeneous medium with a spatially varying diffusion
coefficient of the form D(x) ∼ |x|−α with α > −1. Depending
on the exponent α, this model displays superdiffusive (−1 <

α < 0), diffusive (α = 0), or subdiffusive (0 < α < ∞)
scaling of the mean-squared displacement (MSD). Curiously,
this simple Markov process also exhibits weak ergodicity
breaking in the sense that the time averaged and ensemble
averaged MSDs are not equal even at large times [10–16].

In this paper, we extensively investigated the statistical
properties of the maximum displacement M(t ) and time tm(t )
taken to reach this maximum till duration t . Exploiting the
path decomposition technique for Markov processes [24], we
derived, for all α, the joint probability distribution of M(t ) and
tm(t ). Marginalizing this joint distribution for M(t ) shows that
the distribution Pm(M|t ) possesses scaling behavior in M/t

1
2+α

with the corresponding scaling function Fα (z) rigorously
derived in Eq. (9). Contrary to the standard Brownian
motion (BM), we obtain that Fα (z), for nonzero α, has a
nonmonotonic dependence on z which is a consequence of
the heterogeneity in the environment. The behavior of Fα (z)
for α < 0 and α > 0 is also rather different. For α < 0, the
scaling function rises initially for small z, attains a maximum
value, and then decays for large z. On the other hand, for α >

0, it initially decreases with z then rises at some intermediate z
until it attains a local maximum. After that, it again decreases
for large z. This behavior has been illustrated in Fig. 3.

Our analysis on extreme value statistics also provides an
exact expression of the marginal distribution Pm(tm|t ) of the
arg-maximum tm(t ) in Eq. (10). In contrast to the BM, we
find that the distribution Pm(tm|t ), for α �= 0, is not sym-
metric about tm = t/2. This difference is also exemplified
by asymmetric peaks (divergences) of Pm(tm|t ) as tm → 0+

and tm → t−, namely, Pm(tm → 0|t ) ∼ t
− 1+α

2+α
m and Pm(tm →

t |t ) ∼ (t − tm)−
1
2 . Recall that for BM, Pm(tm|t ) is symmetric

about tm = t/2 and diverges identically as Pm(tm → 0|t ) ∼
t
− 1

2
m and Pm(tm → t |t ) ∼ (t − tm)−

1
2 .

The second part of our paper dealt with the analysis of the
residence time tr (t ) for which we computed the probability
distribution Pr (tr |t ) exactly for all values of α. Quite remark-
ably, we find the existence of a critical α (which we denote
by αc = −0.3182) such that Pr (tr |t ) has minima at tr = t/2
for α � αc whereas it exhibits local maximum at tr = t/2
for α < αc. We also provided a simple physical reasoning of
this behavior based on the likelihood of the particle to stay
on one side of the origin. The appearance of local maxima
at tr = t/2 is in sharp contrast to the standard BM. Finally,
we calculated the distribution P�(t�|t ) of the last-passage time
t�(t ) and showed that it is also asymmetric about t�(t ) = t/2
for nonzero α. This is further illustrated by the difference in
behavior of P�(t�|t ) as t� → 0+ and t� → t−, viz. P�(t� →
0|t ) ∼ t

− 1+α
2+α

� and P�(t� → t |t ) ∼ (t − t�)−
1

2+α . We emphasize
that while the distributions of tm(t ), tr (t ), and t�(t ) are all
identical to Eq. (3) for α = 0, they turn out to be significantly
different for α �= 0. In fact, for α = 0 (BM), the equiva-
lence between tm(t ) and t�(t ) can be established based on
the reflection property, inversion symmetry, and time-reversal
symmetry [100]. However, these symmetries are not present
for α �= 0 which results in inequivalence between tm(t )
and t�(t ).

Here, we have showcased a simple example of a hetero-
geneous diffusion model driven by white Gaussian noise for
which we could derive many results on extremal statistics and
path functionals exactly. Unraveling these results for other
complex heterogeneous models remains a promising future
direction. Recently heterogeneous diffusion processes driven
by colored noise have garnered significant interest due to
their potential application in biological systems [18–20]. It
would be interesting to see how our results get modified in
these scenarios. Another interesting direction is to explore
the ramifications of the combined effect of HDP and other
models like fractional Brownian motion [21,37,38,101] and
scaled Brownian motion [22] on the extreme value statistics
and arcsine laws.

Finally, we remark that our work may be verified in
experiments involving diffusion of tracer proteins in the
cytoplasmic part of the cell where substantial heterogene-
ity arises due to the nonuniform distribution of various
crowding obstacles such as ribosomes, nuclei acids, and
cytoskeletons [1]. The space-dependent diffusion coeffi-
cient is also observed in experiments involving particles
trapped between two nearly parallel plates [4]. It would
be interesting to compare our analytical results with these
experiments.

024113-9



PRASHANT SINGH PHYSICAL REVIEW E 105, 024113 (2022)

ACKNOWLEDGMENTS

I am indebted to my supervisor Dr. Anupam Kundu for
collaboration on other projects upon which the current work
is based. I acknowledge support of the Department of Atomic
Energy, Government of India, under Project No. 12-R&D-
TFR-5.10-1100.

APPENDIX A: DERIVATION OF P̄(M, p|s)
IN EQUATION (17)

Here, we derive the expression of the Laplace transform
P̄(M, p|s) of joint distribution in Eq. (25). From Eq. (17), we
see that this reduces to the problem of computing S̄M (s|M −
ε) and F̄M−ε (s + p|0). Using Eq. (22), we get

S̄M (s|M − ε) �
ε∂M

[
H 1

2+α

(
(asM )

2+α
2

)]
sH 1

2+α

(
(asM )

2+α
2

) , (A1)

F̄M−ε (s + p|0) = 1 − (s + p)S̄M−ε (s + p|0)

�
H 1

2+α
(0)

H 1
2+α

(
(as+pM )

2+α
2

) . (A2)

Finally, inserting Eqs. (A1) and (A2) in Eq. (17) results in

P̄(M, p|s) =
εH 1

2+α
(0)

N (ε)sH 1
2+α

(
(as+pM )

2+α
2

)

×
∂M

[
H 1

2+α

(
(asM )

2+α
2

)]
H 1

2+α

(
(asM )

2+α
2

) . (A3)

This result has been quoted in Eq. (25).

APPENDIX B: IMPORTANT FORMULAE

We present here a list of the expressions and the notations
that we have used in our paper:

Hβ (w) = wβ[Iβ (w) + I−β (w)], (B1)

Hβ (w) = 1

2πβi

[
1

Hβ (−iw)
− 1

Hβ (iw)

]
. (B2)

Xα (w) = e
iπ

2+α

2π i

⎡
⎣H 1+α

2+α

(
i
w

)
H 1

2+α

(
i
w

) −
e− 2iπ

2+α H 1+α
2+α

(− i
w

)
H 1

2+α

(− i
w

)
⎤
⎦. (B3)
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