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Phase transitions in XY models with randomly oriented crystal fields
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We obtain a representation of the free energy of an XY model on a fully connected graph with spins subjected
to a random crystal field of strength D and with random orientation α. Results are obtained for an arbitrary
probability distribution of the disorder using large deviation theory, for any D. We show that the critical
temperature is insensitive to the nature and strength of the distribution p(α), for a large family of distributions
which includes quadriperiodic distributions, with p(α) = p(α + π

2 ), which includes the uniform and symmetric
bimodal distributions. The specific heat vanishes as temperature T → 0 if D is infinite, but approaches a constant
if D is finite. We also studied the effect of asymmetry on a bimodal distribution of the orientation of the random
crystal field and obtained the phase diagram comprising four phases: a mixed phase (in which spins are canted
at angles which depend on the degree of disorder), an x-Ising phase, a y-Ising phase, and a paramagnetic phase,
all of which meet at a tetracritical point. The canted mixed phase is present for all finite D, but vanishes when
D → ∞.
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I. INTRODUCTION

Randomly anisotropic crystal fields play an important role
in determining the magnetic properties of amorphous mag-
netic materials. In the random anisotropy model (RAM) [1],
each spin is subjected to a local anisotropy with random
orientation in addition to the usual spin exchange interaction.
While longitudinal random anisotropy has no effect on Ising
spins, for vector spins it competes with the ferromagnetic
exchange energy in determining the state of the system. The
model provides a theoretical basis for understanding the mag-
netic properties of many amorphous binary alloys [2–5] and
nanocrystalline [4,6,7] and molecular [8] magnets.

The RAM can be defined for vector spins of any dimen-
sionality m � 2, but in this paper we study only XY spins,
corresponding to m = 2. In the limit of infinite strength of
a crystal field oriented randomly, the model reduces to a
quenched random-bond Ising model with correlated random
couplings [9], raising the possibility of a spin glass phase in
the RAM. In this limit, the model was conjectured to belong
to the same universality class as the Edwards-Anderson Ising
spin glass model [10].

Since its introduction, the model has been studied using
many techniques such as mean-field theory [11–13], vari-
ational methods [14], field theories [5,15–18], and Monte
Carlo simulations [19–22]. The infinite crystal field limit has
been studied extensively [9,13,22–25] both analytically and
through simulations using the mapping to random-bond Ising
models [9]. Most ε expansion and Monte Carlo studies in
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three dimensions have been inconclusive in determining the
nature of the low temperature phase. An intriguing feature
of all the ε-expansion based renormalization group studies
is that the stable fixed points cannot be reached from the
initial conditions given by unrenormalized physically relevant
effective Hamiltonians [17,26]. In general, the distribution of
the random axis plays a crucial role in determining the low
energy configurations and phase transitions.

We study the effect of random crystal field anisotropy on
XY spins (RCXY) on a fully connected graph, for any dis-
tribution of the orientation of the crystal field axis and any
strength of the crystal field D, using large deviation theory
(LDT) [27,28]. In recent related work on fully connected
graphs, LDT was used to perform the disorder averaging
for discrete-spin random-field problems [29–32]. For vector
spins, LDT was used to solve the problem in the pure case
[33], and more recently to study XY models in random mag-
netic fields [34].

In this paper we use LDT to obtain the phase diagram and
low temperature properties of the XY model with quenched
uniform and bimodal distributions for the orientation of the
crystal field. Earlier the model had been solved in the case
D = ∞ [13]. Our solution for arbitrary D brings out an
unexpected invariance of the critical temperature Tc: For a
large family of distribution functions of the orientation (which
includes the uniform and symmetric bimodal cases) there
is a continuous transition at temperature Tc = 1/2, which
coincides with Tc for the pure XY model on a fully con-
nected graph, even though the nature of the ordered phase
depends on the details of the disorder distribution. Be-
low we briefly discuss the two cases studied in this paper,
namely, the uniform and bimodal distributions of random
orientations.
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In amorphous alloys, the absence of the crystalline order
implies there is no preferred direction for the crystal field
and the system is often modeled as the RCXY model with
a uniform distribution of the random axis orientation. In this
case, we find that the T = 0 magnetization decreases as D
increases, approaching a finite value 2/π as D → ∞ with a
correction proportional to 1/D for large but finite D. Further
the specific heat vanishes if D → ∞, in agreement with ear-
lier results [13], but we show that it approaches a constant as
T → 0 for finite values of D.

We also study an asymmetric bimodal distribution of the
orientation, with the crystal field pointing randomly along
x and y directions on different fractions of sites, interpolat-
ing between the pure case and the quadriperiodic bimodal
distribution. An interesting phase diagram ensues with three
ordered phases: two phases where the magnetization is along
only one of the x or y directions, and a mixed phase with
a magnetization that is canted in two different directions.
Four critical curves meet at a tetracritical point which oc-
curs for all asymmetric bimodal distributions of the random
crystal field orientation. Tetracritical points have also arisen
in several other contexts where there are two order parame-
ters, for instance anisotropic antiferromagnets [35], alloys of
materials with different anisotropies [36], strongly correlated
SO(5) superconductors [37,38], and other strongly correlated
theories like quantum chromodynamics [39]. In the RCXY
model under study here, the tetracritical point originates from
the asymmetric discrete distribution of the crystal field, which
produces an x-y asymmetry between order parameters.

The plan of the paper is as follows: In Sec. I we define the
model and derive the expression of the rate function using the
large-deviation theory, for any distribution of the quenched
random orientation of the crystal field. We study the phase
diagram and low temperature phase for the case of uniform
distribution (Sec. III) and bimodal distribution (Sec. IV),
obtaining a closed form expression for the rate function as
D → ∞, and an expression for large D, in powers of 1/D.
We study finite D via Taylor expansion of the rate function.
In Sec. V we discuss the main results of the paper and some
future directions.

II. RANDOM CRYSTAL FIELD XY MODEL

The Hamiltonian of the model on a fully connected graph
is

H = − J

2N

(
N∑

i=1

�si

)2

− D
N∑

i=1

( �ni · �si )
2, (1)

where si are m-component vector spins in general. For m = 2
(XY model), they can be represented as si = cos θi î + sin θi ĵ.
Here θi is a random variable chosen uniformly from the inter-
val [0, 2π ], D is the crystal field strength, J is the coupling
which we take to be 1, and n̂i = cos αi î + sin αi ĵ is the site
dependent direction of the crystal field. The coupling between
pairs of spins has been set equal to unity. The Hamiltonian
depends only on the orientation of the crystal field and hence
we need to consider α only on the half circle (α and π + α

are equivalent). The direction of the crystal field at each site
is chosen randomly and frozen; each αi is an independent and

(a) (b)

FIG. 1. Low energy states with (a) J → ∞ and (b) D → ∞ on a
fully connected graph with N = 5 (five spins). Spins are represented
by blue arrows and the random anisotropy axes by dotted red lines.
In (a) the spins align with each other while in (b) the spins align with
the random anisotropy axes.

identically distributed (i.i.d.) chosen from a specified distribu-
tion, p(α). The ferromagnetic coupling term in Eq. (1) tries
to align spins in the same direction while the crystal field
term tries to align spins with their random anisotropy axis (see
Fig. 1), leading to frustration. We take D to be positive, except
for the pure case (no disorder), for which we allow either sign.

We study different forms of p(α) and their consequences
in the subsequent sections. We use large deviation theory to
perform the quenched disorder average and obtain the free
energy of the model defined by Eq. (1) as explained below.

A. Calculation of the free energy functional using LDP

Consider any random configuration CN of N spins with
x1 = ∑N

i=1 cos θi/N and x2 = ∑N
i=1 sin θi/N . The probabil-

ity of occurrence of this configuration PH,β is propor-
tional to exp(−βH ), where β = 1/T . The random variables
(
∑N

i=1 cos θi,
∑N

i=1 sin θi ) satisfy the large deviation principle
(LDP) [27,28,40] with respect to PH,β . This implies that there
exists a rate function I (x1, x2) such that

PH,β (CN : x1, x2) ∼ exp [−NI (x1, x2)]. (2)

The rate function I (x1, x2) is like the generalized free en-
ergy functional in that its minima give the free energy of
the system. Recently the rate function was calculated exactly
for discrete spin models with quenched random fields such
as the random-field Ising model and the random crystal field
Blume-Capel model defined on a fully connected graph. It was
shown that the rate function when expanded in a power series
is like a Landau free energy and hence can be used to extract
the phase transitions in the system [29–31]. The extension of
the method to vector spins, outlined below, was carried out
for the random-field XY model [34].

There are two principal steps:
(1) Using the Gärtner-Ellis theorem [27,28] and the law of

large numbers, we first calculate the rate function R(x1, x2)
associated with the noninteracting part of the Hamiltonian in
Eq. (1) denoted by Hni and given by

Hni = −D
N∑

i=1

(cos θ cos αi + sin θ sin αi )
2. (3)
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Then R(x1, x2) is defined through

PHni,β (CN : x1, x2) ∼ exp [−NR(x1, x2)]. (4)

As we will see later in this section, the rate function R(x1, x2)
becomes independent of the specific realization of the disorder
and depends only on p(α) in the limit N → ∞.

(2) The probability PH,β (CN : x1, x2) for the Hamiltonian in
Eq. (1) is proportional to

∫
A eN f (x1,x2 )PHni,β , where A is the sub-

set of the all possible configurations, with a given (x1, x2). The
function f (x1, x2) = β(x2

1 + x2
2 )/2. The tilted large deviation

principle [40] then connects the two rate functions I (x1, x2)
and R(x1, x2) through the relation

I (x1, x2) = R(x1, x2) − βx2
1

2
− βx2

2

2

− inf
y1,y2

(
R(y1, y2) − βy2

1

2
− βy2

2

2

)
. (5)

The probability measure PH,β (CN : x1, x2) is the tilted version
of PHni,β (CN : x1, x2).

Let us first calculate the rate function R(x1, x2). Using the
Gärtner-Ellis theorem it can be written as

R(x1, x2) = sup
y1,y2

{x1y1 + x2y2 − �(y1, y2)} (6)

provided that the scaled cumulant generating function
�(y1, y2) = limN→∞ �N (y1, y2)/N , is differentiable [27,28].
We calculate �(y1, y2) for arbitrary distribution of the crystal
field and show that it is differentiable.

The function �N (y1, y2) is the log cumulant generating
function for the probability distribution PHni,β :

�N (y1, y2) = ln

〈
exp

(
y1

N∑
i=1

cos θi + y2

N∑
i=1

sin θi

)〉
Q

. (7)

Here 〈· · · 〉Q represents the expectation value with respect to
the probability distribution Q ∝ e−βHni , which is a product
measure over the probability distributions Qi for the nonin-
teracting spins. Since Qi ∝ exp[βD cos2(θ − αi )], we obtain

�(y1, y2) = lim
N→∞

1

N

N∑
i=1

ln Si, (8)

where

Si = 1

Ñ

∫ 2π

0
dθ exp[βD cos2(θ − αi ) + y1 cos θ + y2 sin θ ].

(9)
Here Ñ = ∫

dθ exp[βD cos2(θ − α)] is the normalization and
is equal to

Ñ = 2π exp(βD/2)I0(βD/2), (10)

where I0(x) is the zeroth order modified Bessel function of the
first kind.

B. Average over disorder

Since αi are i.i.d.’s chosen from a distribution p(α), the
strong law of large numbers implies that as N → ∞, Eq. (8)
becomes

�(y1, y2) =
∫ 2π

0
dα p(α) ln S. (11)

We see that since the limit N → ∞ is taken, with probability
1, � is the same for all disorder realizations and depends only
on the distribution p(α).

To evaluate S, we define z = exp(iθ ) and convert the in-
tegral in Eq. (9) into a contour integral over z around a unit
circle. We evaluate the integral via a Laurent series expansion
of the integrand (see Appendix A). The result is

S(y1, y2) = I0(r) + 2
∞∑
j=1

I j (βD/2)

I0(βD/2)
I2 j (r) cos 2 j(φ − α),

(12)

where r =
√

y2
1 + y2

2 is the absolute value of the magnetiza-
tion and φ = tan−1(y2/y1) is its orientation. Here I j is the jth
modified Bessel function of the first kind.

Let (y∗
1, y∗

2 ) extremize the right-hand side of Eq. (6). Both
y∗

1 and y∗
2 are functions of x1 and x2, given by the solutions of

the equations:

x1,2 = ∂�(y1, y2)

∂y1,2
. (13)

The rate function I (x1, x2) can then be written as

I (x1, x2) = g(x1, x2) − inf
x1,x2

g(x1, x2), (14)

where

g(x1, x2) = x1y∗
1 + x2y∗

2 − �(y∗
1, y∗

2 ) − β
(
x2

1 + x2
2

)
2

. (15)

In the thermodynamic limit, the probability PH,β (CN : x1, x2)
in Eq. (2) is dominated by the minimum of I (x1, x2), where
∂I
∂x1

= 0 and ∂I
∂x2

= 0, which yields y∗
1 = βx1 and y∗

2 = βx2.
Note that the rate function is like a generalized free energy
functional in that its minimum 1

β
infx1,x2 I (x1, x2) provides the

free energy of the system. By substituting y∗
1 and y∗

2 in Eq. (14)
we get

I (x1, x2) = βr2

2
− ln I0(βr) −

∫ 2π

0
dα p(α)

× ln

(
1 +

∞∑
k=1

2ck cos [2k(θ − α)]
I2k (βr)

I0(βr)

)
,

(16)

where r =
√

x2
1 + x2

2 , θ = tan−1(x2/x1), and

ck = Ik (βD/2)

I0(βD/2)
. (17)

Equation (16) is the general expression of the free energy
functional for the RCXY model on a fully connected graph
for an arbitrary distribution of disorder. The free energy of
the system is equal to 1

β
infx1,x2 I (x1, x2). Here x1 and x2 are

the magnitudes of magnetization in the x and y directions,
respectively, and are the two order parameters of the system.
Equation (16) is the main equation that we use to study differ-
ent disorder distributions in the sections that follow.

We recover the pure XY model by setting D = 0, in which
case Eq. (16) reduces to

I (x1, x2) = βr2

2
− ln I0(βr), (18)
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which is isotropic in x1 and x2 and a function of r, agreeing
with [33]. The self-consistent equation for the magnetization
r is

βr = β
I1(βr)

I0(βr)
. (19)

The system has a continuous transition as can be seen by
expanding the right-hand side in powers of r up to third order.
We get

βr ≈ β2r

2
− β4r3

16
, (20)

The transition from an XY paramagnetic state (r = 0) to a
magnetic state (r �= 0) occurs at βc = 2 (T = 1/2). The mag-
netization grows as r ∼ √

β − βc, close to βc.
For nonzero D, the phase diagram depends on the distribu-

tion of the disorder, given by p(α). For continuous transitions,
the coefficient of the second order term in Eq. (16) decides the
location of the transition. To second order, we find

I (x1, x2) ≈ β

4
(2 − β )

(
x2

1 + x2
2

) − β2c1

2
x1x2〈sin 2α〉

− β2c1

4

(
x2

1 − x2
2

)〈cos 2α〉, (21)

where 〈·〉 represents an average with respect to p(α). We
observe that for distributions with 〈exp(2iα)〉 = 0, if there
is a continuous transition, it is at βc = 2 independent of the
value of D. This holds for a large class of distributions,
in particular for quadriperiodic distributions defined through
p(α) = p(π/2 + α).

In the next two sections we study the phase diagram of the
RCXY model for uniform and bimodal distributions of the
crystal field disorder.

III. UNIFORM DISTRIBUTION

The uniform distribution of the anisotropy axis corre-
sponds to

p(α) = 1

2π
∀α. (22)

Substituting in Eq. (16), the rate function becomes

I (x1, x2) = βr2

2
− ln I0(βr) − 1

2π

∫ 2π

0
dα

× ln

(
1 +

∞∑
k=1

2ck cos [2k(θ − α)]
I2k (βr)

I0(βr)

)
.

(23)

The integral over the disorder distribution can be performed
exactly when D → ∞ and also at large but finite D. We first
study these two cases and then examine the case of arbitrary
D by expanding the integrand in powers of r.

A. Infinite D

The limit D → ∞ forces each spin si to point along or
opposite to αi, thus reducing it to an Ising spin along the
anisotropy axis.

As D → ∞ the coefficients ck → 1. Setting ck = 1 ∀k, we
get

I (x1, x2) = βr2

2
− ln I0(βr) − 1

2π

∫ 2π

0
dα

× ln

(
1 +

∞∑
k=1

2 cos [2k(θ − α)]
I2k (βr)

I0(βr)

)
.

(24)

The summation inside the logarithmic term can then be done
exactly using the identity [41]

∞∑
k=1

cos(2kt )I2k (x) = 1

2
[cosh(x cos t ) − I0(x)] (25)

leading to

I (r) = βr2

2
− 1

2π

∫ 2π

0
dα ln [cosh(βr cos α)]. (26)

The minimum of I (r) with respect to magnetization r results
in a self-consistent equation for r, given by

r = 1

2π

∫ 2π

0
dα cos(α) tanh(βr cos α). (27)

To find βc, we expand I (r) in Eq. (26) in powers of r until the
fourth order:

I (r) = βr2

2
− β2r2

4
+ β4r4

32
. (28)

Since the coefficient of the r4 term is positive, βc for the
transition from an XY ferromagnetic state to a paramagnet
state is found by equating the coefficient of r2 to zero. This
yields βc = 2, the same value as for the pure XY model.

The resulting model maps to a quenched random-bond
Ising model with correlated variables [9], allowing a solution
for the fully connected graph [13]. The self-consistent equa-
tion for magnetization obtained above [Eq. (27)] agrees with
the expression obtained in [13].

Let us examine the low temperature behavior of the system.
For T = 0 the function tanh[βr cos(α)] = 1 if cos(α) > 0 and
= −1 if cos(α) < 0. Hence in this case the magnetization at
T = 0 is

r0 = 2

π
. (29)

For nonzero low temperature, we use tanh z ≈ ±[1 −
2 exp(−2|z|)] to obtain.

r = 2

π
− πT 2

4
. (30)

Since the second term in Eq. (26) is a function of βr, the in-
ternal energy for this model is proportional to r2. This implies
that specific heat Cv ∼ T for low temperatures, vanishing as
T → 0.
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B. Large D

To study the large D behavior, we employ the asymptotic
expansion of ck [41] in Eq. (23).

ck = Ik (βD/2)

I0(βD/2)
≈ 1 − 4k2

8βD + 1
. (31)

Differentiating Eq. (25) twice we obtain the identity

−
∞∑

k=1

4k2 cos(2kt )I2k (x)

= 1

2
[x2 cosh(x cos t ) sin 2t − x cos t sinh(x cos t )]. (32)

Using Eqs. (25) and (32) and retaining terms only of order
1/D, the rate function becomes

I (r) = βr2

2
− 1

2π

∫ 2π

0
dα ln (cosh [βr cos(α)])

− βr2

16πD

∫ 2π

0
dα sin2(α)

+ r

16πD

∫ 2π

0
dα cos(α) tanh [βr cos(α)]. (33)

For low T , the free energy functional φ(r) = 1
β

I (r), to leading
order in T is given by

φ(r) = r2

2
− 2

π
r − r2

16D
+ Tr

4πD
. (34)

Equating ∂φ/∂r = 0, we get the equation for magnetization r
as

r − 2

π
− r

8D
+ T

4πD
= 0. (35)

For T = 0, we find

r = 2

π

(
1 + 1

8D

)
. (36)

The increase proportional to 1/D from the D → ∞ value is
consistent with the T = 0 mean-field result of [11].

For low finite temperatures, the leading order correction
to the T = 0 value of r is proportional to T and is given by
r = 2

π
(1 + 1

8D − T
8D ).

Since the internal energy U is proportional to r2, it is linear
in T , implying that the specific heat C goes to a constant as T
approaches zero for large finite D. This is because for T � D
the spins make excursions of low amplitude δsi around their
ground state positions, with 〈δs2

i 〉 � T/D. This “Dulong-
Petit” contribution results in a finite value of C. When D = ∞,
these excitations are forbidden, leading to C → 0 as T → 0.
The energy spectrum develops a gap for D = ∞ and goes to
zero continuously for all finite values of D.

C. Expansion in powers of r for finite D

When the left-hand side of Eq. (23) is expanded in powers
of r, the integration over α eliminates terms which are not
isotropic in x1 and x2 and only the terms that are functions of
r =

√
x2

1 + x2
2 survive. Thus I (x1, x2) is a function of r alone

TABLE I. Coefficients of rn for different values of D at β = 2 in
Eq. (37).

D a4 a6 a8 a10 a12

0 0.25 −0.1111 0.0573 −0.0317 0.01825
1 0.3717 −0.2734 0.2423 −0.2361 0.2443
10 0.4875 −0.4277 0.4487 −0.5169 0.6321
1000 0.4998 −0.4443 0.4719 −0.5507 0.6819

for all values of D, for uniform distribution of α. For example,
the expansion to 8th order reads

L(r) = βr2(2 − β )

4
+ (βr)4

64

(
1 + c2

1

) − (βr)6

576

(
1 + 3c2

1

)
+ (βr)8

2

(
11

24 576
+ 49c2

1

18 432
+ c2

2

73 728

+ 3c4
1

4096
− 6c2

1c2

3689

)
− · · · . (37)

In analogy with Landau theory, we have denoted the power
series expansion of I (r) by L(r). We observe that the terms in
the expansion alternate in sign for all values of D. Close to the
transition temperature, r is small and it suffices to keep second
and fourth order terms. Since the latter is always positive, we
locate the critical point by equating the coefficient of second
order term (which is independent of D) to zero. This gives

βc = 2 ∀D. (38)

The limit D = 0 may be recovered on noting that the alter-
nating series can be summed and is equal to ln I0(βr) [see
Eq. (18)]. The coefficients ai, associated with the ith power
of r, decrease monotonically with i and the series converges.
But if D is nonzero, the montonicity of the coefficients is not
retained. Their magnitude increases beyond a certain value
of i which depends on D. We tabulate the coefficients up to
i = 12 in Table I for D = 0, 1, 10, and 1000 at β = 2 to
illustrate this. Due to poor convergence for D �= 0, the series
cannot be used to study the low temperature behavior. The
behavior of the free energy functional changes for large r,
depending on the term at which we truncate the expansion.
Figure 2 shows the free energy to the 10th and 12th order for
D = 0 and D = 2 for β = 2.1. The possibility of a first order
transition at low temperatures cannot be completely ruled out,
but in our investigation until order 24, we did not find any
evidence of it.

IV. BIMODAL DISTRIBUTION

Now consider the distribution

p(α) = pδ(α − 0) + (1 − p)δ(α − π/2), (39)

i.e., a fraction p of the spins experience a crystal field pointing
along the x axis, while the remaining fraction (1 − p) are in
a crystal field along the y axis. The cases p = 0 and p = 1
correspond to no disorder.
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(a)

(b)

FIG. 2. Truncated Landau functional for uniform distribution ob-
tained by expanding until 10th (12th) power in r shown as the dotted
(solid) line, for (a) D = 0 and β = 2.1; (b) D = 2 and β = 2.1.

Substituting in Eq. (16), the rate function is

I (x1, x2)

= βr2

2
− ln I0(βr)

− p ln

(
1 +

∞∑
k=1

2ck cos(2kθ )
I2k (βr)

I0(βr)

)

− (1 − p) ln

(
1 +

∞∑
k=1

2ck cos [k(π − 2θ )]
I2k (βr)

I0(βr)

)
,

(40)

where again r =
√

x2
1 + x2

2 , θ = tan−1 x2/x1, and ck =
Ik (βD/2)/I0(βD/2). The minimum of this function for a
given set of parameters p, β, and D gives the free energy of
the model.

We first discuss the phase diagram of the model in the
limit of D → ∞, in which case the summations inside the
logarithmic term can be performed.

 x   =02

 x   =01

|x  | >02

|x  | >01

|x  | >01

|x  | >02

p

T
 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1

FIG. 3. p-T phase diagram for bimodal distribution for infinite D.

A. D = ∞
We obtain the rate function by making use of Eq. (25) in

Eq. (40), with ck = 1. We get

I (x1, x2) = β
(
x2

1 + x2
2

)
2

− p ln [cosh(βx1)]

− (1 − p) ln [cosh(βx2)]. (41)

Minimizing the rate function gives two self-consistent equa-
tions for the order parameters in x and y directions as

x1 = p tanh βx1, (42)

x2 = (1 − p) tanh βx2. (43)

For 0 � p � 1, the RCXY model reduces to two uncoupled
Ising models, with a fraction p of spins along the x direction
(x1 = p) and fraction 1 − p of spins aligned along the y direc-
tion (x2 = 1 − p) in the ground state. In the p-T plane, there
are two lines of continuous transitions, one with T = p (sep-
arating x1 = 0 from x1 �= 0) and the other with T = (1 − p)
(separating x2 = 0 from x2 �= 0). The phase diagram has four
phases as shown in Fig. 3. These phases are separated by four
critical lines, all of which lie in the mean-field Ising universal-
ity class. These lines intersect at (T, p) = ( 1

2 , 1
2 ). For T < 1/2

the phase between the critical lines p = T and 1 − p = T is
a mixed phase with x1 �= 0 and x2 �= 0, with a total lack of
coupling.

B. Finite D

For arbitrary D near the critical loci, we expand I (x1, x2)
in Eq. (40) in powers of x1 and x2 as they are small. This then
gives us the Landau free energy expansion of the functional
with known coefficients.

The lowest order term in expansion of I2k (βr)/I0(βr) is
of order r2k . Hence the expression cos(2kθ ) I2k (βr)

I0(βr) has terms
of order higher than four for k > 2. We expand Eq. (40) by
keeping terms only until k = 2.

The result is a two parameter Landau functional of the form

L(x1, x2) = a+
(
x2

1 + x2
2

) + a−
(
x2

1 − x2
2

) + u1x4
1

+ u2x4
2 + 2u12x2

1x2
2 . (44)
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We denote this function by L(x1, x2) to distinguish it from the
full rate function I (x1, x2). Here,

a+ = β

4
(2 − β ),

a− = (1 − 2p)
β2c1

4
,

u1 = β4

192

[
3 − c2 + 6c2

1 + 8(2p − 1)c1
]
,

u2 = β4

192

[
3 − c2 + 6c2

1 − 8(2p − 1)c1
]
,

u12 = β4

64

(
1 + c2 − 2c2

1

)
. (45)

The phase diagram resulting from this functional is worked
out in detail in Appendix B; it depends on the value of the
ratio s, defined as s = u1u2

u2
12

. Here we merely summarize the
results. There are four possible states: (0,0), (0, x2), (x1, 0),
and (x1, x2). For s � 1, the phase (x1, x2) is not stable and
the system exhibits two curves of continuous transitions given
by the equations a+ = a− and a+ = −a−. These two meet at
the point (a+, a−) = (0, 0) in the (a+, a−) plane. This point
is a bicritical point. It is also an end point of a first order
spin flop line separating the two Ising ordered phases with
finite magnetizations in the x and y directions, respectively
(transverse and longitudinal Ising phases, respectively). For
s > 1, all four phases are possible and the phase diagram
now has four critical curves meeting at (a+, a−) = (0, 0). This
point is now a tetracritical point.

We now use these results to obtain the phase diagram of
the bimodal RCXY defined by Eq. (40) as a function of D, T ,
and p.

1. Pure case (p = 0)

For D = ∞ there is a transition to the longitudinal Ising
phase at T = 1, as discussed in Sec. IV A. For finite D the
coefficient of the x2

1x2
2 term in Eq. (44) is not zero; x1 and x2

are coupled to each other in general.
The ratio s = u1u2

u2
12

in this case is 1 for D = 0 and decreases
with increasing D. Hence the mixed phase (x1, x2) is not stable
and the system has a bicritical point where the two critical
curves meet. These two critical curves are given by a+ = a−
and a+ = −a−. They separate the paramagnetic phase from
the Ising phase aligned longitudinally [] and transversely
[(x1, 0)], respectively. The equations of the critical curves are

2 − βc = ±βcc1,c, (46)

where βc = 1/Tc and c1,c = I1(βcD/2)/I0(βcD/2).
The critical curves Tc = 1±c1,c

2 are shown in the phase di-
agram in Fig. 4. They separate the paramagnetic state from a
state with longitudinal (transverse) order for D > 0 (D < 0).
There is a first order spin flop transition on crossing the locus
T < 1/2, D = 0, from a transverse to a longitudinal phase.
The locus terminates in a bicritical point at T = 1/2, D = 0.

2. Quadriperiodic bimodal disorder distribution (p = 1/2)

We study the case p = 1/2 first. In this case, a− = 0 and
u1 = u2. Also s = (u1u2)/u2

12 is greater than 1 for all values

|x2| >0

|x1| >0

T

D

 0
−10

−5

 0

 5

 10

 0.2  0.4  0.6  0.8  1

FIG. 4. Phase diagram for the pure XY model with crystal field in
the y direction. The solid lines are critical curves separating the Ising
phases from the paramagnetic phase. Across the dotted line there is
a first order spin flop transition between the two Ising phases. As
D → ±∞, the two critical lines approach T = 1.

of the crystal field strength D �= 0. The Landau functional in
this case becomes symmetric in x1 and x2 and takes the form

L(x1, x2) = a+
(
x2

1 + x2
2

) + u1x4
1 + u1x4

2 + 2u12x2
1x2

2 . (47)

There is only one line of continuous transitions, given by
equating a+ to 0. This gives βc = 2 ∀D. This line of con-
tinuous transition separates the XY ferromagnetic phase from
a paramagnet. Hence the phase boundary in this case is the
same as for the uniform distribution. However, the ordered
phase is different. It is now a fourfold degenerate phase with
|x1| = |x2|.

3. Asymmetric bimodal distribution, 0 < p < 1

In this case there is a crystal field pointing in the x direction
for a randomly chosen fraction p of the spins and in the y di-
rection for the remaining fraction 1 − p. The effect of disorder
is maximum for p = 1/2. The ratio s = u1u2

u2
12

is a function of p

and w = βD alone.
For D = 0 and hence for w = 0, the ratio s = 1. For a fixed

w, s > 1 for pl (w) < p < pu(w), where pl (w) and pu(w)
are functions of w alone which rapidly approach 0 and 1,
respectively, as w increases (see Table II). For p < pl (w) and
p > pu(w), there is no mixed phase for any value of p and T .

In the next two sections we study the phase diagram for a
fixed D and fixed w separately. The phase diagram consists of

TABLE II. Lower and upper threshold on probability p such that
for p < pl (w) and p > pu(w) for a given w, there is no mixed phase.

w pl (w) pu(w)

0.1 0.01582 0.98418
0.5 0.01445 0.98555
1.0 0.01107 0.98893
1.5 0.00739 0.99261
2.0 0.00449 0.99551
3.0 0.00144 0.99856
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four critical curves in the p-T plane, meeting at a tetracritical
point.

The two critical curves separating the (0,0) and (0, x2)
phases and the (0,0) and (x1, 0) phases are given by the equa-
tions a+ = a− and a+ = −a−, respectively. Substituting for
a+ and a− as in Eq. (45), we get

Tc = [1 ± (1 − 2pc)c1,c]

2
(48)

as the equations of the two critical curves, separating the
transverse Ising and longitudinal Ising phases from the para-
magnetic phase. Here again c1,c = I1(βcD/2)/I0(βcD/2).

Two other critical curves separate the (x1, 0) and (0, x2)
phases from the mixed phase, represented as (x1, x2). They
are given by a+ = α1a− and a+ = −α2a−, respectively. These
two conditions give the equations of critical curves to be

Tc = [1 ∓ (1 − 2pc)αc1,c]

2
, (49)

where α = α1 = u1+u12
u1−u12

and α = α2 = u2+u12
u2−u12

, respectively, as
defined in Appendix B. Note that u12, u1, and u2 are also
functions of pc, D, and Tc.

4. Phase diagram with fixed D

For any finite D, as β → ∞, w → ∞, there is a mixed
phase for all values of p at T = 0. The phase diagram has
a tetracritical point at T = 1/2 and p = 1/2, where the four
critical curves given by Eqs. (48) and (49) meet. The phase
diagram for D = 0.2 and D = 1 in the p-T plane is plotted
in Fig. 5. As D increases, the area under the mixed phase
increases and the phase diagram rapidly converges to the
D → ∞ phase diagram given in Fig. 3. All the critical
curves in the phase diagram belong to the mean-field Ising
universality class as does the tetracritical point. The critical
curves are straight lines only near the tetracritical point and
develop nonlinearity at low temperatures, unlike the standard
mean-field solutions [42].

It is instructive to examine the magnetic susceptibilities
corresponding to the two order parameters x1 and x2. We
define χ11 = (∂x1/∂h1)h1→0 and χ22 = (∂x2/∂h2)h2→0 as the
susceptibilities corresponding to the magnetizations x1 and x2,
respectively (h1 and h2 are the uniform external field in the
directions x and y).

To study the singularities along the two different critical
curves, we plot χ11 and χ22 for p = 0.4 for D = 0.2 in Fig. 6.
As expected, χ11 diverges near the paramagnetic to Ising
transition and χ22 diverges near the Ising to mixed phase
transition. Interestingly, though, χ22 does not diverge near the
paramagnetic to Ising transition, it exhibits a discontinuity of
slope. Similar behavior is seen also for p > 0.5, where the
roles of χ11 and χ22 are interchanged.

5. Phase diagram with fixed w

The phase diagram in the p-T plane for fixed w is similar
to the phase diagram for fixed D. The main difference is at
T = 0. For T = 0, with w finite, the mixed phase occurs only
between two threshold values of p.

|x  |>01

|x  |>02

|x  |>01

|x  |>02 x  =02

x  =01

T

p

D=0.2

 0.4 0
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.5  0.6

x  =02

|x   | >01

|x   | >02

|x   | >01

|x   | >02

x  =01

T

D=1

p

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

 1

 0.8

 0.6

 0.4

 0.2

 0

(a)

(b)

FIG. 5. Phase diagram in the p-T plane for (a) D = 0.2 and
(b) D = 1 for the bimodal distribution. There is a tetracritical point
at (1/2, 1/2) from which four critical curves emanate, separating the
four phases.

Taking T = 0 in Eq. (49), we find a lower threshold on p
through the self-consistent equation

p0l (w) = 1

2
− 1

2α1c1
, (50)

where p0l (w) is the critical value of p, separating the mixed
and the longitudinal Ising phases at T = 0. Note that α1 =

FIG. 6. Transverse (χ11) and longitudinal (χ22) susceptibility in
the case of asymmetric bimodal distribution with D = 0.2 and p =
0.4.
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|x  |>02

|x  |>02 x  =02

x  =01

|x  |>01

|x  |>01

T

w=1

p

 0
 0

 1

 0.8

 0.6

 0.4

 0.2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

FIG. 7. Phase diagram for w = 1 in the p-T plane. Four critical
curves meet at a tetracritical point at (1/2, 1/2) for all w. The phases
represented by |x1| > 0 and |x2| > 0 are transverse and longitudinal
Ising phases with |x2| = 0 and |x1| = 0, respectively.

u1+u12
u1−u12

appearing on the right-hand side in Eq. (50) is also a
function of p0l (w). The analogous upper threshold is given by

p0u(w) = 1

2
+ 1

2α2c1
, (51)

where α2 = u2+u12
u2−u12

.
It is instructive to plot the phase diagram in the (T, p) plane

for fixed w (Fig. 7). Four critical curves meet at p = 1/2
and T = 1/2, which is thus a tetracritical point. The critical
curves are straight only near the tetracritical point. The y
axis intercepts p0l (w) and p0u(w) of the two critical curves
approach 0 and 1, respectively, as w → ∞.

As p increases, the Ising phases shrink and the critical
curves approach each other. At p = 1/2, the critical tempera-
ture becomes independent of w and there is a single transition
at T = 1/2 for all values of w from the disordered to the
mixed phase [(0,0) to (x1, x2)].

C. Canted state at large D

In this ssection, we address the nature of the mixed state,
and show that the magnetization vectors are canted. At T = 0,
the exact results for D = ∞ in Sec. IV A give a ground state
with a fraction p of spins aligned along x and a fraction 1 −
p of spins aligned along y. On the other hand, if D = 0, the
ground state is rotationally invariant with r =

√
x2

1 + x2
2 = 1.

For finite D, we use a large D expansion as in Sec. III B for
the uniform distribution. Using Eq. (31) for ck for large D in
Eq. (40) and taking β to be large, the rate function reduces to

I (x1, x2) = β

2
(x2

1 + x2
2 ) − pβx1 − (1 − p)βx2

− p ln

(
1 + β2x2

2

1 + 8βD
− βx1

1 + 8βD

)

− (1 − p) ln

(
1 + β2x2

1

1 + 8βD
− βx2

1 + 8βD

)
.

(52)

x
m

m y

yθ

xθ

p

1−p

x

y

FIG. 8. The two red vectors represent the average magnetization
vectors along the x and y directions for D = ∞ at T = 0, which
have magnitude p and 1 − p, respectively. Blue vectors represent the
canted average magnetic vectors for large finite D at T = 0. We have
taken p such that p > 1 − p and hence θx < θy.

Keeping terms until order 1/D, we obtain

I (x1, x2) = β

2

(
x2

1 + x2
2

) − pβx1

− (1 − p)βx2 − (1 − p)β

8D
x2

1 − pβ

8D
x2

2 . (53)

Equating partial derivatives with respect to x1 and x2 to 0, we
obtain

x1 = p

(
1 − T

8D
+ (1 − p)

4D

)
,

x2 = (1 − p)
(

1 − T

8D
+ p

4D

)
. (54)

Equation (54) describes a state in which the magnetization
vectors −→m x and −→m y are canted away from the x and y axes,
respectively, as depicted in Fig. 8, with canting angles θx and
θy (which are small for large D). To leading order in 1/D we
may write

−→m x = mx(x̂ + θxŷ); −→m y = my(θyx̂ + ŷ), (55)

where mx = p and my = 1 − p for T = 0. Comparing this
with Eq. (54), we get the canting angles at T = 0 as

θx = 1 − p

4D
; θy = p

4D
. (56)

While the crystal field D tries to align the spins along the
site with the x or y axis, depending on the value of α, the
mean field produced by other spins forces canting, and the
spin makes a small angle with the preferred axis.

The low T phase for finite D differs from that obtained
with D = ∞. The specific heat shows the same behavior with
the uniform distribution: it approaches zero for D = ∞ and is
constant for finite D as T → 0.

V. DISCUSSION

We studied the RCXY model for different distributions of
the disorder orientation. We found a remarkable constancy of
Tc for all distributions which satisfy 〈exp(2iα)〉 = 0, which
includes quadriperiodic distributions for which p(α) = p(α +
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π
2 ). Uniform and symmetric bimodal distributions are exam-
ples of quadriperiodic distributions that we have studied in
detail in this paper. In both cases, there is a single transition
at Tc = 1/2 from a mixed magnetic phase to a paramag-
netic phase. The nature of the mixed phase depends on the
distribution of disorder as can be seen by looking at the
disorder-averaged ground state which inherits the symmetry
of p(α).

In the case of asymmetric bimodal distribution the asym-
metry of the distribution results in a new ground state, namely,
the mixed phase in which the magnetization is canted in two
different directions for all finite values of the crystal field
strength D. The ground state for D = ∞ is not canted, with
spins aligned completely in the x or y direction.

We find that in general the behavior of RCXY for finite
crystal field strength D is different from the behavior for
D = ∞. The specific heat vanishes at T = 0 for D = ∞,
but approaches a finite value for finite D. This is also re-
flected in the fact that D = ∞ RCXY can be mapped to
the correlated random-bond Ising model [13]. We also ex-
tracted the disorder-averaged ground state of the model in
the large D limit and confirmed an earlier zero temper-
ature mean-field calculation where the order parameter at
zero temperature was shown to decay as 1/D for uniform
distribution [11].

Similar studies can be carried out for the random
anisotropy model for vector spins with a number of compo-
nents m > 2. In particular, the critical behavior can be studied
easily by obtaining an expansion until fourth order in the
order parameter r for uniform distribution of the disorder.
This yields the critical temperature for these models to be
1/m, independent of the strength of the crystal field on a fully
connected graph. However, the full rate function needed to
obtain the low temperature behavior is nontrivial due to the
integrals involved in the calculation.

We have recently studied the XY model on a fully con-
nected graph in the presence of quenched random magnetic
field (RFXY) drawn from different symmetric distributions
[34]. In that case, the disorder is in the field conjugate to
the order parameter and has a much stronger effect. Not only
Tc but also the nature of the transition changes as a function
of the strength of the magnetic field. The RFXY phase dia-
gram consists of a line of second order transitions meeting a
line of first order transitions at a tricritical point. Quenched
random crystal field orientation disorder, on the other hand,
does not couple directly with the order parameter and has a
weaker effect. As we have seen, it does not change Tc for any
quadriperiodic distribution. It would be interesting to explore
the quadriperiodic distribution of the random crystal field
orientation on regular random graphs, in particular to see if
Tc stays unchanged.
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APPENDIX A

We solve the integral in Eq. (9) using contour integration.
The integral is

S = 1

Ñ

∫ 2π

0
exp[βD cos2(θ − α) + x1 cos θ + x2 sin θ ]dθ,

(A1)
where Ñ = ∫ 2π

0 exp[βD cos2(θ − αi )].
We convert this integral to contour integral around a unit

circle in the complex plane, by making a substitution z = eiθ

and z0 = e−iα . Substituting, we get

S = eβD/2

iÑ

∮
dz

z
exp

(
βD

4

(
z2z2

0 + z−2z−2
0

))

× exp
(x1

2
(z + z−1) + x2

2i
(z − z−1)

)
. (A2)

We define two new variables: a = x1−ix2
2 and b = βDz2

0
4 . The

integrand in Eq. (A2) has a form f (z)/z, where f (z) =
exp(bz2 + b̄z−2) exp(az + āz−1). We can solve the integral
using the residue theorem. We get ÑS = 2πeβD/2A0, where A0

is the coefficient of the z0 term in the expansion of f (z). The
function f (z) can be expanded in terms of modified Bessel
functions of the first kind as follows:

exp(bz2 + b̄z−2) exp(az + āz−1)

=
(

I0(βD/2) +
∞∑
j=1

[(zz0)2 j + (zz0)−2 j]I j (βD/2)

)

×
(

I0(r) +
∞∑
j=1

I j (r)

(
2

r

) j

(zia j + ā jz− j )

)
, (A3)

where r =
√

x2
1 + x2

2 . We extracted the coefficient of the z0

term, A0, and it comes out to be

A0 = I0(βD/2)I0(r) +
∞∑
j=1

I j (βD/2)I2 j (r)

×
(

2

r

)2 j[
(z0ā)2 j + (

z−1
0 a

)2 j]
, (A4)

where recall that z0 = e−iα and ā = (x1 + ix2)/2. We define φ

such that tan φ = x2/x1. Then,

(z0ā)2 j + (z−1
0 a)2 j =

( r

2

)2 j
2 cos 2 j(φ − α). (A5)

Substituting in Eq. (A4), we get

A0 = I0(βD/2)I0(r) + 2
∞∑
j=1

I j (βD/2)I2 j (r) cos 2 j(φ − α).

(A6)
Since Ñ = 2πeβD/2I0(βD/2), we get

S = I0(r) + 2
∞∑
j=1

I j (βD/2)

I0(βD/2)
I2 j (r) cos 2 j(φ − α). (A7)

APPENDIX B

In this Appendix we study different types of phase dia-
grams found with the two parameter Landau functional given
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in Eq. (44):

L(x1, x2) = a+
(
x2

1 + x2
2

) + a−
(
x2

1 − x2
2

) + u1x4
1

+ u2x4
2 + 2u12x2

1x2
2, (B1)

where x1 and x2 are the two components of the order parameter
and a+, a−, u1, u2, and u12 are the coefficients, such that
u1, u2, u12 � 0.

We observe that there are four possible states: (0,0), (0, v),
(v, 0), and (v1, v2). The fixed points (x1, x2) of Eq. (B1) are
obtained by equating the first derivative of L(x1, x2) with
respect to x1 and x2 to 0 and satisfy the following equations:

(a+ + a−)x1 + 2u1x3
1 + 2u12x1x2

2 = 0, (B2)

(a+ − a−)x2 + 2u2x3
2 + 2u12x2

1x2 = 0. (B3)

The stability of states can be determined by examining the
Hessian at a given fixed point. The (i, j)th element of the
Hessian matrix is ∂2L/∂xi∂x j . The eigenvalues of the Hessian
matrix for a stable state should be �0.

The general Hessian matrix for L(x1, x2) is

MH =(
a+ + a− + 6u1x2

1 + 2u12x2
2 4u12x1x2

4u12x1x2 a+ − a− + 6u2x2
2 + 2u12x2

1

)
.

(B4)

There are four possible states. The region of stability of these
four states is obtained by using the condition on the eigenval-
ues of the Hessain as follows.

Paramagnetic phase (x1, x2) = (0, 0). For this state
Eqs. (B2) and (B3) are trivially satisfied. The Hessian is di-
agonal and the conditions for both eigenvalues to be positive
are (a+ + a−) � 0 and (a+ − a−) � 0.

Longitudinal Ising phase (x1, x2) = (v, 0). Fixed point
equations are satisfied if

v2 = −a+ + a−
2u1

. (B5)

The phase is stable if (a+ + a−) � 0 and a+(1 − u1
u12

) �
a−(1 + u1

u12
).

Transverse Ising phase (x1, x2) = (0, v). Fixed point equa-
tions are satisfied if

v2 = − (a+ − a−)

2u2
. (B6)

The phase is stable if (a+ − a−) � 0 and a+(1 − u2
u12

) �
a−(1 + u2

u12
).

Mixed phase (x1, x2) = (v1, v2). Expressions of v2
2 and v2

1
from the fixed point equations are as follows:

v2
2 = − (a+ + a−) + 2u1v

2
1

2u12
, (B7)

v2
1 = − (a+ − a−) − 2u2v

2
2

2u12
. (B8)

The eigenvalues are

λ± = 1
2

[(
u1v

2
1 + u2v

2
2

) ±
√(

u1v
2
1 − u2v

2
2

)2 + 4v2
1v

2
2u2

12

]
.

(B9)

FIG. 9. Possible phase diagrams from a two parameter Landau
theory. Solid line represents the coordinate axes. Dashed and dotted
lines represent the locus of continuous and first order transitions,
respectively. For u1u2 < u2

12, the phase diagram consists of two lines
of continuous transition and a line of first order transition meeting
at a bicritical point as shown in (a). For u1u2 > u2

12 there are four
phases, which meet at a tetracritical point as shown in (b), (c), and
(d). The topology, though, can be different depending on the ratios
of u12

u1
and u12

u2
.

Both eigenvalues are greater than equal to zero when

u1u2

u2
12

� 1. (B10)

Thus if u1u2

u2
12

< 1, then there cannot be a mixed state in the
system.

Besides the above condition, it is also required that v2
1 � 0

and v2
2 � 0. Solving Eqs. (B7) and (B8), we get

v2
1 = a+(u12 − u2) − a−(u12 + u2)

2
(
u1u2 − u2

12

) , (B11)

v2
2 = a+(u12 − u1) + a−(u12 + u1)

2
(
u1u2 − u2

12

) . (B12)

Since v2
1 � 0 and v2

2 � 0, we obtain two more additional
conditions for the existence of the mixed phase: (1) a−(1 +
u12/u1) � a+(1 − u12/u1); and (2) a+(u12/u2 − 1) � a−(1 +
u12/u2).

We define s1 = u12/u1, s2 = u12/u2, α1 = 1+u12/u1

1−u12/u1
= 1+s1

1−s1
,

and α2 = 1+u12/u2

1−u12/u2
= 1+s2

1−s2
. Then the condition for the existence

of a mixed phase is a+ � α1a− and a+ � −α2a−.
The Landau functional defined in Eq. (B1) yields four

different kinds of phase diagrams, which are described below.
For u1u2 � u2

12 the state (v1, v2) is not possible. There
are three states in the system, and the phase diagram in the
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(a+, a−) plane has a bicritical point at (0,0); there is a first
order line along the negative x axis starting at the bicritical
point, separating the (0, v) and (v, 0) phases. The (0, v) and
(v, 0) phases are separated from the (0,0) phase via a line of
critical points along a+ = a− and a+ = −a−, respectively, as
shown in Fig. 9(a).

For u1u2 > u2
12, there are four critical lines: a+ = a−, a+ =

−a−, a+ = α1a−, and a+ = −α2a−, which meet at a+ =
a− = 0 in the (a+, a−) plane. The phase (0,0) exists between
the lines a+ = a− and a+ = −a−. There are three different
phase diagrams depending on the value of s1 and s2:

(1) s1 < 1 and s2 < 1 (α1 > 1 and α2 > 1): In this case
α1 and α2 are both greater than 1 and the mixed phase
occurs between a− = a+/α1 and a− = −a+/α2 as shown in
Fig. 9(b).

(2) s1 < 1 and s2 > 1 (α1 > 1 and α2 = −|α2|, where
|α2| > 1): In this case |α2|

α1
> 1 and the mixed phase exists

for a− � a+
α1

and a− � a+
|α2| . The phase diagram is as shown

in Fig. 9(c).
(3) s1 > 1 and s2 < 1 (α2 > 1 and α1 = −|α1|, where

|α1| > 1): In this case |α1|
α2

> 1 and the mixed phase exists

between a− � −a+
α2

and a− � −a+
|α1| . The phase diagram is as

shown in Fig. 9(d).
We remark that the condition, Eq. (B10), for the existence

of the mixed state was known earlier [42,43]. Besides re-
producing the relation, we have shown above that the phase
diagram depends also on the ratios u12

u1
and u12

u2
. Here we

considered only the case with u12, u1, u2 � 0; negative values
of u12 have been considered in [43].
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