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Configurational entropy from a replica approach: A density-functional model
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We study a field-theoretic model for the metastable liquid using a nonlocal free-energy functional with
density ρ(x) is the order parameter and three-point correlation effects included in the formulation. We assume
fragmentation of the free-energy landscape into distinct basins of local minima and evaluate the partition function
for the many-particle system through mapping into a composite system of m identical replicas. Static correlations
and configurational entropy Sc are calculated in the m = 1 limit. The Kauzman packing fraction ηK obtained are
in agreement with other works.
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I. INTRODUCTION

The liquid remains disordered well below its crystallization
point and becomes metastable with respect to the ordered
crystalline state. Understanding how the metastable liquid
transforms into an amorphous solid [1] having rigidity has
remained a challenge. The concepts of ergodicity break-
ing and the associated entropy crisis are essential tools for
building a microscopic model for this process. The den-
sity ρ(x) is treated as the order parameter field in these
theoretical descriptions. A typical example is the classical
density-functional theory (DFT) used to understand crys-
tallization. In DFT, the inhomogeneous density ρ(x) is
treated as the order parameter and the equilibrium state is
identified by minimizing a suitable free-energy functional.
The free energy for the normal liquid state corresponds
to the global minimum of this functional corresponding
to a uniform density ρ(x) = ρ0. Extending similar ideas
[2,3], the metastable liquid below the freezing point is
identified to be at a local minimum in the free-energy
landscape (FEL). With the increase of density, the FEL
breaks up into an exponentially large number of basins cor-
responding to local minima of the free-energy functional,
signifying the metastable amorphous states. This transfor-
mation of the metastable liquid is termed the spontaneous
breakdown of ergodicity [1]. The metastable system can
remain in a basin α characterized by a local minimum
fα (say) for the free energy. In a statistical mechanical
description of the classical N-particle system, the parti-
tion function ZN is obtained by summing the contributions
from the Boltzmann factors corresponding to these different
basins { fα},

ZN �
∑

α

∫
x∈α

dxe−βH (x) =
∑

α

e−βN fα (T ). (1)

H denotes the microscopic Hamiltonian as a function of
phase-space variables x and β = 1/(kBT ) is the inverse tem-
perature. The Boltzmann factors corresponding to a specific
basin are shown on the right-hand side of Eq. (1) include

two types of contributions. First, the Boltzmann weight
corresponds to the system being confined to a particular
basin and, second, contributions arising from the different
states corresponding to a given basin. The latter is referred
to as vibrational contributions in that particular basin. In
an idealized situation, the system is confined in a given
basin in the FEL, vibrating around the corresponding min-
imum. This confinement requires infinite barriers between
different states such that the system is confined in a sin-
gle basin. In mean-field p-spin models in which every spin
interacts with every other spin, this is a more appropriate
situation [4,5]. In the present context, we focus on the pri-
mary contribution coming from the minimum of a given
basin and consider the following scenario for the evolu-
tion of the FEL. Above the freezing point, the significant
contribution to ZN comes from only one global minimum
signifying the homogeneous liquid state with uniform den-
sity. Close to the freezing point, an exponentially large
number of metastable states with free energies higher than
that for the uniform state appear. However, these metastable
states do not contribute to the Gibbs partition function
since their numbers do not compensate for their small
Boltzmann weight compared to that coming from the global
minimum. At some lower temperature or higher packing,
the number of metastable states becomes large enough to
make up for the difference and contribute to the partition
function. Below the freezing point, we obtain the partition
function ZN for the system without any quenched disor-
der in terms of the contributions from these metastable
states following the approximation in the right-hand side
of Eq. (1)

In a field-theoretic description of the coarse-grained system
in terms of a field φ(x), we obtain the partition function ZN [φ]
in terms of the corresponding Hamiltonian H[φ] as

ZN =
∫

Dφ(x) exp{−βH[φ]}. (2)

The state of the many-particle systems representing a liquid
matter is described in terms of the free-energy functional
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value in the function space of a continuum field. We identify
this field here with the coarse-grained density function ρ(x)
[6]. In the classical DFT the inhomogeneous function ρ(x)
is treated as an order parameter. The equilibrium state of the
many-particle system is identified by minimizing a suitable
functional H[ρ(x)]. Local minima of H[ρ] in space of ρ(x)
signify the metastable basins { fα} depicted above. An essen-
tial step in developing the theoretical models to identify the
local minima came from Ref. [6]. In this work, the metastable
liquid was identified with local minima of free energy by
imposing a δ-function constraint, δ(δH/δρ), in the calculation
of ZN . A conjugate hatted field ρ̂ is introduced in an integral
representation to maintain this δ function constraint. It is
assumed here that a nonzero correlation between the fields
ρ and ρ̂ signify ergodicity breaking [6]. The role of such
auxiliary fields in picking up the local minima was further
exploited in Monasson’s seminal work [7], which we closely
follow here in counting the number of local minima. An
externally quenched pinning field ψ (x) is coupled to ρ(x) in
the quadratic form in the corresponding free-energy functional
Hψ [β], such that when ψ (x) is identical to ρ(x) the corre-
sponding Hψ is minimum by choice. The Monasson approach
to accounting for the metastable minima involves using an
ingenious trick of introducing m identical replica of the same
system and then taking the physical limit m→1. The configu-
rational entropy Sc of the metastable liquid is calculated using
this approach.

Configurational entropy for the metastable liquid has been
defined in various ways, e.g., in terms of temperature deriva-
tives of the free energy [8,9], in terms of local minima in
the potential-energy landscape [10], using effective potential
approximation for the self-generated disorder [11], and with a
small cage expansion for individual particles vibrating around
their mean positions of an amorphous structure [12]. In the
description depicted above in terms of basins in the FEL,
the logarithm of the number of such basins of free-energy
minima at a given temperature obtains the corresponding
configurational entropy or complexity Sc of the supercooled
liquid. In the deeply metastable state with its characteristic
slow dynamics, Sc decreases rapidly.

In the present work, using a density-functional repre-
sentation of H[ρ], we include the effects of multiparticle
correlations in the dense liquid in the calculation of the com-
plexity Sc. The partition function is evaluated from the sum
on the right-hand side of Eq. (1) under spontaneous ergodicity
breaking approximation. We obtain how Sc drops with an
increase of packing for a hard-sphere system, and by extrapo-
lating Sc to zero, the Kauzmann point [13] is estimated. The
paper is organized as follows: The following section discusses
the field-theoretic model for the structural system without
quenched-disorder, using density as the order parameter.
Section III presents the renormalization due to the coupling
of density fluctuations beyond Gaussian order using standard
methods. In Sec. IV, we present, following Monasson’s ap-
proach, the scenario of spontaneous breaking of ergodicity in
terms of nonzero correlations between identical replicas. Here
we solve the corresponding equations for the nonergodicity
parameters. In the next section, using the replica approach,
we calculate the configurational entropy or complexity Sc in
terms of the number of local minima in the FEL. In Sec. VI

we consider the present model with respect to the ergodicity-
nonergodicity transition of mode-coupling theory (MCT). We
end the paper with a short discussion of the results.

II. THE FIELD-THEORETIC MODEL

In a continuum field-theoretic description, the minima cor-
responding to the different basins of the FEL are defined in
terms of the function space of ρ(x). The equilibrium free
energy for the system is obtained as a functional integral
over ρ,

F (β ) = −β−1 ln
∫

Dρ(x) exp{−βH[ρ]}. (3)

H[ρ] is the Hamiltonian expressed as a functional of contin-
uum order parameter field ρ(x) and (βm0)−1/2 is the average
speed of the fluid particles of mass m0. The free-energy val-
ues at the bottom of the respective basins are picked up by
introducing [6,7] an externally quenched pinning field ψ (x)
coupled to ρ(x) with a coupling g > 0. The corresponding free
energy is obtained as a generalization of Eq. (3):

Fψ [g, β] = −β−1 ln
∫

Dρ(x)

× exp

{
− βH[ρ] − g

2

∫
dx[ψ (x) − ρ(x)]2

}
.

(4)

The free energy Fψ [g, β] is minimum when the pinning field
ψ (x) is identical to ρ(x) corresponding to the minima of un-
perturbed free energy given by Eq. (3). Therefore spanning the
function space of ψ (x) picks up in the partition function sum,
the contribution from the respective minima corresponding to
different basins in the FEL. For a chosen temperature β̃ = mβ

(for integer m), the corresponding partition function W (β̃ ) of
the original system is calculated by mapping into a composite
system of m identical replicas. Performing a simple Gaussian
integral, we obtain

e−β̃F ≡ W (β̃ )= lim
g→0+

[ ∫ m∏
a=1

Dρa(x) exp

{
− β

m∑
a=1

H[ρa]

− g

2m

∑
a<b

∫
{ρa(x) − ρb(x)}2dx

}]
. (5)

The density field ρ(x) for the composite system with the
m replicas is denoted here as {ρa} = {ρ1}{ρ2}{ρ3} · · · {ρm}.
The internal energy U (β, m) for the system is obtained as

U (β, m) = − ∂

∂β̃
lnW (β̃ ) = ∂

∂m
{mF[β, m]}, (6)

treating β as a constant. With the above scenario of the
fragmented FEL having distinct basins, exp[Sc] is counted
for the number of local minima. For m = 1 the difference,
β(U − F ) = Sc, obtains the configurational entropy of the
metastable liquid. Using Eq. (6) obtains

Sc = β

[
∂

∂m
F[β, m]

]
m=1

. (7)

Following the DFT, we obtain the functional H[ρ(x)], in
terms of which the partition function is formulated in Eq. (3),
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in two parts,

H[ρ] = Hid[ρ] + Hex[ρ]. (8)

The ideal gas or noninteracting part Hid[ρ] is obtained
exactly as

Hid[ρ] =
∫

dxρ(x)[ln(ρ(x)
3) − 1], (9)

where 
 is the thermal wavelength. In Eq. (9), we denote
the position coordinate as x signifying the spatial vector. The
ideal gas part Hid is an entropic contribution and is related to
considerations of packing. The expression for Hid shows that
an inhomogeneous ρ(x), signifying particle localization, has
lower entropy compared to that for a uniform state. The excess
or interaction contribution Hex[ρ] is written in a functional
Taylor series expansion of density fluctuation, δρ(x) = ρ(x)-
ρ0, around its value H0

ex for average density ρ0,

Hex[ρ] = H0
ex +

∞∑
n=1

1

n!

∫
dx1 . . . dxnc(n)(x1, x2, . . .)δρ(x1) . . . δρ(xn). (10)

The direct correlation functions c(n)(x1, x2, . . .)s are func-
tional derivatives of the excess free energy, i.e.,

c(n)(x1, x2, . . .)= − δnHex

δρ(x1) . . . δρ(xn)

∣∣∣
ρ=ρ0

. (11)

Using translation symmetry, Fourier transform of c(n) is
written in a dimensionless form with the symbol c̃(n) ≡
ρn

0 c(n)(k1, . . . , kn). Contributions from terms beyond cubic
order in density fluctuations in the H[ρ] are ignored. The
dominant contribution to the free energy comes from close
to the local minima, and from physical considerations, these
are finite. The present coarse-grained description of the fluid
holds up to a cutoff length and restricts the wave vector range
studied. With purely local Hamiltonian, it has been observed
that the cubic term further strengthens the presence of the
glassy state [14]. Keeping up to the cubic order terms in
density fluctuations, the free-energy functional has the form,

H[ρ(x)] = H(ρ0) +
∫

ρ(x1)

{
ln

[
ρ(x1)

ρ0

]
− 1

}
dx1

− 1

2!

∫
c(2)(x1, x2)δρ(x1)δρ(x2)dx1dx2

− 1

3!

∫
c(3)(x1, x2, x3)δρ(x1)

× δρ(x2)δρ(x3)dx1dx2dx3 + .... (12)

Effects of the non-Gaussian terms are thus included in the
calculation of correlation functions. Using the above form for
H[ρ] for the composite system of m-identical replicas, free
energy is written as a functional of the density fields of the
various replicas. And these inter-replica fields couple beyond
the Gaussian order.

III. RENORMALIZATION OF NON-GAUSSIAN MODEL

In the general formulation [15] of the field-theoretic model,
the partition function Wμ is obtained in terms of a functional
integral over the field � as:

Wμ =
∫

D� exp{−Hμ[�]}. (13)

H[�] in the right-hand side is written in the unit of Boltzmann
factor β. We adopt here a compact notation for the fields
as �(1) ≡ {δρa(x)}, where a is the replica index ranging

from a = 1 to m, and 1 stands for the spatial point x1, etc.
The polynomial expansion form suitable for the diagrammatic
corrections of field-theoretic models is obtained as

Hμ[�] = 1

2

∑
1,2

G−1
0 (12)�(1)�(2)

+ 1

3

∑
1,2,3

V (123)�(1)�(2)�(3) −
∑

1

μ(1)�(1).

(14)

Here μ is the chemical potential. Using the DFT form for
H[ρ] stated above in Eqs. (8)–(12), the zeroth order or
Gaussian matrix, G−1

0 is obtained as{
G−1

0

}
ab(12) = ρ0

−1[δ(1 − 2) − c̃(2)(12)]δab, (15)

while the vertex function V (123), taken to be the same for the
identical replicas, are obtained as

V abc(123) = ρ−2
0 [c̃(3)(123) + δ(1 − 2)δ(1 − 3)]δabδbc

≡ V0(123)δabδbc. (16)

The vertices are chosen by construction to be symmetric in
their arguments. The direct correlation functions c̃(2) and c̃(3)

are respectively scaled with factors of ρ0 and ρ2
0 to make

the corresponding Fourier transforms c̃(2)(k) and c̃(3)(k, k′)
dimensionless.

The two-point correlation matrix in the space of m identical
replicas defined as

Gab(x − y) = 〈δρa(x)δρb(y)〉 (17)

is a key quantity here. Now taking a functional derivative of
〈�(1)〉 = G(1), with respect to μ(2), we obtain

δG(1)

δμ(2)
= δ

δμ(2)

∫
D�

[
e−Hμ

Wμ

]
�(1)

= 〈�(1)�(2)〉 − 〈�(1)〉〈�(2)〉
= 〈δ�(1)δ�(2)〉 ≡ G(12). (18)

In the space of identical replicas, the correlation matrix G is
assumed to have the structure

G = (G − F )I + FE. (19)

I is the m × m identity matrix, while E is a matrix of the same
size, having all the elements equal to unity. Renormalization
of the Gaussian theory due to cubic and higher-order terms
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[16] of the free energy is done using standard diagrammatic
methods [15] of field theory. The renormalized two-point
correlation function is obtained from the identity

〈 ∫
D�

δ

δ�a(1)
exp[−Hμ(� )]

〉
= 0. (20)

For the sake of clarity, in the rest of this section, we indicate
explicitly the replica index with roman symbols a, b, c, . . . ,
each representing one of the m identical replicas. We have
adopted the convention that the repeated indices with a bar,
like 1̄ or ā, are respectively integrated or summed over. Sub-
stituting the expression for free energy from Eq. (14) into
Eq. (20), and using (18), we obtain

{
G−1

0

}
ab̄(12̄)〈� b̄(2̄)〉 + V ab̄c̄(12̄3̄)

[
Gb̄c̄(2̄3̄) + 〈� b̄(2̄)〉〈� c̄(3̄)〉] = μa(1). (21)

We also use the fact that the three-point vertex function V (123) is symmetric under the exchange of the indices. Taking one more
derivative of Eq. (21) with respect to μb(2), we obtain{

G−1
0

}
ab̄(12̄)Gb̄b(2̄2) + V abc̄(123̄)

[
Gb̄b(2̄2)Gc̄(3̄) + Gb̄(2̄)Gc̄b(3̄2) + δGb̄c̄(2̄3̄)

δμb(2)

]
= δ(12)δab. (22)

Now, taking a functional derivative (with respect to μc) of the
following defining expression for the inverse of a matrix:

G−1
ab̄

(12̄)Gb̄b(2̄2) = δ(12)δab, (23)

the last term on right-hand side of Eq. (22) is obtained as

δGac(13)

δμb(2)
= −Gab̄(12̄)

δG−1
b̄c̄

(2̄3̄)

δμb(2)
Gc̄c(3̄3). (24)

Using the above identity (24) and some tedious algebra, the
last terms on the right-hand side of Eq. (22) is further simpli-
fied. Introducing the self-energy matrix �ab, we write Eq. (22)
if the form[{

G−1
0

}
ab̄(12̄) − �ab̄(12̄)

]
Gb̄b(2̄2) = δ(12)δab. (25)

In Appendix A, we have the following result for the self-
energy matrix at lowest order in the bare vertex V ,

�ab(12) = −2V abc̄(123̄)Gc̄(3̄) + 2V ab̄c̄(12̄3̄)

× Gb̄d̄ (2̄4̄)Gc̄ē(3̄5̄)V d̄ēb(4̄5̄2). (26)

Using Eqs. (23) and (25), the inverse Green’s function matrix
G is written in the form of Dyson’s equation:

G−1
ab (12) = {

G−1
0

}
ab(12) − �ab(12). (27)

The self-energy matrix � represents the effects of the cu-
bic and higher-order products of the fields � in Eq. (14).
Elements of � are obtained following diagrammatic methods
[15] of field theory. For the isotropic system with con-
stant μ, Ga(1) = 〈�a(1)〉 = 0 and hence the first term on
the right-hand side of Eq. (26) is zero. In terms of the
replica indices, the ab element of the self-energy matrix � is
obtained as

�ab(12) = 2V0(12̄3̄)Gab(2̄4̄)Gab(3̄5̄)V0(4̄5̄2). (28)

Note that in the right-hand side of Eq. (28) the repeated
indices a and b are not summed over.

IV. THE SPONTANEOUS BREAKING OF ERGODICITY

Assuming that in the space of identical replicas, the self-
energy matrix � has a structure similar to Eq. (19) with �G

and �F respectively denoting the diagonal and off-diagonal
contributions,

�(12) = [�G(12) − �F (12)]I + �F (12)E. (29)

With this form, the Dyson equation (27) obtains

G−1 = {G−1
0 + �G − �F }I + �F E. (30)

Matrices of the above form are easily inverted, and
G reduces in the limit m→1 to the form (19) with the
off-diagonal(diagonal) element obtained as F (q)[G(q)]. The
following relations are obtained for F and G:

F (q) = G(q) − (q), (31)

G−1(q) = G−1
0 (q) − �G(q), (32)

−1(q) = G−1(q) + �F (q). (33)

In the liquid state, the off-diagonal elements F (q) are zero.
The diagonal elements G(q), related to the static or thermo-
dynamic properties, are not drastically affected through the
ergodicity breaking transition. In the limit g→0, the contri-
bution proportional to the coupling g in intrareplica G(q) is
negligible. For inter-replica F (q), the same limit is nontrivial.
It signals correlations developing in the replica space and
the small extensive interaction between the identical copies
or replicas force all the m replicas to fall in the same state,
i.e., they simultaneously belong to the same free-energy basin.
Therefore the key indicator of the ergodicity breaking process
is F (q). From Eqs. (31) and (32) it follows that the normal-
ized quantity ζq = F (q)/G(q) is related to self-energy �F (q)
through the nonperturbative relation:

ζq

1 − ζq
= G(q)�F (q). (34)

Evaluation of �F up to one-loop order [15] in terms of
the cubic vertex V (123) introduced in Eq. (14) obtains the
integral equation for the so-called nonergodicity parameters
{ζq}s. Using Eq. (28) for the matrix, �, the diagonal and off-
diagonal parts are obtained in one-loop approximation as

�̃G(q) =
∑

k

Ṽq−k,kG(k)G(|q − k|), (35)

�̃F (q) =
∑

k

Ṽq−k,kF (k)F (|q − k|). (36)
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The common vertex function at one-loop level is Ṽk,k′

Ṽk,k′ = 2ρ0[1 + c̃(3)(k, k′)]2G(k)G(k′). (37)

Hence at the one-loop order, Eq. (34) obtains the following
integral equation for the ζqs:

ζq

1 − ζq
= G(q)

∫
dk

(2π )3
Vk,q−kζkζ|q−k|. (38)

The vertex function Vk,k′ is given above in Eq. (37).
The contribution to the cubic vertex Vk,k′ from both Hid

and Hex of H are important. At the Gaussian level, we keep
terms up to quadratic order in density fluctuations for both Hid

and Hex and obtain the usual Ornstein-Zernike expression for
the equal time density correlation,

S(k) = 1

1 − ρ0c(2)(k)
. (39)

Beyond the Gaussian field theory of quadratic fluctuations, the
expansion of logarithmic term and three-point direct corre-
lation c(3) contribute to terms involving cubic powers of the
density fluctuations. For localized density profiles, this simple
expansion of the functional Hid in terms of δρ(x) works up
to length scales of size of the sphere. For the interaction-part
Hex, similar contributions involve higher-order direct corre-
lation functions c(n), for n � 3, and these are small at large
wave vectors by construction. We use a large wave vector cut
off to keep the free-energy expansion in density fluctuations
δρ valid in the present model. The NEP F (q) represent the
overlap of density fluctuations of different basins. Large wave
vectors are assumed to signify the intrabasin dynamics or
vibrational motion and are ignored. To consider the role of
a wave vector cutoff needed in this model, we parametrize the
inhomogeneous density ρ(x) as

ρ(x) =
∑

i

(α

π

) 3
2

exp[−α(x − Ri )
2], (40)

in terms of Gaussian profiles centered around a random set of
lattice points {Ri}. The width of the density profiles described
in Eq. (40) are l ∼ α−1/2, and the mass is localized within
lengths less than l . The ideal gas part of the free-energy
functional is given in Eq. (9). For smaller values of α, i.e.,
overlapping Gaussians centered at different sites {Ri}, we
evaluate the ideal gas part Hid[ρ] numerically. This involves
computation of the integral given in (9) in terms of a site-site
correlation function for the random structure {Ri} [17]. Using
Bernal’s random structure [18] for the latter, the ideal free
energy per particle fid (l ) is evaluated. The result is shown
in lower inset of Fig. 1 against the corresponding choice of
the variable l for density function ρ(x). For a system of hard
spheres of diameter σ the free-energy density fid (l ) is plotted
with the corresponding l for ρ(x). Up to a cutoff l0, the
fid(l ) is close to the free energy f̄id of a completely uniform
state. l0 is less than size of the hardcore of a fluid particle.
For the interaction part, Hex, the large wave vector contribu-
tions are small by construction, since the higher-order c(n)’s
are small for large k. This point is further discussed below
concerning Fig. 3.

The three-point function c(3)(k, k′), in the right hand side
of Eq. (38), is calculated as a convolution of a ternary function
t (r) following Ref. [19]. The calculation of the three-point
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t(
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Δf
id

(l
)

↓
l
0

FIG. 1. Main panel (upper inset): The ternary function t (r) as
solid line and h(r) = g(r) − 1 as dashed line vs. r/σ for packing η =
.594 (.554) using the Percus-Yevick (Rodger-Young) input structure.
Lower inset: � fid (l ) (see text) in units of β vs. l/σ with arrow at
l0 ∼ .60σ for wave number cutoff.

functions is described in Appendix B. For t (r) ≡ g(r) − 1 =
h(r), this method produces superposition approximation for
c(3)(k, k′). The plot of ternary function t (r) vs. distance
r in units of σ are shown in Fig. 1 for packing fraction
η = .594(.554) in the main panel (inset). The intrareplica
correlation G(q) is treated as an input here and is approxi-
mated in terms of structure factor obtained respectively using
Percus-Yevick solutions [20] and Rogers-Young Bridge
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FIG. 2. The nonergodicity parameter ζq vs. qσ at the transition
point, ηc = .594 (solid) and ηc = .554 (dashed) respectively for input
G(q) from Percus-Yevick [20] and Rogers-Young [21]. The inset
shows corresponding G(q)s.
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FIG. 3. The off-diagonal correlation ζq(q) vs. qσ at packing ηc =
.554 using the Roger-Young closure static structure factor as input.
Solid line shows ζq(q) results corresponding to wave vector cutoff
qmaxσ = 10. Dotted line is the same result with additional density
fluctuations up to wave vector kmaxσ = 20 being included in Hex.
The transition point in this case is lower at ηc = .540.

function method [21]. We also show in this figure the cor-
responding results for h(r) = g(r) − 1 in terms of the pair
correlation function g(r). For the superposition approximation
t (r) is identified with h(r).

Self-consistent solutions for the ζqs are obtained from
Eqs. (37) and (38) on a wave vector grid .05/σ extending to a
maximum of 2π/l0. At the transition, the NEPs {ζq}s over the
wave vector grid become nonzero. At packing fractions, ηc =
.594 and .554, respectively corresponding to Percus-Yevick
and Rogers-Young structure factors, we obtain a nonzero set
{ζq}. See Fig. 2 for results for the NEPs ζq vs. qσ while the
inset shows the corresponding intrareplica correlations used
as an input in the calculations. To consider the role of the
wave vector cutoff on the NEP solutions in the interaction part
Hex we consider also increasing the cutoff value to 20σ−1

from 10σ−1, and the result is shown in Fig. 3. At packing
ηc = .554, we show the off-diagonal correlation ζq vs. qσ for
these two choices of the upper cutoff in the set of integral
equations. The results for the NEP in the two cases are close,
and the inclusion of shorter wavelength contributions for the
interaction do produce drastic effects.

V. THE CONFIGURATIONAL ENTROPY

The configurational entropy Sc is calculated from the re-
lation (7). For this, a nonperturbative expression for the free
energy F (β, m) for the composite system of m identical
replicas, defined in Eq. (5), is first obtained. To facilitate the
calculation, a symmetric field Uab (Uab = Uba) is included in
the Gaussian part of the Hamiltonian H[{φa}] in Eq. (5),

H0[{φa}] = 1

2

∑
a,b

φaG0
−1
ab φb + 1

2

∑
a,b

φaUabφb, (41)

The full two-point function Gab is obtained by taking a deriva-
tive with respect to the current Uab of the logarithm of partition

function W which is defined in Eq. (5). Finally, the current Uab

is set equal to zero:

Gab = − δ

δUab
lnW

∣∣∣
U=0

. (42)

Due to the inclusion of the field Uab the Dyson equation (27)
is also modified to the following form:

G−1
ab = {G−1

0 }ab + Uab − �ab. (43)

Hence variation of lnW is obtained as in terms of G and U ,

−δ lnW = Tr{GδU }. (44)

The modified Dyson equation (43) is used to express δU
in terms of δG−1 and δ�. With this the right-hand side of
Eq. (44) reduces to the form

−δ lnW = Tr{GδG−1} + Tr{Gδ�} = Tr{GδG−1}
+ δTr{�G} − Tr{�[δG]}. (45)

Next, we make use of the following identity, which holds for
m × m square matrices

Tr{GδG−1} = δ[Tr{ln G−1}], (46)

where the variations are with respect to the elements of the
matrix Gi j for fixed U and m. The corresponding derivative of
Tr ln G−1 with respect to Gab is obtained as

δ

δGab(q)
Tr{ln G−1} =

∑
k

Gi j (k)
δG−1

i j (k)

δGab(q)
. (47)

We replace the functional derivative of G−1
i j with that of the

self-energy �i j by using Eq. (43). Next, we confine the further
analysis to the one-loop expression (28) for the self-energy
matrix �ab, which arises from the cubic vertices V in the
free energy H. After some simple algebra involving functional
derivatives, it follows that Eq. (47) simplifies to

δ

δGab(q)
[Tr{ln G−1}] = −2�ab(q). (48)

Using Eqs. (46) and (48) the free energy F defined in Eq. (5)
is obtained as

F (m)= − 1

βm
lnW= 1

βm

[
3

2
Tr{ln G−1} + Tr{�G} − C0(m)

]
,

(49)

where C0(m) is an additive-constant independent of Gi j . Using
the above result for free energy F (m), the configurational en-
tropy Sc is obtained from Eq. (7). In order to further simplify
the form, we note from the respective expressions (19) and
(29) for the m × m square matrices G and � that both have
the common form A,

A = a1I + a2E, (50)

where I and E are both m × m square matrices as defined with
Eq. (19). We now make use of the following identity that holds
[14,22] for a m×m square matrix A which has the special
form (50),

∂

∂m

[
1

m
Tr{lnA}

]
m=1

=
[ a2

a1 + a2

]
+ ln

[
1 − a2

a1 + a2

]
,

(51)
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assuming that a1 and a2 are independent of m. Identifying A
with G−1, we obtain from (51)

∂

∂m

[
1

m
Tr{ln G−1}

]
m=1

=
∑

k

{
�F (k)G(k) + ln[1 + �F (k)G(k)]

}
. (52)

The product �G has also a form similar to (50) and trace of
this matrix is obtained as

Tr{�G} =
∑

k

[m�G(k)G(k) + m(m − 1)�F (k)F (k)]. (53)

Hence using Eqs. (7), (49), and (52), the configurational en-
tropy Sc is obtained as

Sc = 1

2

∑
k

{3 ln[1 + G(k)�F (k)]

− [3G(k) − 2F (k)]�F (k)} + S0. (54)

The quantity S0 = d/dm[C0(m)/m]|m=1 is independent of
density and treated as a the parameter in the model to obtain
the Kauzmann point. Writing the self-energy �F Eq. (54)
in terms of the one-loop approximation �̃F using Eq. (36),
the configurational entropy Sc is obtained in terms of the
nonergodicity parameters {ζk},

Sc =
∑

k

[
3

2
ln

(
1

1 − ζk

)
− ζk

1 − ζk

(
3

2
− ζk

)]
+ S0.

(55)

Using the density dependence of Sc, we analyze the corre-
sponding dependence of the derivative, and doing a power-law
fit of the divergence of the derivative −dSc/dη to the form
A(ηK − η)ν

′
, we estimate the Kauzmann point ηK . We show

this in the inset of Fig. 4. After ηK , and ν ′ are known, we
fit Sc to the form A1(ηK − η)ν , (A1 = A/ν, and ν = ν ′ + 1)
treating S0 as a density-independent constant. The value of
S0 is fixed by the choice that the configurational entropy is
zero at the Kauzmann point ηK . With an increase of density,
the NEPs {ζk} increases, and hence the first term in the right-
hand side of the expression (55) also increases in magnitude.
The configurational entropy Sc decreases with the increase
of density as S0 is chosen to be positive. The constant S0

in the present context signifies the large number of minima
appearing close to freezing point. We obtain the Kauzmann
points ηK = .620, and .605 for the two respective inputs of in-
trareplica correlation from Percus-Yevick and Rogers-Young
methods. These ηK values are comparable to results from
other studies [9,11,23].

VI. DYNAMIC-CORRELATIONS AND
REPLICA-CORRELATIONS

The MCT [24] of dense liquids presents the scenario of a
transition from an ergodic to a nonergodic state and is relevant
in the present context. This ergodicity-nonergodicity transi-
tion of MCT is driven by a dynamic feedback mechanism
[25]. The model is derived in terms of hydrodynamic modes’
couplings and follows from the equations of fluctuating
nonlinear hydrodynamics (FNH). These equations represent

0.57 0.6 0.63
η

0

100

200

-d
S c/

/d
η

0.57 0.6 0.63
η

0

0.5

1

1.5

2

S
c 

↓

0.605

↓

0.620

FIG. 4. Configurational entropy Sc scaled with its value at the
transition point (see text) vs. packing fraction η, for structure fac-
tors from Percus-Yevick (open circles) and Rogers-Young (closed
circles). Solid (dashed) line is power-law fit extrapolating to zero
at corresponding η = ηK . Inset: −dSc/dη vs. η, respective symbols
same as in the main panel. Solid (dashed) line shows power-law
divergence at ηK .

microscopic conservation laws for a many-particle system
[26]. The corresponding order parameter for the dynamic
transition of MCT is the long-time limit of the correlation of
density fluctuations C(q, t → ∞) = fq. The density fluctua-
tions are defined around the uniform state corresponding to
the global minimum of the free energy. The NEPs depicted
in earlier sections of the present paper and are different from
the { fq}s corresponding to the dynamic transition of MCT.
However, in both cases, the coupled set of integral Eqs. (38)
are the same, except for a difference between the respective
vertices Vk,k′ . The vertex in MCT is a consequence of non-
linear driving term ρ∇i(δH/δρ) in the FNH equation [27] for
the momentum density. The corresponding quratic coupling of
density fluctuations comes from the interaction part Hex and
involves the two-point function c̃(2),

Vk,k′ = ρ0{(q̂.k)c̃(k′) + (q̂.k)c̃(k)}2G(k)G(k′). (56)

Additional corrections involving c̃(3) occur [28] from the
cubic order term in (10). However, the primary part of the
mode-coupling integral comes from the Gaussian free energy,
and hence the feedback mechanism of MCT is of dynamic
origin. In this regard, it is helpful to note that, unlike the case
of a replica model, the logarithmic term in the ideal gas part
Hid generates a linear term ∇iρ for the dynamics in MCT.

In contrast, the nonzero inter-replica correlations {ζq} in
Eq. (38) arise from the non-Gaussian part of the density-
functional Hamiltonian (10), and the corresponding vertex
function (37) involves c̃(3)(k, k′), signifying the role of
multiparticle correlations besides entropic contributions. In
some works, however, the two approaches mentioned above
are linked by treating the MCT with modification of the
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structural inputs obtained from replica models. Furthermore,
the MCT memory kernels (56) have been obtained [29–31]
in some works by simply invoking the replica formulation
[32] on the static correlations of the metastable liquid at the
two-point level. Corrections to these models with the so-called
replicated hyper-netted-chain approximation indicated the im-
portance of static three-particle correlations [33] in theory.
However, similarities in the integral equations (38) for the re-
spective order parameters for the dynamic transition of MCT
and the spontaneous ergodicity breaking transition with a
replica approach (considered in the present work) goes beyond
and occurs without the structure functions being modified.

In MCT, the increased cooperativity in the particle move-
ments in a dense liquid are accounted through the coupling
of density fluctuations. From this perspective, the theory is
essentially a correction to Boltzmann-Enskog models (mean-
field) of transport based on uncorrelated collisions. On the
other hand, keeping analogy with spin-glass [32] models,
MCT itself has often been considered as a mean-field de-
scription and becomes exact [34,35] for spatial dimension
d→∞ in which all higher-order correlations are ignored. In
this limit, a sharp dynamical glass transition associated with
perfect caging, and a power-law divergence of viscosity is
predicted [36,37]. For finite dimensions, there are corrections
over the mean-field model, which smooths the dynamical
glass transition, though a strong remnant of the latter remains.
The full set of nonlinearities present in the FNH equations for
a compressible liquid ensured, through fluctuation-dissipation
constraints, that the NEP’s of the the ideal transition goes to
zero. Hopping between localized cages formed by neighbor-
ing particles in the nonergodic state was also considered [38]
to analyze the absence of the dynamic transition MCT for
finite dimensions. While the dynamic transition of MCT is
absent for finite dimensions, an entropy crisis sets in with fur-
ther supercooling or density increase. The present work using
replicas, and with the assumption of fragmentation of the FEL,
provides a model for this sharp decrease of configurational
entropy Sc and calculation of the Kauzmann point. In both
MCT and the present work, the respective results are limited
to the one-loop level.

VII. DISCUSSION

We present a statistical mechanics model for an atomic
system deep in the metastable region, beyond the range
where conventional mode-coupling theory applies. The the-
oretical formulation is based on a scenario following the
works of Kirkpatrick-Thirumalai and R. Monasson. We study
a field-theoretic model for the many-particle system using
the classical DFT. The corresponding partition function is
calculated using the scenario of fragmentation of the FEL in
terms of basins of local minima and through a mapping to a
composite system of m identical replicas. The configurational
entropy is estimated in terms of the number of such minima.
The corresponding nonergodicity parameter is defined as the
overlap correlations of density fluctuations in two identical
replicas. Here we take into account the nonlocal structural de-
pendence, going beyond a Landau-type expansion [14,39,40]
for the effective Hamiltonian in a functional form which
includes including effects of multiparticle correlations. The

present model’s key contribution to the inter-replica coupling
is rooted in the non-Gaussian contribution to free energy. It is
symbolized in simplest terms with the cubic vertex V (123) in
Eq. (14). The NEP ζq is zero if the �F (a contribution coming
from the non-Gaussian parts) is zero, as can be seen from
Eq. (34). Thus the NEP or the inter-replica coupling is directly
linked with the vertex V .

The present calculation provides an understanding of the
configurational entropy crisis based on the structural informa-
tion. In this respect, it is useful to note that a microscopic-level
description that explains how the dynamics cross over from
a continuum fluid-type motion to the formation of a barrier
(to transport) with the spontaneous fragmentation of the free-
energy landscape into distinct basins is desirable but has not
yet been formulated. Our work is a step in this direction using
the structure as the only input. Based on the assumption on
the FEL outlined above, the present work shows how the
entropy crisis can be understood using the same nonlocal
free-energy functional, as used in obtaining the MCT, and thus
constitutes a valuable step. With the fragmented FEL, as the
free-energy basins get deep, the nonergodic behavior sets in
and is signalled through nonzero overlap F between density
fluctuations in identical replicas. The fall of configurational
entropy Sc approaching the Kauzmann point ηK is obtained in
a first-principles calculation here including effects of multi-
particle correlations. This result is a qualitative improvement
over MCT in the closer vicinity of an approaching glass
transition.
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APPENDIX A: DYSON EQUATION AND SELF-ENERGY

In this Appendix, we analyze Eq. (22) to obtain the so-
called Dyson equation (27), which defines the inverse of
the correlation function matrix G in terms of the self-energy
matrix �. From the analysis the self-energy � is obtained in
a closed form (26) in terms of full correlation functions {G}.
We do this in the two following steps.

First, we note that using the identity (24) the last term on
the left-hand side of Eq. (22) is obtained in the form,

V ab̄c̄(12̄3̄)Gb̄d̄ (2̄4̄)

[
− δG−1

d̄ ē
(4̄5̄)

δμb(2)

]
Gēc̄(5̄3̄)

= V ab̄c̄(12̄3̄)Gb̄d̄ (2̄4̄)P d̄ ēb(4̄5̄2)Gēc̄(5̄3̄). (A1)

The quantity within square bracket is denoted as the vertex
function P d̄ ēb(4̄5̄2). In the expression (A1) and rest of this
Appendix we adopt, as in the main text, the following
notations: The barred indices like {1̄, 2̄, . . . } are consid-
ered respectively in combination with the roman symbols
{a, b, . . . }, etc. The numbers {1, 2, . . . } indicate the spatial
coordinates, while the roman letters {a, b, . . .} stand for the
replica indices. We also apply the summation convention that
repeated indices are summed over or integrated out.
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Next, we obtain an equation for the vertex P . From
Eq. (21), we express the currents {μa(1)} in terms of
{G(1), G(12)} order by order in a perturbation theory.
We, therefore, make a change of variables from μ(1) to
{G(1), G(12)} and use the chain rule to write

δG−1
ab (12)

δμc(3)
= δG−1

ab (12)

δGc̄(3̄)

δGc̄(3̄)

δμc(3)
+ δG−1

ab (12)

δGc̄d̄ (3̄4̄)

δGc̄d̄ (3̄4̄)

δμc(3)
.

(A2)

Now substituting the functional identity (24) in the second
term on the right-hand side of the relation (A2) we obtain

δG−1
ab (12)

δμc(3)
= δG−1

ab (12)

δGc̄(3̄)
Gc̄c(3̄3)

− δG−1
ab (12)

δGc̄d̄ (3̄4̄)
Gc̄ē(3̄5̄)

δG−1
ē f̄

(5̄6̄)

δμc(3)
G f̄ d̄ (6̄4̄). (A3)

We use the Dyson equation (27) to replace the functional
derivatives

Pabc(123) = −δG−1
ab (12)

δμc(3)
−→ δ�ab(12)

δμc(3)
(A4)

and obtain Eq. (A3) in the form

δ�ab(12)

δμc(3)
= δ�ab(12)

δGc̄(3̄)
Gc̄c(3̄3)

+ δ�ab(12)

δGc̄d̄ (3̄4̄)
Gc̄ē(3̄5̄)

δ�ē f̄ (5̄6̄)

δμc(3)
G f̄ d̄ (6̄4̄). (A5)

In terms of the three-point vertex function Pabc(123), Eq. (A5)
is written as the following self-consistent relation:

Pabc(123) = �abc̄(123̄)Gc̄c(3̄3)

+ U abc̄d̄ (123̄4̄)Gc̄ē(3̄5̄)Gd̄ f̄ (4̄6̄)P ē f̄ c(5̄6̄3),
(A6)

where the three- and four-point vertex functions �abc(123)
and U abcd (1234) are respectively defined as

�abc(123) ≡ δ�(12)

δGc(3)
, (A7)

U abcd (1234) ≡ δ�ab(12)

δGcd (34)
. (A8)

We now substitute the expression (A6) for P in the expression
(A1) to obtain a closed relation for the self-energy matrix
�. We are interested in one-loop corrections and are includ-
ing here only up to third-order vertex (involving three-point
direct correlation functions c(3) in the DFT Hamiltonian). It
is sufficient to keep only the first term on the right-hand side
of Eq. (A6). Making this substitution in the expression (A1),
and using the same in the last term on the left-hand side of the
Eq. (22), we obtain{

G−1
0

}
ab̄(12̄)Gb̄b(2̄2) + 2V ab̄c̄(12̄3̄)[Gb̄b(2̄2)Gc̄(3̄)

+Gb̄(2̄)Gc̄b(3̄2) + Gb̄d̄ (2̄4̄)
δ�d̄ ē(4̄5̄)

δG f̄ (6̄)
Gēc̄(5̄3̄)G f̄ b(6̄2)]

= δ(12)δab. (A9)

We use the symmetry of the bare cubic vertex V for its indices
and interchange the dummy index sets {2̄, b̄}↔{6̄, f̄ } in the
last term on the left-hand side of Eq. (A9) to write the latter
equation in the form:[{

G−1
0

}
ab̄(12̄) − �ab̄(12̄)

]
Gb̄b(2̄2) = δ(12)δab, (A10)

where the matrix � is obtained as

�ab(12) = −2V abc̄(123̄)Gc̄(3̄) − V ab̄c̄(12̄3̄)Gb̄d̄ (2̄4̄)

×
[
δ�d̄ ē(4̄5̄)

δGb(2)
Gc̄ē(3̄5̄)

]
. (A11)

We use the derivative in the second term on the right-hand side
of Eq. (A12) to lowest order in the bare vertex V and obtain
the following expression � to leading orders:

�ab(12) = −2V abc̄(123̄)Gc̄(3̄)

+ 2V ab̄c̄(12̄3̄)Gb̄d̄ (2̄4̄)Gc̄ē(3̄5̄)V d̄ēb(4̄5̄2). (A12)

APPENDIX B: THREE-POINT DIRECT-CORRELATION
FUNCTION

A key aspect of the present model is calculating the
effects of multiparticle correlations on configurational en-
tropy of the deeply metastable state. Cooperative effects in
a many-particle the system is generally expressed through
corresponding functions g(s)(r1, . . . , rs), defined in terms of
the corresponding reduced distribution function,

ρ (s)(r1, . . . , rs) = ρs
0g(s)(r1, . . . , rs). (B1)

We focus here on the first two functions, g(2)(r) and
g(3)(r, r′), respectively, at the two and three particle levels.
The corresponding Fourier transforms are related to respective
equilibrium ensemble averages of products of microscopic
densities ρ(ri ) over the positions of the particles {ri} for
i = 1, . . . , N and are denoted as G(k) and G(k, k′),

G(2)(k) = N−1〈ρkρ−k′ 〉, (B2)

G(3)(k, k′) = N−1〈ρkρk′ρ−k−k′ 〉, (B3)

where ρk denotes the Fourier transform of the microscopic
density,

ρk =
N∑

α=1

exp(ik · rα ). (B4)

Generally, the higher-order correlation functions are ap-
proximated in terms of lower-order correlations. A typical
approximation for the three-point correlation is the so-called
superposition approximation or the Kirkwood approximation,
which relates g(3) to g(2) as

g(3)(r, r′, r′′) = g(2)(r′ − r′′)g(2)(r − r′)g(2)(r − r′′). (B5)

Now, assuming translational invariance, this is independent of
the choice of origin and hence choosing that at r′′, we obtain,

g(3)(r, r′) = g(2)(r)g(2)(r′)g(2)(r − r′). (B6)

Further, in an isotropic system for the two-point function, we
take g(r) to be a function of r only. At the next level, a similar
closure in the Fourier space is the convolution approximation
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in which G(3)(k, k′) is expressed in terms of the two-point
quantities, G(2)(k)s,

G(3)(k, k′) = G(2)(k)G(2)(k′)G(2)(|k + k′|). (B7)

1. Direct correlation functions

For expressing the interaction part of the effective
Hamiltonian the so-called direct correlation functions
c(i)(r1...ri ), for i = 2, 3, . . . are of particular relevance. Ef-
fects of multiparticle correlations are included in the present
theoretical model through the inclusion of the non-Gaussian
terms with corresponding vertices in the density-functional
expression (12) for the effective Hamiltonian [41,42]. The
Gaussian model is renormalized with the self-energy matrix
�, defined in the Dyson equation. The effects from the non-
Gaussian parts in the effective Hamiltonian are included in
� and calculated perturbatively as correlation functions’ con-
volutions. The self-energy contributions also include vertex
functions involving the c(i)s of cubic and higher orders. At
the simplest level, our primary focus is on the three-point
level involving c(3)(r, r′) for a translational invariant system.
Increment of the two-point function c(2)(r) corresponding to
the change of the density function ρ(r) + �ρ(r) to ρ(r) is ob-
tained in terms of the three-point function c(3) with following
integral relation:

c(2)[r; ρ + �ρ] − c(2)[r; ρ] =
∫

dr′
[
δc(2)(r)

δρ(r′)

]
�ρ(r′)

=
∫

dr′c(3)[r, r′; ρ]�ρ(r′). (B8)

For a homogeneous system, the density ρ(r)=ρ0 and
�ρ(r)=�ρ0 on the right-hand side of (B8) can be taken out of
the integral reducing the above relation to a simple expression
for the partial derivative of the two-point function c(2)(r; ρ0),

∂c(2)(r, ρ0)

∂ρ0
=

∫
c(3)(r, r′; ρ0)dr′. (B9)

The direct-correlation functions c(i) are linked to correspond-
ing multiparticle correlation functions g(i) or equivalently to
G(i) through the so-called Ornstein-Zernike relations. At the
two-point level, the direct correlation function c(2) for the
liquid is related to the corresponding structure function G(2)

through the Ornstein-Zernike relation. The Fourier transform
c̃(2)(k) of c(2)(r) is related to G(2)(k) as

G(2)(k) = 1

1 − c̃(2)(k)
. (B10)

A factor of density ρ0 is absorbed in c̃(k) to make it dimen-
sionless. At the three-point level, such relations have been
generalized [43] in the form:

G(3)(k, k′) = G(2)(k)G(2)(k′)G(2)(|k + k′|)
× [

1 + n2
0c(3)(k, k′)

]
. (B11)

Comparing (B7) and (B11), it follows that the convolution
approximation (B7) amounts to assuming c(3)(k, k′) = 0. The
next step in our analysis is estimating c(3)(r, r′), with an
expression like that of the Kirkwood approximation (B6), in
terms of a function t (r):

c(3)(r, r′) = t (r)t (r′)t (r − r′). (B12)

For the choice t (r)(r) − 1 = h(r), this method [19] produces
superposition approximation for c(3)(k, k′). Fourier transform
of the triplet correlation function c(3)(r, r′) in k space is

c(3)(k, k′) = ρ2
0

∫
dr

∫
dr′c(3)(r, r′) exp(ik · r + ik′ · r′).

(B13)

Using the ansatz (B12) in definition (B13), the Fourier trans-
form c(3)(k, k′) is obtained after scaling with the factor ρ2

0 as

c̃(3)(k, k′) =
∫

dq
(2π )3

t̂ (q)t̂ (k + q)t̂ (k′ − q). (B14)

For an isotropic system t (r) is a function of r only. If we
choose t (r) as h(r)=g(2)(r)−1, then c(3)(r, r′) only con-
tributes when all three particles are close. The Fourier
transform t̂ (k + q) is also a function of |k + q| only.
Legendre polynomial expansion t̂ (|k + q|) obtain

t̂ (|k + q|)) =
∑

l

fl (k, q)Pl [cos(θ )], (B15)

where θ denotes the angle between {k, q}. Using the orthog-
onality property of Legendre polynomials, the coefficients
fl (k, q) are obtained as

fl (k, q) =
(

l + 1

2

) ∫ 1

−1
t̂ (|k + q|)Pl (cos θ )d (cos θ ). (B16)

We now simplify the expression for c̃(3)(k, k′) in the right-
hand side of (B14) by using expansion in terms of Legendre
polynomials [19,44]. Substituting the expansion Eq. (B15) of
t̂ into Eq. (B14) we obtain

c̃(3)(k, k′) =
∫

dq

(2π )2
q2t (q)

∑
l,l ′

{∫
d (cos θ ) fl (k, q) fl ′ (k

′, q)Pl [cos(θ )]Pl ′[cos(θ ′)]

}
, (B17)

where θ ′ denote the angle {k′,−q}. Integration for the vec-
tor q is written here in polar coordinates having θ as the
polar angle and with assumption of azimuthal symmetry. The
azimuthal symmetry is used so that φ = φ′, respectively the
angles corresponding to θ and θ ′. We denote γ = θ ′ − θ ,
and hence cos θ ′ = cos(γ ) cos(θ ) − sin(γ ) sin(θ ). To calcu-

late the integral on right-hand side of Eq. (B17) we use the
following expansion for Pl (cos θ ′) in terms of the spherical
harmonics involving θ and φ:

Pl ′ (cos θ ′) =
l ′∑

m=−l ′
bl ′mYl ′m(θ, φ). (B18)

024110-10



CONFIGURATIONAL ENTROPY FROM REPLICA … PHYSICAL REVIEW E 105, 024110 (2022)

For θ = 0, cos θ = 1, and the corresponding Legendre poly-
nomials Pm

l (1) = 1 for m = 0 and is equal to zero for all
other values of m. On the other hand, cos θ ′ is simply cos γ .
Hence taking θ = 0 we obtain from Eq. (B18) the result
Pl ′ (cos γ ) = bl ′0. Now multiplying Eq. (B18) with Pl ′ (cos θ )
and integrating over cos θ we obtain∫

d (cos θ )Pl (cos θ )Pl ′ (cos θ ′)

= 2

2l + 1
δll ′bl ′0 = 2

2l + 1
δll ′Pl ′ (cos γ ). (B19)

So the formula (B17) reduces to the form

c̃(3)(k, k′) =
∑

l

Il (k, k′)Pl (cos γ ), (B20)

where the integral Il (k, k′) is obtained in terms of fl (k, q)
defined in Eq. (B16) in the following form:

Il (k, k′) = 4π

2l + 1

∫
q2t (q) fl (k, q) fl (k

′, q)
dq

(2π )3
. (B21)

2. Numerical evaluation of t(r)

The function t (r) is calculated using a Legendre polyno-
mial expansion and solving the identity relation (B9) for the
uniform state of density ρ0, with an iterative method. The
value of function t (r) is obtained by minimizing the following
functional �[t] using the steepest descent method,

�[t (r)] =
∫

dr
[
∂c(r, ρ0)

∂ρ0
− t (r)tC (r)

]2

, (B22)

where the function tC is convolution of t (r),

tC (r) =
∫

t (r − r′)t (r′)dr′. (B23)

The functional derivative κ[t (r)] of �[t (r)] with respect to
function t (r) is

κ[t (r)] = δ�[t]

δt (r)
= −2

[
∂c(r, ρ0)

∂ρ0
− t (r)tC (r)

]
tC (r)

− 4�(r), (B24)

where the function �(r) is obtained as

�(r) =
∫

dr′
[
∂c(r′, ρ0)

∂ρ0
t (r − r′)t (r′) − t

(r − r′)t2(r′)tC (r′)
]
. (B25)

The minimization of �[t (r)] by searching convergence of
�[t (r)] through the iterative approach,

tn+1 = tn + λκn(t (r)). (B26)
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FIG. 5. The three-point function c(3)(k, k) vs. kσ shown for η =
.570(solid), η = 0.596 (dashed), and η = 0.607 (dotted). Inset shows
corresponding results at those densities shown in the main panel with
the Rogers-Young structure factor.

The gradient κn[t (r)] is calculated with nth iteration t (r). The
parameter λ is taken so as to minimize the functional �[t (r)].
The convergence criterion has been set by using

[
∂c(r)

∂ρ0
− t (r)tC (r)

]2

� 10−5

∣∣∣∣∂c(r)

∂ρ0

∣∣∣∣2

, (B27)

|tn+1 − tn|2 � 10−8. (B28)

The two-point function c(2)(r) is obtained here by using
both the Percus-Yevick [20] solution and the Bridge function
method with the Rogers-Young approximation [21]. The cor-
responding value of ∂c(2)(r, ρ0)/∂ρ0 is substituted in Eq. (B9).
Once t (r) is known, the three-point direct correlation func-
tion c(3)(r, r′) is calculated using the relation (B12). With
azimuthal symmetry, the three-point direct correlation func-
tion c̃(3)(k, k′) depends on k, k′, and cos θ where θ is the
angle between {k, k′}. In Fig. 1 we have shown the plot of
ternary function t (r) vs. distance r in units of σ for packing
fraction η = .594 (.554) in the main panel (inset) with the
corresponding two-point structure function taken from the
Percus-Yevick approximation [20] (Rogers-Young structure
factor [21]). The plot of c̃(3)(k, k) is displayed in Fig. 5
for both the Percus-Yevick (main panel) and the Rogers and
Young (inset) structure factors corresponding to three differ-
ent packing factions η = .570, .596, and .607.
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