
PHYSICAL REVIEW E 105, 024109 (2022)
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The theory of the linear static dielectric constant and linear complex permittivity of isotropic polar fluids
is formulated starting from the coupled Langevin equations describing the rototranslational dynamics of long-
range interacting molecules with thermal agitation and subjected to external forces and torques. To this aim,
adequate reduced densities are introduced and equations governing their dynamics derived. In the equilibrium
zero frequency limit, integral expressions for the Kirkwood correlation factor gK are given, transparently showing
that the popular method consisting in comparing gK with 1 in order to deduce pair dipolar ordering has no serious
theoretical grounding. In the dynamical situation, the complex permittivity spectrum of a simple liquid is shown
to exhibit an infinite discrete set of relaxation times, some of which may have thermally activated behavior.
The theory is also shown to contain all previous results derived in the area provided molecular inertial effects
are ignored, so restricting the range of validity of the theory to frequencies much below the far-infrared region.
Finally, the theory can be adapted without much effort to relaxation of interacting magnetic nanoparticles for
which macroscopic magnetic anisotropy arising from the assembly of nanoparticles is neglected.
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I. HISTORICAL BACKGROUND AND MOTIVATION

A. Historical background

The theory of the electric polarization of polar fluids was
initiated by Debye a century ago [1] and therefore has a long
history. It is nowadays well known that the Debye theory
cannot quantitatively account for experimental data because
his theory pertains to extremely dilute situations where inter-
molecular interactions are neglected. The statics was greatly
improved by Onsager [2], whose theory removes the undesir-
able ferroelectric Curie point of the Debye-Lorentz theory, so
allowing in principle to deduce the dipole of a single molecule
μ from the measurement of the Snell-Descartes refractive
index n and that of the static dielectric constant ε. Yet, for
a number of substances, μ was not predicted properly by
Onsager’s theory. For example, in order to get quantitative
agreement between theory and experimental measurements on
liquid water, one has to multiply the true individual molecular
dipole moment by a factor of three, while for many polar liq-
uids, it is found using Onsager’s theory that μ has nonphysical
temperature dependence.

Three years later, Onsager’s static formula was improved
by Kirkwood [3]. In particular, he found that in order to
recover quantitative agreement between theory and exper-
iment, μ2 has to be multiplied by a positive factor, gK,
reflecting intermolecular dipole pair statistical orientational
correlations (therefore pair dipole orientation order), hence
the name “Kirkwood correlation factor” for gK. The Kirkwood
theory was finally rigorously justified by Fröhlich [4], and all
this is well summarized in Brown’s review on dielectrics [5].
To date, the so-called Kirkwood-Fröhlich theory is the most

successful one in order to interpret the experimental values of
the dielectric constant [6]. Moreover, since Onsager’s theory
can be used for dilute specimen to deduce accurate values of
the molecular dipole moments (a good example is Malecki’s
experimental method [7]), the Kirkwood-Fröhlich equation is
likewise used to obtain quantitative information on dipolar
order by simply measuring the static dielectric constant ε in
the pure liquid phase, the mass density of the fluid and the
Snell-Descartes refractive index, having previously deduced
the molecular dipole moment value from dilute measure-
ments. We note also that when experimental values cannot be
determined precisely, the individual molecular dipole moment
can nowadays be obtained with the help of quantum ab initio
calculations. Finally, tables of molecular dipole moments in
the ideal gas phase exist [8].

Improvement of Debye’s theory regarding the dynamics
(i.e., the calculation of the complex permittivity ε(ω) resulting
from the application of an alternating field of frequency ω)
had to await the 1960s and the 1970s. It starts with the 1963
work of Zwanzig [9] who calculated the complex permittivity
arising from interacting molecular dipoles located at the sites
of a cubic lattice, thereby providing the first dynamical gen-
eralization of the Debye-Lorentz theory. Because Zwanzig’s
treatment handles interdipole interaction torques perturba-
tively, the resulting theory is not amenable to quantitative
comparison with experiment. Nevertheless, Zwanzig’s work
unambiguously demonstrates that the spectrum of dielectric
loss consists in an infinite discrete set of microscopic relax-
ation times, and therefore to a relaxation time distribution.
This result is invaluable in view of the empirical approach
to dielectric relaxation, which always involves a continuous
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relaxation time distribution that may be obtained experimen-
tally [10]. We note in passing that this empirical approach is
still widely used nowadays by any experimentalist in the area.

Logically, the next step is to generalize Onsager’s theory
of the static dielectric constant to dynamics. In a cornerstone
paper, this was accomplished by Nee and Zwanzig [11]. In
particular, these authors handled this theoretical problem by
considering that the dipole not only lags behind the externally
applied field, but also lags behind the dynamical reaction
field. This last dipole lagging mechanism is called dielectric
friction and is responsible for the continuous character of the
distribution of relaxation times. In doing so, they were able to
reproduce the dielectric loss of glycerol at −60 ◦C.

Because the Nee-Zwanzig theory does not reduce to the
Kirkwood-Fröhlich one in the static limit, the dynamical the-
ory still needed improvement. A culminating point in the
history of dynamics modeling is the work of Madden and
Kivelson [12]. Their work is important for many reasons, one
of which being that their treatment of the statics yields the
Kirkwood-Fröhlich theory in an unambiguous manner, with
an integral formula for gK. This integral formula for gK was
previously derived by Nienhuis and Deutch [13], and was
later computed by a number of authors [14,15] using the
Ornstein-Zernike (OZ) equation with various closures. One
advantage of Madden and Kivelson’s derivation is that much
less theoretical effort is required in obtaining the aforemen-
tioned formula than other approaches [14,15]. The dynamics
is then computed by stating the Mori continued fraction ex-
pansion [16] for the Fourier-Laplace transform of the dipole
correlation function, allowing the frequency range to cover 12
decades, i.e., from zero frequency to the far-infrared region.

Finally, the most accomplished step forward in the theory is
that of Bagchi and Chandra [17], who reconsidered the prob-
lem from the point of view of generalized hydrodynamics.
The main concern is that the statics and dynamics should arise
from one and the same formalism for interacting dipoles, just
as the Debye theory does for noninteracting ones. In effect,
their theory is able to formally include all previously derived
results [12,14,15] (statics and dynamics) within one and the
same formalism. Moreover, the Bagchi-Chandra theory can
be extended to intermediate to large wave vectors, therefore
being the first prototype theory to be, at least in principle,
applicable to all experiments which interpretation necessitate
to invoke orientational relaxation processes in matter.

Now, before motivating our work, a word should be said on
the general principles of calculation of the dielectric constant
and complex permittivity themselves for the sake of readabil-
ity.

B. Roadway to the calculation of the static dielectric constant
and complex permittivity

The dielectric constant ε and complex permittivity ε(ω)
(ω is the frequency at which the ac externally applied field
oscillates) of a polar fluid are intensive quantities, by which
we mean that they are independent of sample size and shape.
Moreover, such quantities are defined at the macroscopic
scale, where the Maxwell equations in matter hold, while at
the molecular scale, those concepts are meaningless since
molecules are embedded with vacuum.

In principle, it is not difficult to write down a microscopic
expression for the polarization, since it is the (statistical av-
erage) vector sum of N molecular dipoles changing their
orientations in the course of time, and contained in a volume
V divided through by the volume V. In zero applied field, this
sum must vanish at thermal equilibrium.

Macroscopically, the linear polarization is proportional to
the Maxwell field in the steady state regime where all tran-
sients have disappeared. For isotropic fluids, the coefficient
of proportionality is termed the electric susceptibility χ (ω),
in turn linked to the linear complex permittivity ε(ω) by the
equation ε(ω) = 1 + χ (ω). If the sample is bounded by a
shape of second degree (i.e., the sample shape is ellipsoidal
or spherical), then the Maxwell field and the externally ap-
plied field are related in a very simple manner. Moreover, in
the spherical geometry, the Maxwell field and the externally
applied field are collinear and oscillate at the same frequency.
This point is important for further progress in the theory. An
other important point is that the macroscopic polarization is
also uniform in these geometries [6]. Then, since the linear
polarization response to an external field (here “molecular”)
can always be calculated from statistical mechanics, and iden-
tified with the macroscopic polarization responsible for the
orientational mechanism, the main question is to calculate the
field seen by the molecules and to establish its relation to the
Maxwell field before any statistical mechanical calculation
can be started.

Onsager [2] was the first author to be able to compute this
relation between the molecular and Maxwell fields. To ac-
complish this, he considered a spherical region much smaller
than the size of the dielectric itself, and showed that in such a
region (the cavity) the field which operates at a tagged dipole
is not the Maxwell macroscopic field. If the cavity is empty
(and made of vacuum) then the field inside the (spherical or
ellipsoidal) cavity is rather a field proportional to it named
the cavity field. If a dipole is inserted in the cavity, then the
dipole polarizes the surrounding dipoles outside the cavity, and
this outer region is treated as a continuum where precisely the
concepts of dielectric constant and complex permittivity have
a meaning. By back action (Newton’s third law), the surround-
ings create in the spherical cavity a uniform field named the
reaction field. This field is proportional to the instantaneous
dipole [2] and is therefore unable to orient it. However, the
reaction field is important when the molecular dipoles each
consist of a permanent plus an induced dipole because it is the
total dipole which interacts with the cavity plus reaction fields
[6]. In particular, this allows one to single out the polarization
mechanism which arises from the molecular polarizability,
so that the statistical-mechanical calculation requires one to
handle the orientational mechanism of polarization in detail
only.

From a statistical mechanical point of view, the molec-
ular orientational dipole response can be calculated as that
resulting from an effective cavity field, that is, the directing
field [6] which is still proportional to the Maxwell field for
spherically shaped cavities. Since the proportionality constant
involves ε and is known for spherical geometry, the linear
polarization response can be computed as the linear response
to this field [6] as it is one external to the cavity. Only when
this equation linking the Maxwell and directing field is known
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can the problem be reduced to one of statistical mechanics,
that is, the calculation of the linear response of an assembly
enclosed in a volume υ � V which still contains a sufficient
number of molecules. This last point is essential because it is
at this condition that the principles of statistical mechanics
can still be applied inside the cavity of volume υ. More
sophisticated theories attempting to avoid the cavity trick in
the static calculations [12,15] still lead to the same conclusion
as that of Fröhlich and Kirkwood and formally, to the same
equation (the square of the molecular dipole moment must be
multiplied by a positive factor).

Several ways are possible for handling the statistical
mechanical calculation. As already alluded to above, the
most general way of attack in the static situation is the
equilibrium, time-independent generalized Liouville equa-
tion [18,19] which solution is invariably the many-body
Maxwell-Boltzmann distribution. This allowed Fröhlich [4]
to rationalize the notion of Kirkwood correlation factor and
to provide a logical derivation of Kirkwood’s theory. Unfor-
tunately, the generalization to the time-dependent situation is
very difficult from the generalized Liouville equation, because
in this equation, the approach to statistical equilibrium is de-
scribed in a very implicit manner. Nevertheless, the complex
permittivity can be formally linked to the Fourier-Laplace
transform of the time-dependent equilibrium field free total
dipole moment correlation function, as shown by Klug, Kran-
buehl, and Vaughan [20], Rivail [21], and Scaife [22]. We
insist that this relation is completely formal and arises from
the Liouville equation which is a linear equation (it can also
be derived from the Kramers-Kronig relations [22–24]), and
also on the fact that this correlation function approach is just a
reformulation of first-order perturbation theory. Perturbation
theory is the safest method to be applied when nonlinear
kinetic equations are used to calculate the linear response.
Experimentally, the use of such equation is similar with the
one made for computing the Kirkwood correlation factor from
experimental data [10]. In other words, the relation linking
the complex permittivity to the Fourier transform of the time
derivative of the total dipole correlation function is used to
deduce the time dependence of the dipole correlation function
in the absence of external fields; this correlation function is
in turn the time response function of the dipolar system. The
response function of the system can also be calculated by
first-order perturbation theory, so that the correlation function
approach can be bypassed entirely.

When the intermolecular interactions consist only of
the superimposition of pair interaction terms, the general-
ized Liouville equation can be reduced to a set of partial
differential-integral equations for the partial densities nk de-
fined in terms of the time-dependent solution of the Liouville
equation F by

nk (q1, . . . , qk, t )

= N!

(N − k)!

∫
F(q1, . . . , qN , t )dqk+1dqk+2 · · · dqN

(1)

with k < N and (q1, . . . , qN ) denote the set of degrees of
freedom and generalized momenta of the N-body system.
The subsequent set, called the Bogolyubov-Born-Green-

Kirkwood-Yvon (BBGKY) hierarchy, reduces to a simpler
set in configuration space [the Yvon-Born-Green (YBG) hi-
erarchy] at thermodynamic equilibrium since the momenta
are then assumed to reach their individual Maxwellian dis-
tribution [19]. Although the hierarchical process may seem
simpler to handle, this is actually not so because (1) up to now
and to the best of our knowledge nobody has succeeded in
uncoupling the BBGKY hierarchy and (2) the approach to sta-
tistical equilibrium is as implicitly contained in the BBGKY
hierarchy as it is in the generalized Liouville equation, the
difference being however that in its original version, the
BBGKY contains only pair interactions, while the Liouville
equation contains all many-body ones. All this entails that
relaxation mechanisms must always be explicitly stated in
order to allow an initially excited system to reach its thermal
equilibrium state.

A first route to handle dynamical many-body statistical
mechanical problems is to use the generalized Liouville equa-
tion and to make an approximation regarding the propagator
kernel by using the Mori-Zwanzig projection technique. After
some approximation, this gives rise to the mode coupling the-
ory (MCT), which is commonly used in glass science [19,25]
for the sake of calculating intermediate scattering functions or
structure factors of glasses and supercooled liquids. However,
in this kind of theory, dynamics can be calculated only if it is
assisted by the input of equilibrium conditions that are either
imported from experimental data or equally well computed by
an independent method. This is quite similar with the theory
of Madden and Kivelson [12].

Another approach is classical dynamical density functional
theory (DDFT) which is florishing in quite a number of
areas nowadays (see Ref. [26] containing more than 1000
references, commenting on the ways to derive it, the approx-
imations made in order to solve it, and the overwhelming
number of its practical applications). As far as no approxima-
tion is stated on the dynamical excess free energy functional,
DDFT is formally exact and in any case, contains both the
statics and the dynamics in one and the same formalism.
Moreover, the approach is physically appealing when derived
from the Langevin stochastic equations of motion of the indi-
vidual molecules. In addition, many well-grounded theoretical
models can be constructed from DDFT as far as intermolecu-
lar interactions and thermal effects are involved. Finally, this
is actually on that kind of approach that the Bagchi-Chandra
theory is grounded, and therefore in our view this approach
is by far more seducing than MCT ones, again because of its
intuitive and physically appealing characters.

In the classical version (i.e., nonquantum-mechanical),
there exist two kinds of DDFT that can be derived from the
individual Langevin equations. The first is the deterministic
approach put forward by Marconi and Tarazona [27]. The
second one is stochastic and was derived by Dean [28]. The
Dean equation is the exact one to start when handling a
stochastic density functional theory approach, and contains Itô
multiplicative noise. The Itô multiplicative noise is an impor-
tant notion here, because unlike the Stratonovich one [29,30],
this noise disappears when directly averaging the Dean equa-
tion over the distribution of realizations of the individual
noises. Nevertheless, when averaging the Dean equation, one
obtains the Marconi-Tarazona equation (10) [27], which is
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exact. This equation describes the overdamped dynamics of
n1 which contains a systematic diffusion term characteristic
of the Einsteinian (overdamped) picture of Brownian motion
augmented by an integral term involving n2 and the interaction
generalized force (i.e., minus the gradient of a pair interac-
tion potential). Therefore, the equation which is obtained is
one describing free diffusion (neglecting externally applied
forces) of the one-body density augmented by interaction
terms. Hence, this equation may be considered as a funda-
mental result of DDFT which is free from approximations.
At statistical equilibrium, this equation reduces to the first
member of the YBG hierarchy [26], so that DDFT not only
provides a specific mechanism to the approach of statistical
equilibrium, but also guarantees that the correct thermal equi-
librium state is attained. If the exact formalism is maintained,
then one may formally calculate any desired response to an
external stimulus from this equation at all perturbation orders
of the external stimulus. In the area of dielectrics, this is very
important due to the recent finding of growing correlation
lengths in nonlinear ac dielectric responses when some polar
glass formers approach the glass transition [31].

C. Motivation

The Nee-Zwanzig theory [11], although allowing one to in-
terpret dynamical glycerol data at −60 ◦C, does not reduce to
the Kirkwood-Fröhlich equation at statics, and this is therefore
a serious drawback of the theory. Moreover, it is not obvious to
understand how short-range intermolecular forces and torques
can be related to dielectric friction [23] in the context of their
theory. The same holds true for the Madden-Kivelson theory
[12] because the equilibrium and dynamical quantities are, in
practice, computed independently. The Bagchi-Chandra the-
ory is clearly a DDFT; however, the analytical computations
have been achieved only in the mean spherical approximation
(MSA) for uniform one-body density as a reference state, and
therefore it is meaningless to quantitatively compare the out-
comes of their analytical calculations with experimental data
save in dilute situations. Moreover, using other approxima-
tions such as Percus-Yevick (PY) or hypernetted chain (HNC)
approximations in the Bagchi-Chandra theory [17] leads to
calculations that become analytically intractable, making it
difficult to extract simple meaningful physical information
(we leave apart the degree of arbitrariness of the MSA, PY,
and HNC approximations). In fact, the rototranslational the-
ory starting from the individual Langevin equations has been
given by Cugliandolo et al. [32] quite recently in the con-
text of stochastic DDFT as applied to dipolar relaxation, and
the relation to previous theories discussed. Averaging their
equation over the distribution of realizations of the individual
noises reduces this equation to a rototranslational version
of the Marconi-Tarazona equation (10) [27], which in turn
becomes the Bagchi-Chandra theory if the interactions are
computed from a Taylor functional expansion of a free ex-
cess energy functional and the pair density is factorized as a
product of one-body densities.

The rototranslational Dean equation derived by Cuglian-
dolo et al. [32] when averaged over the realizations of the
individual noises links n1 to n2. While it is possible to derive
an equation for n2 from the Langevin individual equations,

this is never made in approximate DDFT approaches [26].
However, in contrast with the equation for n1, ignoring the in-
tegral terms involving n3 in the equation for n2 does not lead to
a diffusion equation for n2. Rather, it leads to a Fokker-Planck
equation which drift involves the pair interaction potential.
As such, it contains important information regarding micro-
scopic relaxation processes and pair interactions that is not
explicitly contained in the equation for n1. If an equation for
n3 is derived, the same holds true, viz., ignoring n4 integral
terms does not lead to a simple diffusion equation, rather to
a Fokker-Planck equation which is similar with that for n2

if only pair interactions are considered. To the best of our
knowledge, considering both equations for n1 and n2 and
making approximations on the n2 equation for solving the
equation for n1 has never been considered in the past, save
recently on an example, which allows analytical formulas
to be obtained for both the Kirkwood correlation factor and
complex permittivity spectrum [33,34]; good agreement for
statics with both experimental data regarding the temperature
dependence of the dielectric constant of water and methanol
and numerical simulations was found [33]. Good qualitative
agreement with many experimental data was found in the dy-
namical version [34]. Nevertheless, we believe it worthwhile
presenting a formal theory because dielectric data have been
available for long for various simple polar liquids of differ-
ent nature, and therefore it is a chance to quantitatively test
at least thermal equilibrium results against well-established
experimental data, rather than testing them against numeri-
cal simulations [26]. However, before achieving this task, a
number of theoretical calculations are necessary and it is the
purpose of this paper to present them, together with an appli-
cation to linear dielectric relaxation of dense polar fluids (the
approach here is termed kinetic YBG theory) as an example of
practical application. Computational results and comparison
of the outcomes of the static theory with experimental data
are given elsewhere [35].

The paper is organized as follows. Sections II–IV are de-
voted to a quite lengthy, but necessary derivation of theoretical
statistical mechanical results. Section III introduces equa-
tions and derivations pertaining to statistical mechanics of
polar fluids contained in a finite but sufficiently large volume.
A one-time spatial density correlation function is introduced,
which coincides with the distinct part of the Van Hove cor-
relation function [36] at some instants of time, but deviates
from it at other instants. This function is demonstrated to be
the relevant one for evaluating the mean torques to which the
molecular dipoles are subjected for the sake of interpreting
a dielectric relaxation experiment in Secs. V and VI. Sec-
tion IV is devoted to a derivation of a kinetic equation for
the orientational pair probability density, then Sec. V provides
an approximate Fokker-Planck equation for this orientational
pair probability density, and achieves separation of rotational
and translational timescales. Section VI applies the formalism
derived in Secs. II–V to linear dielectric relaxation, establishes
clearly the range of validity of the Bagchi-Chandra calcu-
lations and shows that their theory is actually a benchmark
one for dilute polar fluids. The Onsager-Cole equation [37] is
also rationalized and shown to be valid when intermolecular
torques are ignored in the statistical mechanical calculation,
so that Onsager’s equation which is its zero-frequency limit
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has the same range of validity, viz., in the dilute situation.
Moreover, in this section, the relation to previous work con-
cerning the Kirkwood correlation factor is given. Section VII
discusses the results obtained and their formal transposition
to macroscopically isotropic ferrofluids. Finally, Sec. VIII
summarizes the work, emphasizes new results and concludes.
Again, because the present work is lengthy, the numerical
results and comparison with experimental data are presented
elsewhere [35].

II. GENERALITIES

We consider as a model monomolecular fluid an assembly
of N interacting polar molecules contained in a volume υ,
such that its number density ρ0 = N/υ is constant at given
temperature and pressure. Each molecule labeled i has its
center of mass located at ri(t ) at time t and carries a rigid
dipole μi(t ) of constant magnitude μ and orientation specified

by unit vector ui(t ) such that μi(t ) = μui(t ). The system of
molecules is moreover subjected to externally applied forces
and torques (described by a generalized one-body potential
V1) and thermal agitation. For simplicity, we neglect inertial
effects and assume that intermolecular forces and torques can
be derived from a scalar potential Vint made of a superposition
of pair interaction terms Uint, viz.,

Vint (r1, u1, . . . , rN , uN ) = 1

2

N∑
i=1

∑
j �=i

Uint (ri − r j, ui, u j ).

(2)

For purposes which will appear later in Sec. VI, we assume
that V1 is spatially uniform, so that V1(r, u, t ) = V1(u, t ). With
the above assumptions, the rototranslational tumbling motion
of the molecules is described by the overdamped Langevin
equations [32], viz.

ṙi(t ) = − 1

γ

∑
j �=i

∫
∇ri (t )Uint(ri(t ) − r2, ui(t ), u2)ρ̂ j (r2, u2, t ) dr2 du2 + fi(t )

γ
(3)

and

u̇i(t ) = − 1

ζ

∑
j �=i

∫
∇ui (t )Uint(ri(t ) − r2, ui(t ), u2)ρ̂ j (r2, u2, t ) dr2 du2 − 1

ζ
∇ui (t )V1(ui(t ), t ) + λi(t ) × ui(t )

ζ
, (4)

where γ and ζ are, respectively, the phenomenological translational and rotational friction coefficients, fi(t ) and λi(t ) are the
white noise Gaussian random force and torque acting at molecule i, and

ρi(r1, u1, t ) = δ(r1 − ri(t ))δ(u1 − ui(t )). (5)

The noise force and torque fi(t ) and λi(t ) obey the statistical properties

fi(t ) = 0,

fi,a(t ) f j,b(t ′) = 2kT γ δi jδabδ(t − t ′)

and

λi(t ) = 0,

λi,a(t )λ j,b(t ′) = 2kT ζ δi jδabδ(t − t ′),

where the indexes (a, b) refer to Cartesian components of the time-dependent stochastic vectors fi(t ) and λi(t ), and the overbar
means an average over the distribution of the realizations of the noise forces and torques [29,30]. We also assume that

fi,a(t )λ j,b(t ′) = 0.

Finally, without any loss of generality, we always interpret following Risken [29] and Coffey et al. [30] the Langevin
equations (3) and (4) as Stratonovitch ones because the Stratonovitch definition allows one to use the ordinary rules of differential
calculus. Instead of representing the system dynamics with Eqs. (3) and (4), we introduce the average one-body density of
collective modes (referred to in this work as the one-body density) as follows:

n1(r1, u1, t ) = ρ̂(r1, u1, t ) =
N∑

i=1

ρi(r1, u1, t ) (6)

and write an equation for n1(r1, u1, t ). This equation is [26,27]

∂n1

∂t
(r1, u1, t ) = DT ∇r1 ·

(
∇r1 n1(r1, u1, t ) + β

∫
∇r1Uint (r1 − r2, u1, u2)n2(r1, u1, r2, u2, t ) dr2 du2

)
+DR∇u1 · [∇u1 n1(r1, u1, t ) + βn1(r1, u1, t )∇u1V1(u1, t )]

+βDR∇u1 ·
∫

∇u1Uint (r1 − r2, u1, u2)n2(r1, u1, r2, u2, t ) dr2 du2, (7)

024109-5



PIERRE-MICHEL DÉJARDIN PHYSICAL REVIEW E 105, 024109 (2022)

where β = (kT )−1 and DT and DR are respectively the bare translational and rotational diffusion coefficients given by

DT = kT

γ
, DR = kT

ζ
, (8)

and

n2(r1, u1, r2, u2, t ) =
∑

i

∑
j �=i

ρi(r1, u1, t )ρ j (r2, u2, t ) (9)

is the pair density of collective modes. Equation (7) is well known [26] and is at the basis of the development of, for
example, the usual deterministic DDFT description of the many-body statistical problem. This equation reduces to Berne’s basic
diffusion equation [38] as well as that of Bagchi and Chandra [17] when the mean-field approximation n2(r1, u1, r2, u2, t ) ≈
n1(r1, u1, t )n1(r2, u2, t ) is used in Eq. (7). It may be remarked that in the absence of interactions described by the integral terms
and in the absence of externally applied forces, Eq. (7) reduces to a rototranslational diffusion equation [26].

From Eqs. (3) and (4), it is possible to derive an equation of motion for n2. This equation is

∂n2

∂t
(r1, u1, r2, u2, t ) = DT

2∑
i=1

∇ri · [∇ri n2(r1, u1, r2, u2, t ) + βn2(r1, u1, r2, u2, t )∇riV2(r1 − r2, u1, u2, t )]

+DR

2∑
i=1

∇ui · [∇ui n2(r1, u1, r2, u2, t ) + βn2(r1, u1, r2, u2, t )∇uiV2(r1 − r2, u1, u2, t )]

+βDT

2∑
i=1

∇ri ·
∫

∇riUint (ri − r3, ui, u3)n3(r1, u1, r2, u2, r3, u3, t ) dr3 du3

+βDR

2∑
i=1

∇ui ·
∫

∇uiUint (ri − r3, ui, u3)n3(r1, u1, r2, u2, r3, u3, t ) dr3 du3, (10)

where

V2(r1 − r2, u1, u2, t ) = Uint (r1 − r2, u1, u2) + V1(u1, t ) + V1(u2, t ) (11)

is the two-body potential describing interactions between two molecules with degrees of freedom (r1, u1) and (r2, u2) augmented
by externally applied fields, and

n3(r1, u1, r2, u2, r3, u3, t ) =
N∑

i=1

∑
j �=i

∑
k �= j �=i

ρi(r1, u1, t )ρ j (r2, u2, t )ρk (r3, u3, t ) (12)

is the three-body density of collective modes.

It can be remarked that in contrast with Eq. (7), Eq. (10)
does not reduce to a simple diffusion equation if integral
and external field terms are ignored, but rather to a two-
body Fokker-Planck (Smoluchowski) equation [29]. We do
not write an equation for n3 because as mentioned in the
Introduction, the situation for this equation is the same as the
one for n2. Hence all the information we need is contained
in Eqs. (7) and (10). Furthermore, in the time-independent
situation, these equations reduce to the first two members of
the YBG hierarchy. Hence, the above approach to rototransla-
tional relaxation may be termed as a “kinetic YBG approach”
to rototranslational relaxation.

Now the mean polarization of a volume υ containing N
molecules of a monomolecular fluid in the direction of an
externally applied field may be written as

P(t ) = μ

υ

∫
(u1 · e)n1(r1, u1, t ) dr1 du1, (13)

where e is a unit vector in the direction of the externally
applied field. By inspection of this equation, it is clear that
n1(r1, u1, t ) is of little interest because (u1 · e) does not in-
volve r1 explicitly. It is therefore worthwhile introducing the
one-body orientational probability density W1(u1, t ) defined
by

W1(u1, t ) = 1

N

∫
υ

n1(r1, u1, t ) dr1 (14)

so that Eq. (13) may be written in terms of W1(u1, t ) as

P(t ) = ρ0μ

∫
(u1 · e)W1(u1, t ) du1. (15)

This equation is the expression of the microscopic polariza-
tion used by Debye [1], with the difference that in Debye’s
theory, the effects of intermolecular interactions on W1(u1, t )
are entirely neglected. In writing Eq. (15), we assume follow-
ing Debye, Onsager, Kirkwood, and Fröhlich [1–4] that ρ0
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is a constant at given temperature and pressure through the
whole fluid. By integrating Eq. (7) with respect to r1 over an

arbitrary large volume υ and making use of Gauss’s theorem,
we directly obtain an equation for W1(u1, t ), viz.,

∂W1

∂t
(u1, t ) = DR∇u1 ·

(
∇u1W1(u1, t ) + βW1(u1, t )∇u1V1(u1, t ) + β

ρ0

∫
∇u1Uint (r, u1, u2)n2(r, u1, u2, t |N, υ )drdu2

)
,

(16)

where

n2(r, u1, u2, t |N, υ ) = 1

υ

∫
υ

n2

(
R + r

2
, u1, R − r

2
, u2, t

)
dR

(17)

is the pair density for two molecules having relative position
r with dipole pairs oriented at (u1, u2) at time t given that
N molecules are contained in υ, and where R and r are
respectively the coordinates of the center of mass of a pair
of molecules and the relative position coordinates of a pair of
molecules, viz.,

R = 1

2
(r1 + r2), r = r1 − r2. (18)

Equation (16) generalizes Eq. (7) of Ref. [41] to the full
configuration space of the dipole orientations. In fact, Eq. (16)
is the one from which P(t ) is to be calculated. In order to
achieve this task, clearly an equation for n2(r, u1, u2, t |N, υ )
is to be derived as a first step. As we shall see, this will allow
for a number of simplifications.

III. SOME EXACT RESULTS

We show in this section that a number of exact results
can be obtained from Eq. (10) without making any extra
hypotheses and allows us to justify some assumptions made in
previous work [33,34]. We begin by deriving an equation for
n2(r, u1, u2, t |N, υ ).

A. Derivation of a kinetic equation for n2(r, u1, u2, t|N, υ)

In order to achieve this derivation, we start from Eq. (10)
and introduce the dynamical two-body and three-body dynam-
ical distribution functions as follows:

G2(r1, u1, r2, u2, t ) = n2(r1, u1, r2, u2, t )

n1(r1, u1, t )n1(r2, u2, t )
, (19)

G3(r1, u1, r2, u2, r3, u3, t )

= n3(r1, u1, r2, u2, r3, u3, t )

n1(r1, u1, t )n1(r2, u2, t )n1(r3, u3, t )
. (20)

These definitions are simple generalizations of the same func-
tions in the time-independent situation [19]. Next, we change
the variables (r1, r2) in Eq. (10) into the variables (R, r).
After lengthy but straightforward algebra, we arrive at the
equation

∂n2

∂t
(R, r, u1, u2, t ) = 2DT ∇R · [∇Rn2(R, r, u1, u2, t ) + βn2(R, r, u1, u2, t )∇Rφ2(R, r, u1, u2, t )]

+DT

2
∇r · [∇rn2(R, r, u1, u2, t ) + βn2(R, r, u1, u2, t )∇rφ2(R, r, u1, u2, t )]

+DR

2∑
i=1

∇ui · [∇ui n2(R, r, u1, u2, t ) + βn2(R, r, u1, u2, t )∇uiV2(r, u1, u2, t )]

+βDR∇u1 ·
∫

∇u1Uint (r′, u1, u3)n3

(
R + r

2
, u1, R − r

2
, u2, R + r

2
− r′, u3, t

)
dr′ du3

+βDR∇u2 ·
∫

∇u2Uint (r′, u2, u3)n3

(
R + r

2
, u1, R − r

2
, u2, R − r

2
− r′, u3, t

)
dr′ du3, (21)

where we have used for short the notation

n2(R, r, u1, u2, t ) = n2(R + r
2
, u1, R − r

2
, u2, t )

and where

∇Rφ2(R, r, u1, u2, t ) = 3

8
I1(R, r, u1, u2, t ) + 5

8
I2(R, r, u1, u2, t ), (22)
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∇rφ2(R, r, u1, u2, t ) = ∇rUint (r, u1, u2) + 3

4
I1(R, r, u1, u2, t ) − 5

4
I2(R, r, u1, u2, t ). (23)

Here I1 and I2 are the vectors defined by

I1(R, r, u1, u2, t ) =
∫

∇r′Uint (r′, u1, u3)n1

(
R + r

2
− r′, u3, t

)
G3(R + r

2 , u1, R − r
2 , u2, R + r

2 − r′, u3, t )

G2(R + r
2 , u1, R − r

2 , u2, t )
dr′ du3, (24)

and

I2(R, r, u1, u2, t ) =
∫

∇r′Uint (r′, u2, u3)n1

(
R − r

2
− r′, u3, t

)
G3(R + r

2 , u1, R − r
2 , u2, R − r

2 − r′, u3, t )

G2(R + r
2 , u1, R − r

2 , u2, t )
dr′ du3. (25)

As it stands, φ2 is an effective pair interaction potential and therefore should not depend on the center of mass coordinate of a
pair. This means that we must have ∇Rφ2 = 0, so that Eq. (22) reads

I2(R, r, u1, u2, t ) = −3

5
I1(R, r, u1, u2, t ). (26)

Next, since we consider a single-component polar fluid (i.e., with identical molecules), we have

G3(r1, u1, r2, u2, r3, u3, t ) = G3(r2, u2, r1, u1, r3, u3, t ), G2(r1, u1, r2, u2, t ) = G2(r2, u2, r1, u1, t ),

so that for arbitrary vectors (R, r, u1, u2) we have

I1(R,−r, u1, u2, t ) = I2(R, r, u2, u1, t ). (27)

Finally, because ∇Rφ2 = 0, we also have

∇Rφ2(R, r, u1, u2, t ) = ∇Rφ2(R,−r, u2, u1, t ),

which, using Eqs. (22), (26), and (27), leads to

I1 = I2 = 0. (28)

It follows that Eq. (23) becomes the remarkably simple result

∇rφ2(r, u1, u2, t ) = ∇rUint (r, u1, u2). (29)

Finally, by integrating Eq. (21) with respect to R and accounting for the fact that ∇Rφ2 = 0 and for Eqs. (17) and (29), we finally
arrive at the sought equation, viz.,

∂n2

∂t
(r, u1, u2, t |N, υ ) = DT

2
∇r · [∇rn2(r, u1, u2, t |N, υ ) + βn2(r, u1, u2, t |N, υ )∇rUint (r, u1, u2)]

+ DR

2∑
i=1

∇ui · [∇ui n2(r, u1, u2, t |N, υ ) + βn2(r, u1, u2, t |N, υ )∇uiV2(r, u1, u2, t )]

+βDR

2∑
i=1

∇ui ·
∫

∇uiUint (r′, ui, u3)n3(r, r′, u1, u2, u3, t |N, υ ) dr′ du3, (30)

where

n3(r, r′, u1, u2, u3, t |N, υ ) = 1

υ

∫
υ

n3

(
R + r

2
, u1, R − r

2
, u2, R ± r

2
− r′, u3, t

)
dR (31)

defines the three-body density that any three molecules are
distant of (r, r′) with orientations (u1, u2, u3) at time t given
N molecules are in υ. Finally, by inspection of Eq. (12),
it can be readily seen that the ± sign in the right-hand
side of Eq. (31) is of no importance since in Eq. (12),
the summation indices are dummy. Hence, it follows that
choosing either sign defines one and the same function, viz.,
n3(r, r′, u1, u2, u3, t |N, υ ). Equation (30) is the main result
of this subsection. As it seems, Eqs. (16) and (30) should
suffice in order to calculate the linear complex permittivity of
polar fluids. In the next subsection we eliminate the rotational

degrees of freedom from Eq. (30) to single out the transla-
tional part of the relaxation process, and provide relation of
this translational part with the distinct part of the Van Hove
function [36].

B. Elimination of rotational degrees of freedom from Eq. (30)
and relation to the Van Hove function

In Appendix A, it is demonstrated that without any
approximation, one can factorize n2(r, u1, u2, t |N, υ ) as
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follows:

n2(r, u1, u2, t |N, υ ) = ρ0W2(u1, u2, t )G(r, t |N, υ ), (32)

where W2(u1, u2, t ) is the orientational pair probability den-
sity (depending on N and υ only through ρ0) and the meaning
of G(r, t |N, υ ) will be given when we have derived a kinetic
equation for this function. Actually, this equation is easily
obtained by integrating Eq. (30) over (u1, u2) and using the
split (32). This yields for G the Fokker-Planck equation

∂G

∂t
(r, t |N, υ )

= DT

2
∇r · [∇rG(r, t |N, υ ) + βG(r, t |N, υ )∇rŪint (r, t )],

(33)

where

Ūint (r, t ) =
∫

Uint (r, u1, u2)W2(u1, u2, t ) du1 du2. (34)

The meaning of G(r, t |N, υ ) can now be given. First, we can
easily obtain n2(r, u1, u2, t |N, υ ) in terms of δ functions by
using Eqs. (9) and (17) to obtain

n2(r, u1, u2, t |N, υ )

= 1

υ

N∑
i=1

∑
j �=i

δ(r + r j (t ) − ri(t ))δ(u1 − ui(t ))δ(u2 − u j (t )).

(35)

We can replace the left-hand side of Eq. (35) with the factor-
ization (32), integrate over u1 and u2 and account that W2 is a
probability density to obtain

G(r, t |N, υ ) = 1

N

N∑
i=1

∑
j �=i

δ(r + r j (t ) − ri(t )). (36)

This has to be compared with the definition of the distinct part
of the Van Hove function G(d )

V H (r, t, t ′) given by [36]

G(d )
V H (r, t, t ′) = 1

N

N∑
i=1

∑
j �=i

δ(r + r j (t ) − ri(t ′)), (37)

so that it is easily seen that G(r, t |N, υ ) = G(d )
V H (r, t, t ), i.e.,

G(r, t |N, υ ) serves as an “initial condition” for G(d )
V H (r, t, t ′).

Since the Van Hove function for t = t ′ = 0 is the number den-
sity times the spatial pair distribution function g(r) [19,36],
we have

G(r, 0|N, υ ) = ρ0g(r). (38)

However, when thermal equilibrium is attained t → ∞ so that
the solution of Eq. (33) is time independent and given by the
“virial formula,” viz.,

G(r,∞|N, υ ) = AN e−βŪint (r,∞), (39)

where AN is a nonzero integration constant. This is in contrast
with the value G(d )

V H (r, 0,∞) = ρ0 of the Van Hove function.
Therefore, the two functions are different and G(r, t |N, υ )
relaxes from the value specified by Eq. (38) to Eq. (39), while
the relaxation of the Van Hove function G(d )

V H is much more

complicated. Physically, this can be understood as follows:
the liquid has no stable molecular order, so that such order
changes from time to time. From the point of view of the
Van Hove function, this change is “initially” given by by the
time-dependent solution of Eq. (33). If the timescale of the
experiment measuring the structure is larger than the transla-
tional timescale, then the value Eq. (38) is observed. If thermal
equilibrium is attained, then indeed the result of the measure-
ment will be Eq. (39) since the structure of the liquid will have
relaxed to its equilibrium value. In other words, Van Hove [36]
assumed that G(d )

V H (r, t, t ′) is stationary in all phases of mat-
ter, i.e., G(d )

V H (r, t, t ′) = G(d )
V H (r, 0, |t − t ′|). This is certainly

true in crystalline solids, but this might not be so in liquids
since the local order in molecular liquids changes from time
to time according to the Langevin equation (3) where ther-
mal agitation drives the molecular motion. To illustrate our
above arguments, let us assume that translational timescales
prescribed by the Fokker-Planck equation (33) (i.e., their neg-
ative inverse nonzero eigenvalues) and rotational timescales
involved in the dynamics of W2 are separated in such a way
that a structural measurement does not noticeably disturb the
orientations of the molecules in the absence of externally ap-
plied fields (very much like in an x-ray scattering experiment).
Then, in Eq. (34) we can replace W2 by its equilibrium value
W (0)

2 . By Eq. (34) this gives rise to the potential Ū ∞
int (r) given

by

Ū ∞
int (r) =

∫
Uint (r, u1, u2)W (0)

2 (u1, u2) du1 du2. (40)

Replacing Ūint by Ū ∞
int in the Fokker-Planck equation (33)

gives rise to the solution

G(r, t |N, υ ) = AN exp[−βŪ ∞
int (r)]

+ exp(−λt ) exp

[
− β

2
Ū ∞

int (r)

]
fλ(r), (41)

where λ > 0 is a relaxation rate [technically, an eigenvalue of
Eq. (33)] and fλ(r) obeys the stationary Schrödinger equation

∇2
rfλ(r) +

(
2λ

DT
− VS (r)

)
fλ(r) = 0, (42)

where [29]

VS (r) = −β

2

(
∇2

rŪ
∞
int (r) − β

2
[∇rU

∞
int (r)]2

)
. (43)

This (dimensionless) potential is repulsive at short molecular
separations, vanishes at large ones, and in a word behaves just
as the molecular interaction potential Uint does, viz.,

lim
|r|→0

VS (r) = +∞,

lim
|r|→∞

VS (r) = 0,

so that by inspection of Eq. (42) and the second of the two
above equations, we easily deduce from asymptotic analysis
[39] that

lim
|r|→∞

fλ(r) = 0,

lim
|r|→0

fλ(r) = 0.

024109-9



PIERRE-MICHEL DÉJARDIN PHYSICAL REVIEW E 105, 024109 (2022)

Hence, in the large intermolecular separation situation and
when translational and rotational timescales are well sepa-
rated, the “virial formula” (39) for G(r, t |N, υ ) holds at all
times, as it must be in dense gases. When the intermolec-
ular separations are arbitrary, Eq. (41) interpolates between
Eqs. (38) and (39). Finally, Eq. (41) is of the form of the
closure of the Ornstein-Zernike (OZ) equation [19] at t = 0
for constant n1, viz., a statistical state where n1 does not de-
pend nor on translational, nor orientational degrees of freedom
at all (a situation which is never assumed here). Therefore,
Eq. (41) for t = 0 provides a family of exact closures of the
OZ equation parametrized by the timescale (λ)−1, and the
latter equation can further be used to calculate the direct pair
density correlation function if necessary. The main result of
this subsection are Eqs. (33) and (42). Now we turn to the
derivation of a kinetic equation for W2.

IV. KINETIC EQUATION FOR THE ORIENTATIONAL
PAIR PROBABILITY DENSITY

The derivation of a kinetic equation for the orientational
pair probability density W2 is subtler than that for G. Actu-
ally, this equation must be obtained before translational and
rotational timescales are separated. Here we recall that (see
Appendix A) ∫

υ

G(r, t |N, υ ) dr = ρ0υ − 1. (44)

This leaves some ambiguity regarding the volume υ which
must be taken to calculate the integral. A way out of this
difficulty is first to relate ρ0 to the mass density of the fluid
M(T ) via the following “macroscopic” relation, viz.,

NAM(T ) = Mmolρ0(T ), (45)

where Mmol is the molar mass and NA is Avogadro’s number.
Next, we introduce a minimal volume υmin in such a way that
the right-hand side of Eq. (44) is equal to unity. This yields

υmin(T ) = 2

ρ0(T )
. (46)

For liquid water, this minimal volume represents 30 million
molecules at room temperature, which is still a very large
number. This volume in turn represents a maximal intermolec-
ular separation of 300 water molecular radii, an intermolecular
separation for which we can reasonably assume that Uint ≈
Ūint (our estimates are given for close molecular packing). Of
course, naively inserting this value in Eq. (44) yields N = 2,
which is a priori meaningless. In fact, in order to understand
what N = 2 means, it is best to average Eq. (44) over a
probability density of occurrence of υ, centered on υmin. Since
this probability density is unknown, we choose a sharp one,
viz., δ(υ − υmin). It follows that the value N = 2 is to be
interpreted as the minimal size of the statistical representative
of the ensemble onto which W2 is defined. Of course, this size
is 2. Denoting by G(r, t ) the value

G(r, t ) = G

(
r, t |2,

2

ρ0

)
we have ∫

2
ρ0

G(r, t ) dr = 1. (47)

This has the advantage that now G(r, t ) can be analyzed as
the probability density that two molecules are separated by
vector r at time t , since it is normalized to unity and obeys the
Fokker-Planck equation (33). Very little is known on the ro-
totranslational three-body density n3(r, r′, u1, u2, u3, t |N, υ ).
Since we need only n3(r, r′, u1, u2, u3, t |2, 2/ρ0), we assume
that, for this specific value, we can make the mean-field esti-
mate

n3(r, r′, u1, u2, u3, t |2,
2

ρ0
)

≈ ρ0W3(u1, u2, u3, t )G(r, t )G(r′, t ), (48)

where W3 is the three-body orientational probability density.
Next, we make use of Eqs. (32), (33), (47), and (48) in con-
junction with Eq. (30) with N = 2 and υ = 2/ρ0 which we
integrate with respect to r over υ = 2/ρ0 to obtain finally the
desired equation

∂W2

∂t
(u1, u2, t ) = DR

2∑
i=1

∇ui · {∇uiW2(u1, u2, t ) + βW2(u1, u2, t )∇ui [V1(u1, t ) + V1(u2, t )]}

+βDR

2∑
i=1

∇ui · [W2(u1, u2, t )∇uiUm(u1, u2, t )] + βDR

2∑
i=1

∇ui ·
(∫

∇uiUm(ui, u3, t )W3(u1, u2, u3, t ) du3

)
,

(49)

where we have introduced the mean-torque orientational pair
potential Um, viz.,

Um(u1, u2, t ) =
∫

2
ρ0

Uint (r, u1, u2)G(r, t )d r. (50)

Notice that Eq. (49) with time-independent Um is the equa-
tion that would be obtained for the orientational probability
pair density if the polar molecules were rotating at fixed sites
randomly distributed in space. Using Eqs. (32) and (50) in

Eq. (16) simply yields the exact equation

∂W1

∂t
(u1, t )

= DR∇u1 · [∇u1W1(u1, t ) + βW1(u1, t )∇u1V1(u1, t )]

+βDR∇u1 ·
(∫

∇u1Um(u1, u2, t )W2(u1, u2, t ) du2

)
.

(51)
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Equations (49) and (51) constitute the main statistical me-
chanical equations of this work. With Eqs. (33), (34), and
(50), they form a set that must be solved for a specified pair
interaction potential Uint and externally applied torque speci-
fied by V1, and these equations cannot be solved analytically
without making further approximations. Since the spatial part
of n2(r, u1, u2, t |N, υ ) is governed by Eq. (33), which is a
Fokker-Planck equation, it may be worthwhile investigating
up to which extent Eq. (49) can be approximated by a Fokker-
Planck equation too.

V. FOKKER-PLANCK APPROXIMATION FOR EQ. (49)

In order to construct the Fokker-Planck approximation to
Eq. (49), one must first start by assuming separation of ro-
tational and translational timescales. This starts by replacing
Ūint (r, t ) by Ū ∞

int (r) given by Eq. (40), using N = 2 and υ =
2/ρ0 in Eq. (33); this leads to Eq. (41) as a specific solution
of Eq. (33). Now, assuming that the external field does not
noticeably disturb the translational degrees of freedom of the
system, we may replace Um in Eqs. (49), (50), and (51) by U ∞

m
defined by

U ∞
m (u1, u2) =

∫
2
ρ0

Uint (r, u1, u2)G∞(r) dr, (52)

where

G∞(r) = G(r,∞). (53)

Next, we need to obtain a reasonable estimate of the integrals
in Eq. (49) given that we use Eq. (52) in this equation. To this
purpose, we introduce the two- and three-body orientational
distribution functions g and g3 defined by

g(u1, u2, t ) = W2(u1, u2, t )

W1(u1, t )W1(u2, t )
, (54)

g3(u1, u2, u3, t ) = W3(u1, u2, u3, t )

W1(u1, t )W1(u2, t )W1(u3, t )
, (55)

and the effective pair interaction potential V eff
2 (u1, u2, t )‘ de-

fined by

V eff
2 (u1, u2, t ) = U ∞

m (u1, u2) + Vc(u1, u2, t ), (56)

where the complementary potential Vc is defined through the
differential equations

∇u1Vc(u1, u2, t )

=
∫

∇u1U
∞
m (u1, u3)W1(u3, t )

g3(u1, u2, u3, t )

g(u1, u2, t )
du3 (57)

and

∇u2Vc(u1, u2, t )

=
∫

∇u2U
∞
m (u2, u3)W1(u3, t )

g3(u1, u2, u3, t )

g(u1, u2, t )
du3. (58)

Now, is was shown by Singer [40] that when thermal equilib-
rium holds, then the Kirkwood superposition approximation
(KSA) may be used for g3. Moreover, in standard DDFT [26],
the integral terms are replaced in such a way that the true time
evolution is replaced by a sequence of thermal equilibrium

states. Following these ideas, we assume that g3 is given by
the instantaneous KSA, viz.,

g3(u1, u2, u3, t ) ≈ g(u1, u2, t )g(u1, u3, t )g(u2, u3, t ). (59)

Algebraically, this is advantageous because this allows us to
get rid of g(u1, u2, t ) in Eqs. (57) and (58) [however, informa-
tion regarding g(u1, u2, t ) is not lost since it is contained in W2

because of Eq. (54)]. Then we assume that the third body with
orientation u3 is “subtracted” from the influence of the two
others so that we also set g(u1, u3, t ) = g(u2, u3, t ) = 1 in the
resulting equations. With these approximations, Eqs. (57) and
(58) become

∇u1Vc(u1, u2, t ) =
∫

∇u1U
∞
m (u1, u3)W1(u3, t ) du3 (60)

and

∇u2Vc(u1, u2, t ) =
∫

∇u2U
∞
m (u2, u3)W1(u3, t ) du3, (61)

so that Vc can be written down as a sum of single-body poten-
tials Uan, viz.,

Vc(u1, u2, t ) = Uan(u1, t ) + Uan(u2, t ).

Next, since Vc is a pair interaction potential, it has global
rotational invariance, meaning that Uan(u, t ) must be an even
function of u. Finally, the integrals in Eqs. (60) and (61)
run over the orientational degrees of freedom of the third
body, which, because of the approximations made, does no
longer interact nor with the first, nor with the second, so
that W1(u3, t ) is actually arbitrary because we have used
g(u1, u3, t ) = g(u2, u3, t ) = 1 [of course, nothing is stated for
g(u1, u2, t )]. At this stage, this suggests that the orientations
of the third body coincides either with those of the first or
with those of the second and this at arbitrary times. Hence in
Eq. (60) we set W1(u3, t ) = δ(u3 − u1), while in Eq. (61) we
set W1(u3, t ) = δ(u3 − u2) instead. Hence Eqs. (60) and (61)
become one and the same differential equation for the (now
time-independent) Uan, viz.,

∇u1Uan(u1) = ∇u1U
∞
m (u1, u3)|u3=u1 . (62)

entailing in turn that Vc is time independent, viz.,

Vc(u1, u2) = Uan(u1) + Uan(u2), (63)

so that V eff
2 is also time independent. Hence,

V eff
2 (u1, u2) = U ∞

m (u1, u2) + Uan(u1) + Uan(u2). (64)

Yet Eq. (62) does not account for the fact that the reverse
torque must also be included in the solution of the potential
theory problem generated by Eqs. (57) and (58). We can
make use of the properties of the Dirac delta function and of
Newton’s third law to demonstrate that we equally well have

∇u1Uan(u1) = −∇u1U
∞
m (u1, u3)|u3=u1 ,

so that Eq. (62) really means

∇u1Uan(u1) = ±∇u1U
∞
m (u1, u3)|u3=u1 , (65)

where the ± sign in this last equation reflects the lack of
knowledge we have regarding the effect of the third body
on the two others. This lack of knowledge arises from the
approximations made, viz., Eq. (48) and the KSA (59). Now,
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Eq. (65) generates a priori plethora of possibilities for fabri-
cating V eff

2 from U ∞
m as all combinations of signs are possible.

However, some expressions arising for V eff
2 can be eliminated

by using the criterion that the location of the stationary points
of V eff

2 and U ∞
m must be approximately (if not exactly) the

same [examples of application of Eq. (65) are given in our
companion paper]. Hence, it follows that Eq. (49) can be
approximated by the Fokker-Planck equation

∂W2

∂t
≈ DR

2∑
i=1

∇ui · (∇uiW2 + βW2∇ui�
eff
2

)
, (66)

where we omitted the arguments of the various functions in
this equation for short, and where

�eff
2 (u1, u2, t ) = V eff

2 (u1, u2) + V1(u1, t ) + V1(u2, t ). (67)

All the approximations we have made actually provide an
initialization for solving Eqs. (16) and (30) by assuming a
specific form for Uint and U ∞

m .

VI. KINETIC YBG FORMULATION OF THE DYNAMICAL
KIRKWOOD-FRÖHLICH THEORY

As already mentioned in the Introduction, the calculation
of the dielectric constant and complex permittivity is generally
made of three parts, viz., a macroscopic part, a microscopic
statistical-mechanical part, and a calculation of the molecular
field in terms of the Maxwell field which allows the relation
between the two scales. If dielectric friction is neglected, then
it is sufficient to relate the Maxwell field amplitude to that of
the effective cavity field, which is the directing field [6]. At
zero frequency, the Kirkwood-Fröhlich equation must result,
yielding in particular in the zero frequency limit an expression
of the Kirkwood correlation factor in terms of molecular pa-
rameters only. If spherical shapes for the sample and cavity are
selected, the calculations are greatly simplified and should not
affect the results for ε and ε(ω). Therefore, we recall that in
the dielectric sample, the number of molecules NT composing
the substance is made of two subgroups: one, noted Nc, is
treated by electrostatics in continuous media, while the other,
N , are contained in a volume υ of spherical shape of size much
smaller than that of the specimen and is treated by the methods
of statistical mechanics. In this section we also assume that
the rotational and translational timescales are well separated,
so that Eq. (51) explicitly reads

∂W1

∂t
(u1, t )

= DR∇u1 · [∇u1W1(u1, t ) + βW1(u1, t )∇u1V1(u1, t )]

+βDR∇u1 ·
(∫

∇u1U
∞
m (u1, u2)W2(u1, u2, t ) du2

)
(68)

and is an exact equation in the time-independent, thermal
equilibrium situation. This equation generalizes Eq. (12) of
Ref. [41] established in another context.

A. Macroscopic polarization

Let us consider a dielectric sample of spherical shape being
subjected to a uniform external field E0(t ) = E0eiωt e arising

from a charge distribution which is external to the dielectric.
Then the electric field inside the sample (the Maxwell field) is
uniform and lags behind the field. It is given by

E(t ) = 3E0e
ε(ω) + 2

eiωt = E (t )e = Ẽ (ω)eiωt e. (69)

The total macroscopic polarization in the direction of the
applied field e which we denote by �(t ) is given by

�(t ) = ε0(ε(ω) − 1)E (t ) = 3ε0
ε(ω) − 1

ε(ω) + 2
E0eiωt , (70)

where ε0 is the absolute permittivity of vacuum. According to
the above formula, the “high frequency” polarization �HF(t )
reads [“high frequency” here means that ε(ω) is replaced by
its value ε∞ at visible optical frequencies]

�HF(t ) = 3ε0
ε∞ − 1

ε∞ + 2
E0eiωt (71)

where it is understood that ε∞ = n2 and n is the Snell-
Descartes refractive index. The difference between Eqs. (70)
and (71) is

��(t ) = 3ε0[ε(ω) − ε∞]

ε∞ + 2
E (t ). (72)

Felderhof has shown [42] that the total polarization may
consist of a linear combination of partial polarization con-
tributions, each partial contribution being associated with
an elementary mechanism of polarization. Customarily, the
macroscopic polarization is split into two contributions, one
orientational mechanism and a distortional mechanism [22].
The distortional mechanism arises from the molecular po-
larizability and accounts for visible optical properties of the
substance. Therefore, this polarization generally does not lag
behind the Maxwell field except maybe in the visible optical
absorption region, a region which is out of focus here. For the
macroscopic distortional polarization, we have

�dst(t ) = ε0(ε∞ − 1)E (t ), (73)

where, since we consider frequencies much below visible
optical ones, we can take ε∞ = n2. The orientational polar-
ization mechanism is obtained by subtracting Eq. (73) from
(70), viz.,

�or(t ) = ε0[ε(ω) − ε∞]E (t ) = ε∞ + 2

3
��(t ), (74)

so that

�(t ) = �dst(t ) + �or(t ). (75)

In fact, Eq. (74) is the one to be equated with the microscopic
calculation of the molecular polarization. This means that in
accomplishing the microscopic polarization calculation, each
molecular dipole μ must be affected in its magnitude by the
factor (ε∞ + 2)/3. Therefore, when accomplishing the mi-
croscopic calculation which follows, one must interpret μ in
Eq. (15) by [6]

μ = ε∞ + 2

3
μg, (76)

where μg is the individual dipole moment in the ideal gas
phase, which can be found either in tables [8] or computed
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from quantum ab initio calculations. It follows that the cavity
is assimilated to a medium in which the polarizability of the
molecules is smeared out to form a continuum of dielectric
constant ε∞ = n2 [6], in which case ε∞ cannot depart too
much from 1, e.g., ε∞ < 3. Equally well, the cavity contains
molecules separated by vacuum, nevertheless in which the
individual molecular dipole moments are given by Eq. (76).
Indeed, in such a physical cavity, the nonelectrostatic inter-
actions are not affected [6], while those invoking the dipoles
are.

B. Linear microscopic polarization

As mentioned, the microscopic polarization P(t ) is given
by Eq. (15), but contains all powers of the field strength. It is
therefore worthwhile defining a field parameter allowing one
to evaluate Eq. (15) up to linear response in the field strength.
This parameter is given by

ξ (t ) = �(ω)eiωt (77)

with

�(ω) = βμEc(ω), (78)

where Ec(ω), the amplitude of the field seen by the dipoles
has to be related to E (ω) in some way. Since we are following
here Nee and Zwanzig [11] we apply quasielectrostatics, both
fields are collinear [4,6]. By expanding the probability density
W1 in perturbation series in the field strength, to linear order
we have

W1(u1, t ) = W (0)
1 (u1) + �(ω)W̃ (1)

1 (u1, ω)eiωt + · · · , (79)

where the superscript (i) denotes the perturbation order in
the field strength. We can also write, for the microscopic
polarization, the equation

P(t ) = P(0) + P̃(1)(ω)eiωt (80)

with

P(0) = ρ0μ

∫
(u1 · e)W (0)

1 (u1) du1 = 0 (81)

because the equilibrium polarization is zero in zero applied
field, and

P̃(1)(ω) = ρ0μ�(ω)
∫

(u1 · e)W̃ (1)
1 (u1, ω) du1 (82)

is proportional to the amplitude of the field seen by the
dipoles.

C. A general equation for the complex permittivity

As well known [2,6], in the cavity the dipoles see the cavity
field Ec(t ) and the reaction field R(t ). Following Evans et al.
[23,24], we assume that R(t ) is unable to orient the dipoles

(i.e., we neglect dielectric friction). Thus, we assume the
cavity adapts itself instantaneously to all polarization changes
so that the total dipole in the cavity does not lag behind the
reaction field. This allows us to account for the cavity field
only in the statistical mechanical calculations and to apply
quasielectrostatics. The resulting cavity field is the Fröhlich
field [6] which, for a cavity of spherical shape, has amplitude
given by

Ẽc(ω) = 3ε(ω)Ẽ (ω)

2ε(ω) + ε∞
(83)

and which direction coincides with that of the Maxwell field
and therefore, with that of the externally applied field. Equat-
ing now Eq. (82) with ε0(ε(ω) − ε∞)Ẽ (ω), we have

[ε(ω) − ε∞][2ε(ω) + ε∞]

3ε(ω)

= βρ0μ
2

ε0

∫
(u1 · e)W̃ (1)

1 (u1, ω) du1. (84)

This equation is valid for any isotropic polar fluid since we
have not specified as yet any specific mechanism by which
the one-body density is affected. The Kirkwood correlation
factor gK is given by

gK = 3
∫

(u1 · e)W̃ (1)
1 (u1, 0) du1. (85)

Unfortunately, Eqs. (84) and (85) are not very inspiring be-
cause correlations (had it been dipole correlations) do not
seem to be apparent in these equations. Yet it is possible to
relate gK for simple polar fluids to W2(u1, u2, t ) (i.e., density
correlations) using Eq. (68) and therefore to pair density cor-
relations using the split (32).

D. The complex permittivity in terms of the pair density for
simple isotropic polar fluids

For simple isotropic polar fluids, V1(u1, t ) is given by the
simple expression

βV1(u1, t ) = −�(ω)(u1 · e)eiωt . (86)

We can use a perturbation expansion for W2(u1, u2, t ) similar
to Eq. (79), viz.,

W2(u1, u2, t ) = W (0)
2 (u1, u2) + �(ω)W̃ (1)

2 (u1, u2, ω)eiωt .

(87)

Then by multiplying Eq. (16) by (u1 · e), using perturbation
theory and integrating we arrive at the following expression
for the linear microscopic polarization response, viz.,

P̃(1)
1 (ω) = ρ0μ�(ω)g̃K(ω)

3(1 + iωτD)
, (88)

where τD = (2DR)−1 is the free rotational diffusion time, and
the dynamical Kirkwood correlation factor g̃K(ω) is given by

g̃K(ω) = 1 + β

6

∫
∇u1U

∞
m (u1, u2) ·

(
∇u1 P2(u1 · e) − 9

W̃ (1)
2 (u1, u2, ω)

W (0)
2 (u1, u2)

∇u1 (u1 · e)

)
W (0)

2 (u1, u2) du1 du2, (89)
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where P2(z) is the second-order Legendre polynomial [43].
Equation (89) allows us to define the Kirkwood correlation
factor as

gK = g̃K(0). (90)

It follows that Eq. (84) can be written as follows:

[ε(ω) − ε∞][2ε(ω) + ε∞]

3ε(ω)
= βρ0μ

2g̃K(ω)

3ε0(1 + iωτD)
. (91)

This equation reduces to the Kirkwood-Fröhlich one for ω =
0, as it must. When intermolecular interactions are completely
neglected, Eq. (89) yields g̃K(ω) = 1 for arbitrary frequen-
cies. It follows immediately that in this situation, Eq. (91)
reduces to the so-called Onsager-Cole equation [37], viz.,

[ε(ω) − ε∞][2ε(ω) + ε∞]

3ε(ω)
= βρ0μ

2

3ε0(1 + iωτD)
, (92)

which was first proposed by Cole [37] on an empirical basis.
This shows that the Onsager-Cole equation is valid in very
dilute situations, i.e., for βρ0μ

2/ε0 � 1, and as such, is equiv-
alent with the Debye equation [1]. Of course, Eq. (92) cannot
hold at liquid densities, because in this situation the contri-
bution of interaction torques is significant. If we assume that
Eq. (66) is valid, then it is not difficult to realize that g̃K(ω) as
given by Eq. (89) can formally be written as the superposition
of a constant term and a dynamical term consisting of an
infinite sum of Lorentzians, the characteristic times of which,
noted τi, are the inverse (nonvanishing) eigenvalues of this
equation with V1 = 0. Then the permittivity spectrum consists
of a microscopic set of relaxation times. We can therefore
write Eq. (91) in a formal manner as follows:

[ε(ω) − ε∞][2ε(ω) + ε∞]

3ε(ω)

= βρ0μ
2gK

3ε0(1 + iωτD)

(
�0 +

∞∑
i=1

δi

1 + iωτi

)
, (93)

where

gK�0 = 1 + β

6

∫
∇u1U

∞
m (u1, u2)

·∇u1 P2(u1 · e)W (0)
2 (u1, u2) du1 du2

and δi is the amplitude of relaxation mode τi defined in such a
way that

�0 +
∞∑

i=1

δi = 1.

Equation (93) is reminiscent with Zwanzig’s earlier result
[9], with the difference nevertheless that one or several of
these microscopic timescales may have Arrhenius behavior
as a result of including pair intermolecular interactions in a
nonperturbative manner. For example, it was recently found
[34] that for pure dipole-dipole interactions and preferred
parallel alignment of dipole pairs, an Arrhenius-Kramers [44]
timescale occurs, and the only significant dynamical contri-
bution to Eq. (89) is due to only one eigenvalue for any
preferred dipole alignment. The latter result does hold for
pure dipole-dipole interactions only, and at this stage of de-
velopment of the theory, it is not possible to account for gK

values ranging between 0.5 and 1 at liquid densities. This
is the outermost reason why in some occasions, the explicit
calculations presented in Ref. [34] may be found inadequate.
Nevertheless, as we show in Ref. [35], it is possible to include
more terms in U ∞

m so that all possible values of gK appear as a
function of temperature, even at liquid densities. To conclude
with this paragraph, it is possible to obtain an approximate
integral formula for gK when Eq. (66) holds. In effect, since
this equation is linear, we have, in the static limit, the linear
response formula

W̃ (1)
2 (u1, u2, 0)

W (0)
2 (u1, u2)

= (u1 + u2) · e. (94)

By using Eq. (94) together with Eq. (89), we obtain the fol-
lowing equation for gK, viz.:

gK = 1 − 2β

3

∫
∇u1U

∞
m (u1, u2) ·

(
∇u1 P2(u1 · e)

+ 9

4
∇u1 [(u1 · e)(u2 · e)]

)
W (0)

2 (u1, u2) du1 du2. (95)

This is the formula which we use in Ref. [35] to compute
the Kirkwood correlation factor for some model poten-
tials U ∞

m . Interestingly, the sign of the integral in Eq. (95)
depends on the dot product in the integrand, so that com-
paring gK with 1 to deduce dipolar alignment is more
a ad hoc procedure and therefore, is not justified at all
in reality.

E. Relation with previously derived results for gK

Given Eqs. (89) and (95), one may not really see the rela-
tion with previously derived results in the area [12,14,15,17].
Nevertheless, it is clear that in Refs. [12,14,15], three-body
correlations are neglected while in the work of Bagchi and
Chandra [17], many-body interactions are included in a formal
manner by functionally expanding the excess free energy in
Taylor series about the completely uniform one-body density
state, but explicit calculations are made in the mean spheri-
cal approximation (MSA) where three-body correlations are
certainly neglected. We note that expanding the excess free
energy functional is customary in equilibrium classical DFT
[19,26]. We can obtain this already derived formula by also
stating a reference n(0)

1 which is a constant and given by

n(0)
1,ref(r1, u1) = ρ0

4π
.

In the context of the present theory, this is tantamount to use
the replacements

W (0)
2 (u1, u2)G∞(r) → ρ0

(4π )2
G2,ref(r, u1, u2),

Uint (r, u1, u2) → Uint,ref(r, u1, u2)

in Eq. (95). For this reference state, the time-independent
Eq. (7) in zero V1 becomes

∇u1 ·
∫

∇u1Uint,ref(r, u1, u2)G2,ref(r, u1, u2) dr du2 = 0,

which, on using

G2,ref(r, u1, u2) = e−βUint,ref (r,u1,u2 ),
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can be rewritten∫
∇2

u1
G2,ref(r, u1, u2) dr du2 = 0. (96)

Multiplying the above equation by P2(u1 · e) and integrating
with respect to u1 leads after some algebra to∫

P2(u1 · e)G2,ref(r, u1, u2) dr du1 du2 = 0,

so that the term involving P2(u1 · e) in Eq. (95) disappears.
Using the aforementioned substitutions in Eq. (95) yields,
after some algebra, any of the equivalent gK expressions

gK = 1 + 3ρ0

(4π )2

∫
(u1 · e)(u2 · e)G2,ref(r, u1, u2) dr du1 du2

= 1 + ρ0

(4π )2

∫
(u1 · u2)G2,ref(r, u1, u2) dr du1 du2

= 1 + ρ0

(4π )2

∫
(u1 · u2)H2,ref(r, u1, u2) dr du1 du2

= 1 + 3ρ0

(4π )2

∫
(u1 · e)(u2 · e)H2,ref(r, u1, u2) dr du1 du2,

(97)

where H2,ref(r, u1, u2) = G2,ref(r, u1, u2) − 1 is the pair den-
sity correlation function for this completely uniform one-body
density reference state. Since now Eq. (10) yields Eq. (96),
it cannot be used for calculating G2,ref(r, u1, u2) explicitly
because Uint,ref(r, u1, u2) is unknown. Therefore, one has re-
course to the constant density Ornstein-Zernike (OZ) relation
[14,15,19]

H2,ref(r, u1, u2) = c2,ref(r, u1, u2) + ρ0

4π

∫
c2,ref(r

− r′, u1, u3)H2,ref(r′, u3, u2) dr′ du3,

(98)

where c2,ref(r, u1, u2) is the direct pair density correlation
function for this reference state. Then, the OZ relation
(98) has to be supplemented by another equation linking
H2,ref(r, u1, u2) [or G2,ref(r, u1, u2)] and c2,ref(r, u1, u2). A
first closure is the virial approximation Uint,ref(r, u1, u2) =
Uint (r, u1, u2), yielding

G2,ref(r, u1, u2) = e−βUint (r,u1,u2 ). (99)

This was used by Madden and Kivelson [12], who further
treated the dipole-dipole interaction perturbatively, and used
also gK given by the first of Eqs. (97), therefore bypassing
Eq. (98) entirely. This, in effect, causes their static theory to be
valid at weak densities only. Other standard closures include
the hypernetted chain (HNC) approximation

βUint,HNC(r, u1, u2) = βUint (r, u1, u2) + c2,HNC(r, u1, u2)

− H2,HNC(r, u1, u2), (100)

the Percus-Yevick (PY) approximation

βUint,PY(r, u1, u2) = βUint (r, u1, u2)− ln[1+H2,PY(r, u1, u2)

− c2,PY(r, u1, u2)], (101)

and the MSA already alluded to above, for which
Uint,MSA(r, u1, u2) = Uint (r, u1, u2) but which must be sup-
plemented by extra conditions, viz.,

G2,MSA(r, u1, u2) = 0, |r| < rH ,

c2,MSA(r, u1, u2) = −βUint (r, u1, u2), |r| > rH , (102)

where rH is a hard sphere radius. Analytical results have been
obtained by Wertheim [14] in the MSA. In all other situations,
numerical calculations have to be performed. Tani, Hender-
son, Barker, and Hecht [45] have used the second of Eqs. (97)
(the third is the same as the second) and simulated gK using
a density perturbation theory. These authors find ultimately
that the Debye equation with a density perturbed Kirkwood
correlation factor seems to provide a good starting point for
calculating the dielectric constant of polar fluids; however, it is
evident that their proposition cannot work for liquid densities.
Carnie and Patey [46] use a special version of HNC quoted
as linear HNC (LHNC) and quadratic HNC (QHNC) detailed
in Ref. [15]. Their calculations of the dielectric constant are
always performed for ε∞ = 1, but include induced moments
in the statistical part. Comparing their results with the tem-
perature dependence of the static dielectric constant of water,
agreement is found between theory and experiment regarding
the temperature dependence of ε. However, the agreement is
not overemphasized, because the HNC equation is again an
approximation to the closure of the OZ equation (98), the
range of validity of which is unknown (since it results from a
truncated functional Taylor expansion [19]). Moreover, within
their calculations they find ε ≈ 25 at 25 ◦C when the effect
of molecular polarizability is neglected, while in the same
situation, Onsager’s theory renders ε ≈ 18 when ε∞ = 1.
When the polarizability of the molecules is included in the
calculation, Onsager’s theory yields ε = 29 when ε∞ = n2,
i.e., when the polarizability of the molecules is included, while
in this situation Carnie and Patey find ε = 80, and when the
quadrupolar contribution is included in the calculation of their
effective dipole, the water dielectric constant is further in-
creased by 50%. Therefore, the Carnie-Patey result neglecting
the polarizability of the molecules coincides with Onsager’s
result when the polarizability of the molecules are included.
Since they use an effective dipole moment μe = 2.56 D, this
renders, if the induced molecular dipole is included in their
calculation g = 2.37 at 25◦C, g = 2.33 at 0◦ and g = 2.19 at
100 ◦C. Therefore, their g factor seems to oscillate between
the freezing and the boiling point, and varies by 8% between
25 ◦C and the boiling point, while experimentally it is found
that gK is almost constant for water between the freezing and
the boiling point (the experimental temperature variation of
gK is about 0.7% across the whole temperature range, and is
monotonic, with an experimental uncertainty of less than 5%).
Therefore, we believe that in spite of the fact that their theory
was undeniably a progress at the time of writing and that it
agrees with the temperature variation of the dielectric constant
of liquid water, their g factor is not the Kirkwood correlation
factor as usually deduced from experimental data [6], so that
their theory is not amenable to comparison with experiment at
all.

Actually, it is very difficult to compute the proper
H2,ref(r, u1, u2) because there is no definite simple way to
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close Eq. (98) exactly when the reference one-body density is
n1 = ρ0/(4π ), viz., the uniform one-body density because in
a polar fluid, the true one-body density may strongly deviate
from this constant value. In other words, it is well possible
that the standard functional Taylor expansion of the excess
free energy functional about the constant one-body density as
a reference state needs higher order terms than the second.
How many terms should be included in this expansion is
difficult to state, because one has to solve higher many-body
OZ equations and also to find the adequate closures. We refer
the reader to Lee’s paper for more on OZn equations [47],
particularly on OZ2 equations.

VII. DISCUSSION

After a long statistical mechanical treatment of the kinetic
YBG hierarchy generated by the Langevin equations (3) and
(4), we have derived an equation for the complex permittivity
of any isotropic polar fluid, Eq. (84). This equation shows
that there is no real need to explicitly involve equilibrium
dipole correlations in the theory. However, it is not very in-
spiring because it remains formal. Nevertheless, for simple
polar fluids, the expression for the one-body potential V1 is
relatively simple, and this allows one to make explicit further
Eq. (84), leading to Eq. (91), which trivially reduces to the
Kirkwood-Fröhlich equation at zero frequency and involves
the equilibrium and linear response of the orientational prob-
ability density W2. Moreover, the Kirkwood correlation factor
is the zero frequency limit of Eq. (89), which clearly shows
that gK may be less or larger than 1, and also that pair dipole
order has little to do with comparing gK with unity. Rather,
Eq. (95) shows, using steepest descents arguments, that dipo-
lar order can be traced from the minima of the effective
orientational interaction potential V eff

2 , therefore from those
of U ∞

m . As shown in Ref. [35], for a specific U ∞
m , the out-

comes of the static theory is successfully compared with the
temperature dependence of the dielectric constant of not less
than 14 polar liquids with various dipolar order and of very
different nature (in reality, the static version of the present
theory has been tested for a much larger number of polar fluids
with the same success, and more importantly, with the same
potential). The failure of the theory for glycerol (and probably
for propylene glycol, propylene carbonate and other glass
formers) is not to seek on a specific H-bonding mechanism,
because otherwise the theory would also fail for water and
monohydroxy alcohols where clearly, H bonding is present.
Nevertheless, the theory is sometimes able to interpret the
temperature variation of the static dielectric constant of some
glass formers such as tributyl phosphate (TBP), where the
relative angle between pairs spreads across the range 0–97◦,
and a resulting Kirkwood correlation factor larger than 1, in
spite of the absence of H bonding [35]. Now, we insist that
Eq. (95) does not work for most glass formers. For example,
glycerol is supercooled at room temperature and is a natural
glass former. Moreover, the floppiness of the molecules makes
this polar liquid rather special. Those specificities are not
included in Ref. [35], and work on these glass-forming polar
substances within the present theory is in progress.

Next, Eqs. (89) and (95) shows that contrarily to what is
currently believed, gK has little to do with the pair distribution

function g(r), because as we have demonstrated, g(r) is not a
thermal equilibrium quantity in liquids. Rather, the quantity to
consider for gK is G∞(r), i.e., the probability density that two
molecules are separated by vector r at thermal equilibrium.
This is because at infinite times, G(d )

V H (r, 0,∞) is the num-
ber density ρ0 [36] and does no longer depend on r, while
G∞(r) = G(r,∞) = G(d )

V H (r,∞,∞) still depends on r. This
subtlety does not seem to have been appreciated before in the
area. Also, we have clearly shown that comparing gK with 1 to
deduce pair dipole alignment is an unjustified criterion which
has, in fact, no established theoretical grounds.

Furthermore, we have shown that when the orientational
pair probability density obeys the Fokker-Planck equa-
tion (66), then the complex permittivity spectrum consists of
an infinite discrete set of relaxation times. This is reminiscent
of Zwanzig’s theory of dielectric relaxation where dipoles are
located at sites of a simple cubic lattice [9]. The differences
with Zwanzig’s theory are that our dipoles are not located
at lattice sites, that the present treatment is not perturbative
and that intermolecular interactions may lead to thermally
activated behavior of Arrhenius-Kramers type [44] for some
of these relaxation timescales (an example where this oc-
curs for one of these timescales is Ref. [34]). Again, this is
demonstrated for the first time and is important, because in
the context of fractional Brownian motion in a force field, the
timescales occurring in the latter can be analytically related
to those of normal Brownian motion in a force field [30].
This has explicitly been done for the Cole-Cole distribution,
but remains still to be achieved for the more general (but
extremely useful in practice) Havriliak-Negami one [10], and
represents a major issue.

Our derivations strongly indicate that the Onsager-Cole
[37] equation (92) is valid when the polar fluid under study
is very dilute which was not rigorously explained before.
This clearly follows because the sole microscopic timescale in
this equation is the bare rotational diffusion time. Therefore,
it also follows that its zero-frequency limit, i.e., Onsager’s
equation, is definitely valid when intermolecular interactions
are neglected in the statistical mechanical calculation. The
MSA dynamical equation adapted to our geometry gives

[ε(ω) − ε∞][2ε(ω) + ε∞]

3ε(ω)
= βρ0μ

2gMSA
K

3ε0(1 + iωτD)
, (103)

where gMSA
K is the value of the Kirkwood correlation factor

computed with MSA [14]. This equation is also valid at
weak densities, since no explicit thermally activated timescale
emerges. Equation (103) is the Bagchi-Chandra result [17] at
zero wave vectors, who found in this situation that the collec-
tive dipole correlation function decays with a single relaxation
time τD. Nevertheless, in spite of their limited range of ap-
plicability, the Onsager-Cole and Bagchi-Chandra results are
benchmark ones to which any theory of dielectric relaxation of
interacting polar molecules must reduce in the weak density
limit, and are therefore useful from both the theoretical and
experimental points of view since they may help for dielectric
specimens which are very diluted in nonpolar solvents.

The present results can be applied with minimal modifica-
tions to model the linear and nonlinear dynamic susceptibili-
ties of isotropic dipolar suspensions. In the mean-field approx-
imation valid at weak densities and for preferred antiparallel
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alignment, the nonlinear dielectric susceptibilities have been
considered earlier [48], while the same was done by suitably
adapting Berne’s theory [38] to magnetic relaxation of ran-
domly distributed magnetic nanoparticles in space [49]. Con-
sidering linear response and dipole dipole interactions beyond
the mean-field approximation [34], the theory agrees very well
with Ivanov’s modified mean-field theory at weak densities
[41,50,51], and provides a general framework to handle dipo-
lar systems where density effects can become large.

A word should also be said about the solution of Eq. (42).
An analytical solution is definitely possible for the hard sphere
spherically symmetric interaction potential (which ignores
dipole orientations), and in this situation ρ0g(r) definitely
exhibits the characteristic spatial oscillations seen in the
simulations of the same quantity for simple liquids [19];
this is therefore encouraging. Now, before solving it for
the Stockmayer fluid (i.e., a fluid for which the interaction
potential consists of a spherically symmetric Lennard-Jones
potential plus dipole-dipole interactions, which would be of
most interest here), one should consider the solution for the
Lennard-Jones one, which is a purely spherically symmetric
repulsive singular potential at short intermolecular separa-
tions and has one attractive potential well. To this aim, phase
integral methods seem well indicated [39,52] and certainly
promising. However, the potential in Eq. (42) is not Uint, rather
it is VS defined by Eq. (43). Partial wave analysis [39,53]
shows that VS plus the centrifugal potential unfortunately ex-
hibits, for most “partial waves,” three classical turning points,
and we have not been able up to now to find a good uni-
form approximation [52] that would allow one to solve the
problem (matching WKBJ-like solutions is possible when the
three classical turning points are well separated). On the other
hand, numerical solutions of Eq. (42) are difficult because
the boundary conditions, being analogous with those of a sta-
tionary quantum-mechanical scattering problem, are known
asymptotically only. Nevertheless, as all spatial integrals in-
volved in the proposed dielectric theory converge due to their
limited extension in space, we believe, especially because of
the results presented in Ref. [35], that the theoretical develop-
ments given here will allow one to quantitatively model the
temperature behavior of the static dielectric constant of quite
a number of polar fluids, had these been complex ones.

A satellite (but important) comment must be made con-
cerning the frequency range of validity of our results as in fact,
they can be applied both to electric and spherical magnetic
dipoles of fine magnetic particle assemblies without magne-
tocrystalline anisotropy. Regarding dielectrics, the result is
evident: as molecular inertia has been ignored, the far-infrared
region relevant to the THz frequency range is clearly ex-
cluded, and our results are valid in the nonresonant microwave
absorption region (GHz range and below). Duncan and Camp
have calculated natural (individual) resonance frequencies of
interacting polar fluids by both molecular dynamics simu-
lations and analytically [54]. Because of ignoring inertial
effects in the theory, comparison with the work of Duncan and
Camp cannot be achieved here. For magnetic dipoles of fine
magnetic particles, resonance effects occur in the GHz range,
however, our theory ignores gyroscopic effects, so that our
results are restricted to an upper frequency of 10–100 MHz
maximum.

The thermodynamics of polar fluids is also an important
question. It was investigated for example in Refs. [55–57]
both in zero and nonzero externally applied fields, theoreti-
cally and with the help of Monte Carlo simulations, and where
the theory is developed for low to moderate densities. Here it
must be mentioned that our G(r, t ) in general differs from the
function which should be used to describe the thermodynamic
state of the fluid, although at times related, and all this is ex-
plained in Appendix B. Briefly stated, when a thermodynamic
phase transition (such as the gas-liquid phase transition) is
completed, G(r, t ) relaxes from the value ρ0g(r) it had during
the phase transition to its equilibrium value G∞(r) in the
stabilized reached phase. Both functions are dependent on
pair dipole order as shown in Appendix B. As long as the
density is weak in the sense ρ0μ

2/ε0 � 3kT , our results agree
with those of Refs. [55–57] in all respects as the value of
the density at which the phase transition occurs is not yet
reached. Indeed, they may undoubtedly differ at larger ones,
particularly at liquid densities where ρ0μ

2/ε0 > 3kT because
G∞(r) noticeably differs from ρ0g(r), and in this situation, the
concerned phase is generally the liquid one [for liquid water
at room temperature, βρ0μ

2/(3ε0) ≈ 10 even if μ = 1.85 D
is not corrected by its refractive index, while in ferrofluids
the situation is different as the analogous ratio is generally
less than 1; see the works by Ivanov, Camp, and co-workers
[55–57]]. In the situation ρ0μ

2/ε0 > 3kT , thermodynamic
virial expansions are irrelevant because, strictly speaking, they
pertain to the dense gas approaching the gas-liquid phase tran-
sition, for which ρ0μ

2/ε0 < 3kT . However, accomplishing a
full discussion of the thermodynamics of polar fluids is out
of scope here, and we hope to come back to this problem
in future work. Indeed, in our view this specific topic still
remains an open question.

The statistical-mechanical part of the theory also includes
as special cases the Maier-Saupe theory of nematic liquid
crystals, the Debye-Fröhlich model of dielectric relaxation,
Brown’s theory of superparamagnetism, etc. (see Ref. [30] for
a clear and enlightening description of all these models) and
is therefore extremely versatile.

VIII. SUMMARY AND CONCLUSIONS

In this work, we have given a complete and versatile theory
of linear dielectric relaxation of polar fluids that reduces to
known results in a tranparent manner. Our main theoretical
results are Eqs. (32), (33), (49), (66), (84), (89), (93), and
(95). In order to start legitimating the theory, the outcomes
of its static version with Eq. (95) as a representation of the
Kirkwood correlation factor is compared in a companion pa-
per [35] with the temperature dependence of not less than 14
polar fluids which are of various nature (associated, nonas-
sociated, glass-forming, non-glass-forming, etc). Quantitative
agreement is found on what we may call simple polar fluids.
Moreover, the present theory is also able to predict thermally
activated microscopic timescales analytically, which was not
possible before. Hence we may quote the present kinetic YBG
theory as a largely successful approach to rototranslational re-
laxation when applied to dielectric relaxation of simple polar
fluids and magnetic relaxation of fine ferromagnetic particles.
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APPENDIX A: DERIVATION OF EQ. (32)

Because we can introduce a one-body orientational probability density via Eq. (14) that does depend on (N, υ ) only via the
constant ratio ρ0 = N/υ and because we can obtain an exact equation of motion for it involving n2(r, u1, u2, t |N, υ ), Eq. (16)
suggests in turn the introduction of a two-body orientational probability density W2(u1, u2, t ) that also depends on (N, υ ) only
through the constant ratio ρ0. We introduce the orientational pair probability density via the equation

gρ (r, u1, u2, t |N, υ ) = n2(r, u1, u2, t |N, υ )

ρ0W2(u1, u2, t )
, (A1)

where the meaning of gρ will become clear later. It is evident that gρ may be written as a sum of an orientational-independent
part G and an orientational-dependent part δgρ [this can be shown by expanding gρ in spherical harmonics YLM (u1)YJK (u2) [58]].
Therefore,

gρ (r, u1, u2, t |N, υ ) = G(r, t |N, υ ) + δgρ (r, u1, u2, t |N, υ ), (A2)

where, a priori, δgρ is not small. Then, because we have∫
n2(r, u1, u2, t |N, υ ) dr du1 du2 = ρ0(N − 1), (A3)

we use Eqs. (A1) and (A2) in conjunction with Eq. (A3) to obtain∫
G(r, t |N, υ ) dr +

∫
δgρ (r, u1, u2, t |N, υ )W2(u1, u2, t ) dr du1 du2 = N − 1, (A4)

where we have used
∫

W2 du1 du2 = 1 since by its definition, W2 is a probability density. This equation is valid for arbitrary
times. Now, the contribution of each term in Eq. (A4) is a matter of choice since gρ is unknown. Therefore, without any loss of
generality, we make the choice that for arbitrary times, we have∫

G(r, t |N, υ ) dr = N − 1, (A5)∫
δgρ (r, u1, u2, t |N, υ )W2(u1, u2, t ) dr du1 du2 = 0. (A6)

Now, it is known from neutron scattering experiments [19] that the radial pair distribution function vanishes when r = |r| is
beyond a certain value rH (a hard sphere radius, which may vanish) and that its slope below rH and above a certain finite value
rC (which may be infinite) is also zero. Physically, the same properties must hold for gρ since the properties of the radial pair
distribution function is proportional to n2. Therefore, since n2 is positive, we must necessarily have the set of conditions (which
include boundary conditions)

∇rG(r, t |N, υ )|r�rH = 0, (A7a)

∇rG(r, t |N, υ )|r�rC = 0, (A7b)

G(r, t |N, υ )|r�rH = 0, (A7c)

∇rδgρ (r, u1, u2, t |N, υ )|r�rH = 0, (A7d)

∇rδgρ (r, u1, u2, t |N, υ )|r�rC = 0, (A7e)

δgρ (r, u1, u2, t |N, υ )|r�rH = 0. (A7f)

Now, by accounting of Eqs. (A5)–(A7f), we use n2(r, u1, u2, t |N, υ ) given by Eq. (A1), use the split (A2), insert this into
Eq. (30), integrate the resulting equation over (r, u1, u2), and make use of Gauss’s theorem on the r part to obtain∫

{∇r · [∇rδgρ (r, u1, u2, t |N, υ ) + βδgρ (r, u1, u2, t |N, υ )∇rUint (r, u1, u2)]}W2(u1, u2, t ) dr du1 du2 = 0.
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Since W2 is positive, the above equation can be satisfied at arbitrary times and for arbitrary υ only if we have

∇r · [∇rδgρ (r, u1, u2, t |N, υ ) + βδgρ (r, u1, u2, t |N, υ )∇rUint (r, u1, u2)] = 0. (A8)

The solution of Eq. (A8) can be written

δgρ (r, u1, u2, t |N, υ ) = K0(u1, u2, t ) exp[−βUint (r, u1, u2)] + f0(r, u1, u2, t ), (A9)

where K0 is a function of rotational degrees of freedom and time only, and f0 is an arbitrary regular solution of Eq. (A8).
Applying the boundary conditions Eqs. (A7d) and (A7e) yields an overdetermination of K0, save if K0 = 0 [which implies that
f0 also verifies Eqs. (A7a) and (A7b)]. Since f0 is also a solution of Eq. (A8), we may write

f0(r, u1, u2, t ) = K1(u1, u2, t ) exp[−βUint (r, u1, u2)] + f1(r, u1, u2, t ),

where K1 and f1 are of the same nature as K0 and f0 are. Since f0 is an arbitrary solution of Eq. (A8) satisfying the boundary
conditions Eqs. (A7a) and (A7b), K1 is overdetermined save if K1 = 0. We may iterate this process at infinity, finally leading to
f0 = f1 = · · · = 0. Hence,

δgρ (r, u1, u2, t |N, υ ) = 0, (A10)

which trivially verifies Eq. (A6) at arbitrary times. Therefore, we conclude that

n2(r, u1, u2, t |N, υ ) = ρ0W2(u1, u2, t )G(r, t |N, υ ),

which is Eq. (32).

APPENDIX B: MORE ON THE TIME-INDEPENDENT VALUES OF G(r, t )

In this Appendix we briefly discuss the relation of the time-independent values of the function G(r, t ) that is a solution of
the Fokker-Planck equation (33) with the various quantities occurring in the thermodynamics of simple liquids, and evaluate its
thermal equilibrium value G∞(r) explicitly for a simple case.

1. Relation with previous formalisms

First, let us mention that the Fokker-Planck equation (33), although looking standard and simple, is in fact very difficult to
solve, except at thermal equilibrium where its solution is G∞(r) as provided by Eq. (39). Therefore we mostly focus on this
function in this Appendix. As alluded to in the text, G∞(r) is a probability density and has units of inverse volume. It is therefore
fundamentally different from the pair distribution function averaged over its rotational degrees of freedom. In order to see this,
we use the split (32), the standard expression (19) in its time-independent version, and Eq. (17). We write

ρ0G∞(r) = 1

υ

∫
n1

(
R + r

2
, u1

)
n1

(
R − r

2
, u2

)
G2

(
R + r

2
, u1, R − r

2
, u2

)
dR du1 du2, (B1)

where in the right-hand side we deleted the time argument of the functions in order to state that the latter are thermal equilibrium
quantities. The YBG partial density n1(r1, u1) is the time-independent thermal equilibrium solution of Eq. (7), which is exactly
given by the solution of the self-consistent equation (using a time-independent V1 for simplicity)

n1(r1, u1) = N exp{−β[V1(u1) + �1(r1, u1)]}∫
exp{−β[V1(u1) + �1(r1, u1)]} dr1 du1

, (B2)

where �1 is a one-body potential containing the effect of pair interactions and obeys the partial differential equations

∇r1�1(r1, u1) =
∫

∇r1Uint (r1 − r2, u1, u2)n1(r2, u2)G2(r1, u1, r2, u2) dr2 du2,

∇u1�1(r1, u1) =
∫

∇u1Uint (r1 − r2, u1, u2)n1(r2, u2)G2(r1, u1, r2, u2) dr2 du2.

As is apparent from Eq. (B2), n1 is not ρ0/(4π ) in general and its properties are absolutely nontrivial even in the absence of
externally applied fields V1 = 0, a situation which we consider in the following. Then if �1 = 0 (i.e., the purely noninteracting
case), Eq. (B2) indeed yields

n1(r1, u1) = ρ0

4π
. (B3)

Then G2 = 1 and Eq. (B1) renders, at thermal equilibrium

G∞(r) = ρ0, (B4)

that is, the probability density that two noninteracting molecules are separated by r at thermal equilibrium is just the number
density and is uniform, as it must. In this situation alone, G∞(r) = ρ0g(r) as g(r) = 1 at all temperatures for the ideal gas.
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Departing from the noninteracting situation slightly is difficult, however, it is customary to assume that in such a situation,
Eq. (B3) holds, but G2 �= 1. This is the usual virial situation, and in this situation, we have

G2(r1, u1, r2, u2) = exp[−βUint (r1 − r2, u1, u2)], (B5)

which means that the integral terms are entirely neglected in the time-independent Eq. (10), and that G2 is a function of the
separation r = r1 − r2 and molecular orientational degrees of freedom only. In this situation, three-body effects are completely
neglected, and we have

G∞(r) = ρ0Ḡ2(r), (B6)

where

Ḡ2(r) = 1

(4π )2υ

∫
G2

(
R + r

2
, u1, R − r

2
, u2

)
dR du1 du2 = 1

(4π )2

∫
G2(r, u1, u2) du1 du2 (B7)

is the pair distribution function at equilibrium, and again coincides with g(r). The virial coefficients can then be computed from
the equilibrium density pair correlation function H̄2 defined by

H̄2(r) = Ḡ2(r) − 1 = G∞(r)

ρ0
− 1, (B8)

where here again it is clear that g(r) is a thermal equilibrium quantity. As commented in Sec. VI E, the situation becomes more
difficult for higher densities, because Eq. (10) with n1 given by Eq. (B3) is no longer explicitly exploitable. Nevertheless, the
forced choice n1 = ρ0/(4π ) implies the following statement: for arbitrary densities, given n1 = ρ0/(4π ) we must have

G2(r, u1, u2) = exp[−βφ2(r, u1, u2)] (B9)

and φ2 obeys differential equations some of which are given in Sec. III, but as already stated in Sec. VI E, serves as a reference
potential energy and can no longer coincide with the φ2 alluded to in the main text of the present paper. Now, the point is that
Ḡ2 may still be given by Eq. (B7) but its link to G∞(r) is absolutely nontrivial. The reason for this is suggested in Secs. III B
and VI E : it is not easy to compute G2 nor it is easy to compute n2 because it is not easy to compute n1 (and G2 is given by
Eq. (19) where time arguments can be omitted). And in fact, the reason is that if we start with the virial approximation (B7),
then matter is in a gaseous state where molecules interact weakly, Uint � kT . Increasing the density then G2 is given by (B9)
where it is evident that the density effects are yet small, because if they were not, n1 would be given by solving Eq. (B2),
which, in general, renders a nonconstant n1. Now, g(r) = 1 + h(r) is, as we have seen, related to the initial value of the Van
Hove function. This is the value of G/ρ0 to be used as long as a thermodynamic phase transition is not completed. According
to standard thermodynamics, for the gas-liquid transition one has to wait that all the gas volume is transformed into the liquid
state in order for the thermodynamic phase transition to be complete. Then, when it is completed, G(r, t ) relaxes from ρ0g(r)
to its equilibrium value G∞(r) which for the liquid phase, is not so easily related to G2 except by Eq. (B1). Furthermore, this
argument suggests that g(r) is not a thermal equilibrium quantity for the liquid phase. Hence we conclude from all this that the
thermodynamics of polar fluids is still an open question that deserves further attention, more profound than what has been given
earlier.

2. An explicit evaluation of G∞(r) for pure dipole-dipole interactions

In Refs. [33–35], it is shown that for pure dipole-dipole interactions, W (0)
2 (u1, u2) is explicitly given by

W (0,∓)
2 (u1, u2) = 1

Z2
exp

(
λ

2
(cos ϑ1 ± cos ϑ2)2

)
, Z2 =

∫ π

0

∫ π

0
exp

(
λ

2
(cos ϑ1 ± cos ϑ2)2

)
sin ϑ1 sin ϑ2 dϑ1 dϑ2, (B10)

where ϑi is the angle that the vector ui makes with the Z axis of the laboratory frame, λ = βρ0μ
2/(3ε0), W (0,−)

2 refers to preferred
parallel alignment of dipole pairs and W (0,+)

2 to preferred antiparallel alignment. By writing the pair interaction potential
Uint (r, u1, u2) in short- and long-range contributions (respectively indexed SR and LR) and if the long-range contribution consists
of dipole-dipole interactions only, Eq. (40) yields (the dipole orientational average has no effect on the short-range term)

Ū ∞(∓)
int (r) = USR(r) + Ū (∓)

LR (r), (B11)

where

Ū (∓)
LR (r) = −μ2 f (∓)(λ)

2πε0r3
P2(cos ϑr ) (B12)

and where θr is the angle the separation vector r makes with the Z axis of the laboratory frame, P2 is the second Legendre
polynomial and

f (∓)(λ) =
∫

cos ϑ1 cos ϑ2W
(0,∓)

2 (u1, u2) du1 du2.
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Explicit evaluation of this integral yields

f (−)(λ) = −
√

2πλ3/2erfi
(√

2λ
) + 3λ − e2λ(λ + 1) + 1

3λ
[√

2πλ erfi
(√

2λ
) − e2λ + 1

]
= − f (+)(λ), (B13)

where erfi(z) is the error function of imaginary argument [43], viz.,

erfi(z) = 2√
π

∫ z

0
et2

dt .

It has to be mentioned that indeed, 0 � f (−) � 1 since dipoles have a trend to orient parallel, while −1 � f (+) � 0 as a result
of preferred antiparallel ordering. In effect, f (∓) should not be confused with gK which is always positive, even at the largest
densities [33] and pertains to linear response of the dipolar system, as we have shown. Using Eq. (39) yields now the two
possibilities for G∞(r), viz. (A is an integration constant)

G(∓)
∞ (r) = A exp[−βUSR(r)] exp[−βŪ (∓)

LR (r)], (B14)

clearly demonstrating that pair dipolar ordering has an effect on G(r, t |N, υ ) in general, hence having an effect on the usual pair
distribution function g(r). Indeed, unlike g(r), Eq. (B14) has no spatial oscillations at all. Hence the functional derivative

δG∞(r)

δW (0)
2 (u1, u2)

does not vanish, implying that G(r, t ) always depends on preferred pair dipolar ordering at all times.
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