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The theory developed in an accompanying paper [Déjardin, Phys. Rev. E 105, 024109 (2022)] is used to
compute the Kirkwood correlation factor of simple polar fluids of different nature. From this calculation,
the theoretical static permittivity is readily obtained, which is compared with experimental values. This is
accomplished by fitting only one parameter accounting for induction or dispersion forces and torques, which
is necessarily connected with the individual molecular polarizability but not explicitly related to the physical
properties due to the nonadditivity of such energies. Excellent agreement between theoretical and experimental
static permittivities is obtained over a very broad temperature range for a number of associated and nonassociated
liquids. Finally, limitations of the present theory are given.
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I. INTRODUCTION

The theory of the linear dielectric constant of isotropic po-
lar fluids was initiated by Debye nearly a century ago [1]. By
its simplicity, Debye’s theory is qualitatively sufficient to de-
scribe the temperature dependence of the dielectric constant of
polar fluids. However, it is nowadays recognized that Debye’s
theory strictly applies to very dilute systems only, because
either in its Debye-Langevin version or in its Debye-Lorentz
one [2,3], quantitative disagreement between theory and ex-
periment arises as a result of both poorly representing the local
field and not accounting for intermolecular interactions at the
statistical-mechanical level.

Onsager’s theory [4] allows one to remove the ferro-
electric Curie point arising from the Debye-Lorentz theory.
However, for many substances (mainly associated liquids),
Onsager’s theory leads to a temperature-dependent individual
molecular dipole, which is inconsistent with, e.g., ab initio
quantum-mechanical calculations of the dipole moment of
an isolated molecule. Kirkwood and Fröhlich [5,6] included
intermolecular interactions into Onsager’s calculation, re-
sulting in the Onsager-Kirkwood-Fröhlich (nowadays termed
Kirkwood-Fröhlich) theory. It simply consists in replacing
the square modulus of the molecular dipole μ2 in Onsager’s
theory by μ2gK, where gK is Kirkwood’s correlation factor,
which accounts for pair dipolar ordering in the substance
under consideration. This results in the equation commonly
used to experimentally determine the Kirkwood correlation
factor from dielectric measurements:

gK = 9ε0kT Mmol

μ2
gNA Mv (T )

(ε − ε∞)(2ε + ε∞)

ε(ε∞ + 2)2
, (1)

where k is Boltzmann’s constant, T the absolute temperature,
ε0 the permittivity of vacuum, Mmol the molecular weight,
μg the molecular dipole moment in the ideal gas phase, NA

Avogadro’s number, Mv (T ) the mass density, and ε and ε∞
the static and high-frequency permittivities, respectively. A
molecular expression for gK was derived by Fröhlich [7] in
terms of mean cosines of the angle between pairs of molecules
〈cos ϑ1 j〉, viz., (ui denotes the orientation of the dipole of
molecule i and cos ϑi j = ui · u j , and the angular brackets 〈〉
denote an equilibrium average in the absence of externally
applied fields)

gK = 1 +
∑
j �=1

〈u1 · u j〉 = 1 +
∑
j �=1

〈cos ϑ1 j〉, (2)

so that the gK values deduced from experimental data are cus-
tomarily compared with unity in order to determine whether
the dipole moments tend to align parallel or antiparallel. More
precisely, the rule of thumb is such that if gK > 1, then
〈cos ϑ1 j〉 is essentially positive, so that pairs of dipoles have a
trend to orient parallel, while gK < 1 implies a trend to orient
antiparallel, as 〈cos ϑ1 j〉 is essentially negative. However, it
will be shown below that this crude picture is an oversimplifi-
cation and therefore should be used with caution.

Despite an enormous theoretical effort that was made es-
pecially in the 1970s and 1980s in order to theoretically
compute gK [8–12], the so-deduced gK values did not allow
to reproduce the experimentally deduced values of the Kirk-
wood correlation factor at each temperature, and therefore, the
aforementioned theoretical results are not, strictly speaking,
amenable to quantitative comparison with experimental data.
This is the reason why the theory of the dielectric constant
was reconsidered [13] in order to provide gK values which
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can be quantitatively compared with experimental ones. The
aim of this paper is to check whether this is indeed the case.
Therefore, after summarizing the basic theoretical results in
the next section, the dependence of the calculated gK values
on the different parameters of the theory are visualized in
order to get a feeling for the behavior of the equations. We will
assume, following Debye [1], that the dipole moment is along
the long symmetry axis of thin rod (or symmetric top) -shaped
molecules for simplicity, so that the orientation of a molecule
is that of the molecular dipole. Then the theoretical values
of the static permittivity are compared with the experimental
ones for various liquids with preferred parallel and antiparallel
ordering.

II. THEORETICAL BACKGROUND

A. Summary of the theoretical results

In a companion paper [13], one of us has derived an integral
formula for the Kirkwood correlation factor of polar fluids in
terms of the equilibrium pair orientational probability density
W (0)

2 (u1, u2) that a pair of interacting dipoles numbered 1
and 2 have orientations (u1, u2) at thermal equilibrium. This
formula is

gK = 1 − 2β

3

∫
∇u1U

∞
m (u1, u2) ·

{
∇u1 P2(u1 · e)

+ 9

4
∇u1 [(u1 · e)(u2 · e)]

}
W (0)

2 (u1, u2) du1 du2, (3)

where β = (kT )−1, P2(z) is the second-order Legendre poly-
nomial [14], and

W (0)
2 (u1, u2) = e−βV eff

2 (u1,u2 )∫
e−βV eff

2 (u1,u2 ) du1 du2
. (4)

The effective orientational pair potential V eff
2 (u1, u2) is

given by

V eff
2 (u1, u2) = U ∞

m (u1, u2) + Uan(u1) + Uan(u2), (5)

and Uan(u) is obtained from the partial differential equation

∇u1Uan(u1) = ±∇u1U
∞
m (u1, u3)

∣∣
u3=u1

. (6)

The ± sign in this last equation reflects the lack of knowledge
we have regarding the effect of the third body on the two
others and is in fact due to three-body orientational corre-
lation modeling. The mean interaction torque pair potential
U ∞

m (u1, u2) is related to the true pair interaction potential
Uint (r, u1, u2) by

U ∞
m (u1, u2) =

∫
2
ρ0

Uint (r, u1, u2)G∞(r) dr, (7)

where ρ0 is the number density so that 2/ρ0 denotes the mini-
mal volume of the cavity inside an infinite dielectric in which
the molecules are enclosed [13], G∞(r) is the equilibrium
probability density that two molecules are separated by vector
r, viz.,

G∞(r) = e−βŪ ∞
int (r)∫

2
ρ0

e−βŪ ∞
int (r) dr

(8)

and

Ū ∞
int (r) =

∫
Uint (r, u1, u2)W (0)

2 (u1, u2) du1 du2. (9)

The range of validity of Eq. (3) has been qualitatively dis-
cussed in Ref. [13]. As is apparent, Eqs. (3)–(9) cannot be
self-consistently computed without specifying an initializing
potential U ∞

m (u1, u2) which leads to a specific V eff
2 (u1, u2),

which in turn allows one to calculate W (0)
2 (u1, u2), then to

compute Eqs. (8) and (9). More precisely, the true pair inter-
molecular potential consists of a superposition of a spherically
symmetric potential (such as the Lennard-Jones potential)
USR(r) which is strongly repulsive at short intermolecu-
lar separations r and which is the dominating part of the
interactions in this range, and a long range interaction po-
tential ULR(r, u1, u2). This long-range potential depends on
only dipole orientations, but also on the pair intermolecular
distance r = |r| and r orientations r̂, and dominates the in-
termolecular interactions at large separations r. We generally
have

Uint (r, u1, u2) = USR(r) + ULR(r, u1, u2), (10)

which allows the integrals involved in Eqs. (7) and (8) to
converge since they are taken over a finite region of space
[13], the singularity at r = 0 being wiped out by the factor
exp[−βUSR(r)], which decreases to zero as e−ar−12

, a > 0 as
r approaches zero. Explicitly, we have

Ū ∞
int (r) = USR(r) + Ū ∞

LR(r), (11)

Ū ∞
LR(r) =

∫
ULR(r, u1, u2)W (0)

2 (u1, u2) du1 du2, (12)

U ∞
m (u1, u2) = C +

∫
2
ρ0

ULR(r, u1, u2)G∞(r) dr, (13)

C =
∫

2
ρ0

USR(r)G∞(r) dr, (14)

where C is a finite constant, and where all integrals converge.

B. Application of Eq. (3)

Without being explicit, it is evident that U ∞
m (u1, u2) con-

sists of an expansion of products of spherical harmonics
YLM (u1)YJK (u2) [15]. The values of L, M, J, K are such that
YLM (u1)YJK (u2) = YLM (−u1)YJK (−u2) so that U ∞

m is glob-
ally rotational invariant, i.e., we must have U ∞

m (u1, u2) =
U ∞

m (−u1,−u2). It is demonstrated in the Appendix that if
ULR is the pure dipole-dipole interaction, then ignoring the
irrelevant constant C we have the two possibilities for Um, viz.,

U ∞
m (u1, u2) = ∓ρ0μ

2

3ε0
cos ϑ1 cos ϑ2, (15)

where the − sign is for preferred parallel alignment of dipolar
pairs, and the + sign holds for preferred antiparallel align-
ment of dipole pairs and where ϑi is the colatitude angle of
dipole i. Using zi = cos ϑi, Uan is determined by solving the
differential equation

dUan

dz1
(z1) = ±

(
∂U ∞

m

∂z1
(z1, z3)

)
z3=z1

. (16)
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Using Eq. (16) to compute Uan, we obtain four ex-
pressions for V eff

2 , two of which exhibit a minimum at
(ϑ1, ϑ2) = (π/2, π/2) and therefore must be discarded, so
that the only possibility for Uan(u) is, for pure dipole-dipole
interactions [16],

Uan(ϑ ) = −ρ0μ
2

6ε0
cos2 ϑ. (17)

Using Eqs. (25), (15), and (17), this leads to the two possibil-
ities for V eff

2 ,

βV eff
2 (ϑ1, ϑ2) = −λ

2
(cos ϑ1 ± cos ϑ2)2, (18)

where the dimensionless parameter λ is given by

λ = βρ0μ
2

3ε0
(19)

and measures the ratio of dipole-dipole energy to thermal
energy (it is also the dielectric susceptibility of an ideal gas
made of polar molecules each carrying a dipole μ). In Eq. (19)
μ is given by [2]

μ = ε∞ + 2

3
μg. (20)

Therefore, since all quantities determining λ are known, it
follows that this parameter is not adjustable, but known from
the measured or ab initio calculated characteristics of the
liquid and of the molecule itself. In Ref. [17] it was shown

that the asymptotic values of gK rendered by Eq. (3) at large λ

are 3.5 for preferred parallel alignment and 0.5 for preferred
antiparallel alignment, so making the available values of gK

at large densities quite restrictive ones, and strictly speaking,
hold when the induced dipole moment is ignored. If now
one accounts for the polarizability of the molecules, then two
extra terms must be taken into account, namely induction and
dispersion interactions [18]. We loosely represent these terms
as follows:

βVindisp(ϑ1, ϑ2) = ∓κλ cos2 ϑ1 cos2 ϑ2, (21)

where |κ| measures the induction or dispersion to dipole-
dipole interaction ratio. From now on Um is given by

βU ∞
m (ϑ1, ϑ2) = ∓λ cos ϑ1 cos ϑ2 + βVindisp(ϑ1, ϑ2), (22)

where all combination of ± signs are possible. This gives
rise to 16 possible expressions for V eff

2 , four of which have
their stationary points coinciding exactly or approximately
with those of Um given by Eq. (22). Therefore, this in effect
gives rise to four possibilities for the Kirkwood correlation
factor. These possibilities are summarized in Table I, where
in this table and throughout this work the superscript (+)

means preferred antiparallel alignment and (−) preferred par-
allel alignment of dipole pairs. Then, since the interaction
potentials have no azimuthal dependence, we can write a
simple equation for gK, which is

gK = 1 − β

∫ 1

−1

∫ 1

−1

(
1 − z2

1

)(
z1 + 3

2
z2

)
∂U ∞

m

∂z1
(z1, z2)W (0)

2 (z1, z2) dz1 dz2, (23)

where

W (0)
2 (z1, z2) = e−βV eff

2 (z1,z2 )∫ 1
−1

∫ 1
−1 e−βV eff

2 (z1,z2 ) dz1 dz2

, (24)

and the effective orientational pair potential V eff
2 (z1, z2) is

given by

V eff
2 (z1, z2) = U ∞

m (z1, z2) + Uan(z1) + Uan(z2). (25)

Uan(u) is a one-body potential loosely accounting for cor-
recting U ∞

m (u1, u2) as a result of three-body orientational
correlations obeying the differential Eq. (16).

III. NUMERICAL RESULTS

Thus, we essentially have four interaction energies U ∞
m ,

and four corresponding Kirkwood potentials of mean torques
V eff

2 given in Table I. This leads to four values g1(−)
K , g2(−)

K ,
g1(+)

K , and g2(+)
K that reduce to previously derived results for gK

when κ = 0 [17], i.e., when Vindisp is neglected. The variation
of g1(−)

K as a function of λ and κ is represented in Figs. 1
and 2. One notices the substantial increase of the Kirkwood
correlation factor as κ is increased from 0. The explanation
is that in this situation, the induction term affects neither
the location of the minima (0,0) and (π, π ) nor the location
of the saddle point of both Um and V eff

2 , but increases the

energy barrier separating the two multidimensional minima
in V eff

2 , which in turn governs the pair equilibrium statistics.
As a result, the parallel states (0,0) and (π, π ) are made
even more (respectively less) probable for κ > 0 (respectively
κ < 0) than for κ = 0. This results in an increase (respectively
a decrease) in the Kirkwood correlation factor with respect
to the situation where κ = 0. As illustrated in Fig. 2, the
variation of g1(−)

K with κ for given λ is linear. This means
that in this situation, the dipolar field has a trend to induce a
dipole in the same direction as that of the alignment of the
molecular permanent dipole moments. Thus, the bonds are
slightly stretched, so the atomic charge distributions are more
distant than in the absence of induced dipoles. The result is

TABLE I. Notations for the Kirkwood correlation factors, in-
teraction potential U ∞

m and potential of mean torques V eff
2 . The

shorthand notations z = cos ϑ and z′ = cos ϑ ′ have been used.

βU ∞
m βV eff

2

g1(−)
K −λzz′ − κλz2z′2 − λ

2 (z + z′)2 + κλ

2 (z2 − z′2)2

g2(−)
K −λzz′ + κλz2z′2 − λ

2 (z + z′)2 + κλ

2 (z2 + z′2)2

g1(+)
K λzz′ + κλz2z′2 − λ

2 (z − z′)2 − κλ

2 (z2 − z′2)2

g2(+)
K λzz′ − κλz2z′2 − λ

2 (z − z′)2 − κλ

2 (z2 + z′2)2
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0 5 10 15 20
0

2

4

6

8

10
= 1.5

= 1

= 0.5

= 0

= −0.5

g1(−)K

= −0.7

FIG. 1. Kirkwood correlation factor g1(−)
K as a function of λ for

various values of κ .

simply a proportion of gK with κ . We also note from Figs. 1
and 2 that values of gK < 1 are possible in spite of preferred
parallel alignment of the permanent dipoles. Now, if too large
negative κ values are used here, this causes g1(−)

K to take
unphysical negative or null values. The higher transcendental
nature of the functions representing the integrals makes it
difficult to precisely state the limiting κ value at which this
occurs, nevertheless these integrals can straightforwardly be
computed numerically. Therefore, if any negative κ value is
to be applied when comparing the present theory with experi-
ments, then one must guarantee the positiveness of g1(−)

K in the
whole temperature range where the species under study is in
its liquid phase.

Figures 3 and 4 show the behavior of g2(−)
K when λ and

κ are varied. In this situation, the locations of the minima of
V eff

2 are affected in raising κ , while the saddle point remains
unchanged. Thus, the strictly parallel equilibrium states are
affected, and pairs of dipoles form an angle at equilibrium,
so that the pair alignment state is a canted one. The energy
barrier separating the two minima is furthermore lowered,
and therefore the equilibrium states are less populated with
respect to the situation where κ = 0. Altogether, this results in

−0.5 0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

g1(−)K

= 20

= 10

= 5

FIG. 2. Kirkwood correlation factor g1(−)
K as a function of κ for

various values of λ.

0 5 10 15 20
0

1

2

3

= −0.5

= 0

= 0.5

= 1

g2(−)K = 1.5

FIG. 3. Kirkwood correlation factor g2(−)
K as a function of λ for

various values of κ .

a decrease of gK. Unlike for g1(−)
K , the behavior of g2(−)

K with
κ is not linear at all. Here a tentative explanation may be that
the term Vindisp fights nontrivially against the aligning effect
of the permanent dipole moments due to Vdd . Altogether,
the equilibrium parallel alignment of permanent dipoles is
affected. The angle between a pair of dipoles in the wells
is not so well defined in this situation, as our simplified in-
teraction potentials are azimuth-independent, so that in the
present model transverse modes are energy costless modes.
Nevertheless, according to our model, we may state that the
relative orientation of dipole pairs at equilibrium obeys the
double inequality:

0 � ϑ(u,u′ ) � 2 arctan

√√
1 + 16κ2 − 1√

2
, (26)

where the upper bound is equal to 
 = ϑmin + ϑ ′
min = 2ϑmin

and (ϑmin, ϑ
′
min) is the location of one of the deepest symmet-

ric minima of the corresponding Kirkwood potential of mean
torques V eff

2 , while the lower bound is given by ϑmin − ϑ ′
min =

0. Thus, the relative orientation of dipole pairs may be larger
than π/2, in spite of the fact that in this situation, gK > 1. In
order to illustrate this, we have plotted the quantity 
 as a

−0.5 0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0

3.5 = 20

= 10

= 5g2(−)K

FIG. 4. Kirkwood correlation factor g2(−)
K as a function of κ for

various values of λ.
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−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

Θ

FIG. 5. The maximal relative orientation of dipole pairs 
 as a
function of κ . The dashed line is the π/2 relative orientation.

function of κ in Fig. 5, where it becomes clear that 
 may be
larger than π/2 at some κ values.

Thus, in particular, gK > 1 does not guarantee the parallel
alignment of dipole pairs at equilibrium. In the next section we
give a comparison of our calculations with the experimental
temperature dependence of the static linear permittivity of
tributyl phosphate in order to illustrate the situation we just
described. The variation of g1(+)

K and g2(+)
K with λ for various

values of κ are shown in Figs. 6 and 7. These values of the
Kirkwood correlation factor correspond to preferred antipar-
allel alignment when κ = 0. The most remarkable feature of
g1(+)

K is that in this situation, the Kirkwood correlation factor is
able to exhibit both gK values that are smaller and larger than
1, and that this happens at moderate values of λ. Furthermore,
for κ > 0, g1(+)

K is able to render negative values of gK if
|κ| takes too large values, so that the same prescriptions as
those given above for g1(−)

K apply to g1(+)
K when attempting a

comparison with experimental data.
The variation of g1(+)

K and g2(+)
K with κ is shown in Figs. 8

and 9. As for g1(−)
K , the variation of g1(+)

K with κ is linear, so
that the stretching of molecular bonds has the same effect as
that for g1(−)

K . In fact, here the extra dipole is induced in the di-
rection opposite to the permanent dipole alignment direction,

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

= −0.5

= 0

= 0.5

= 1

= 1.5

g1(+)K

FIG. 6. Kirkwood correlation factor g1(+)
K as a function of λ for

various values of κ .

0 5 10 15 20
0.4

0.6

0.8

1.0

= −0.5 = 0
= 0.5

= 1
= 1.5g2(+)K

FIG. 7. Kirkwood correlation factor g2(+)
K as a function of λ for

various values of κ .

leading to an overall increase of gK, therefore to an increase
of the dielectric constant with respect to the situation where
κ = 0. At last, in this situation, the minima of the potential
V eff

2 are those of antiparallel alignment.
In contrast, the variation of g2(+)

K with κ is not linear at
all. Here the explanation is different from the κ behavior
of variation of g2(−)

K . In effect, for positive κ , the Kirkwood
potential of mean torques V eff

2 exhibits two pairs of unequal
minima in a cycle of the motion of dipole pairs, located both
at the parallel and antiparallel states. This altogether affects
the gK value in a nontrivial way, depending on the λ values.
For negative κ , the equilibrium orientations of the permanent
moments are spread over the range:

π − 2 arctan

√√
1 + 16κ2 − 1√

2
� ϑ(u1,u2 ) � π. (27)

This is similar to the behavior of g2(−)
K as in this situation,

dipoles are induced in such a way that they are parallel. Here
gK is near 0.5, as if the induction term did not significantly
affect orientational correlations.

−0.5 0.0 0.5 1.0 1.5 2.0
0

1

2

3

= 20

= 10

= 5

g1(+)K

FIG. 8. Kirkwood correlation factor g1(+)
K as a function of κ for

various values of λ.
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−2.0 −1.5 −1.0 −0.5 0.0 0.5
0.3

0.4

0.5
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= 20

= 10g2(+)K
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FIG. 9. Kirkwood correlation factor g2(+)
K as a function of κ for

various values of λ.

IV. COMPARISON WITH EXPERIMENTAL DATA

In this section we compare our theoretical findings with
experimental data. In order to do so, we use static dielectric
permittivity values either from the literature, i.e., unless stated
otherwise, values from Wohlfarth’s Landolt-Bornstein tables
[19] or from our own measurements, and compare them to
calculated values employing the theory described in the fore-
going sections. In the Kirkwood-Fröhlich theory, the dielectric
constant is given by

ε = 1
4

[
3λgK + ε∞ +

√
8ε2∞ + (3λgK + ε∞)2

]
, (28)

where

λ = λ(T ) = Mv (T )NAμ2
g[ε∞(T ) + 2]2

27Mmolε0kT
. (29)

Here the experimentally measured temperature-dependent
mass density of the polar fluid Mv (T ) is sometimes ex-
trapolated to the temperature of interest either via the
equations given in the respective references or via a linear law
fitted to the measured values when this expression is valid in
the whole range of temperatures considered. Furthermore, in
Eq. (29), following Onsager et al. [4–6], we set

ε∞ = ε∞(T ) = n2(T ), (30)

where n is the mean refractive index of the fluid measured
for the sodium D spectral line (also sometimes extrapolated
to the temperature of interest either via the equations given
in the respective references or via a linear law fitted to the
measured values). For some polar fluids we compute n from
the Lorenz-Lorentz equation,

n2(T ) − 1

n2(T ) + 2
= Mv (T )NAᾱ

3Mmolε0
, (31)

where ᾱ is the mean molecular polarizability, taken from the
literature.

The Kirkwood correlation factor gK in Eq. (28) is, ac-
cording to our theory, dependent on λ(T ) and κ , and four
different functions for gK(λ(T ), κ ) are possible according to
Table I. By substituting the respective Um and V eff

2 into Eq. (3),
the Kirkwood correlation factor is calculated by numerical

integration because the exact numerical value of the integral
is required for comparing the outcomes of the theory with
experiment.

As mentioned above, κ can be regarded as a measure of the
strength of the induction- or dispersion-type interaction and is
the only unknown parameter which is needed to calculate the
theoretical Kirkwood correlation factor. It is expected that κ is
somehow related to the molecular polarizability ᾱ and/or the
asymmetry of the molecular polarizability tensor; however, in
the current state of our theory, it can not be determined explic-
itly, and thus it is left as the only fitting parameter to achieve
agreement between theory and experiment. The choice be-
tween the four different representations of gK(λ(T ), κ ) is
based upon some possibly existing foreknowledge about the
preferred alignment from the literature and/or based upon the
comparison of the theoretical and experimental temperature
dependences of the static permittivity. Since the four gK(λ, κ )
have distinct slopes depending on λ(T ), as can be seen in
Figs. 1, 4, 6, and 7, this results in an unambiguous assignment
of one gK(λ, κ ) to the respective polar fluid.

In the following subsections we discuss the comparison of
theory and experiment for different classes of polar liquids.
An overview of all substances under study, including all val-
ues needed to calculate the Kirkwood correlation factor, is
given in Table II.

A. Parallel alignment: Linear primary alcohols

We start with a series of linear primary alcohols with differ-
ent alkyl-chain length, for which preferred parallel alignment
of the dipole moments, which are located at the O-H group at
one end of the carbon chain, is well known. Different values
for this dipole moment of linear primary alcohols are found in
the literature, and these values usually range between 1.65 and
1.70 D [21]. Since the total dipole of a molecule is the sum of
the dipole moments of its chemical bonds, and the C-H bonds
are almost apolar, the permanent dipole moment of all linear
primary alcohols should be the same in a first approximation.
An average value of 1.68 D thus has been chosen as the value
of μg for all the considered linear primary alcohols.

In Fig. 10 the experimental static permittivities for all
alkyl-chain lengths from methanol to octan-1-ol are shown as
plain circles, together with the theoretical values calculated
using g1(−)

K as solid lines.
As one can see, the agreement of the theoretical with the

experimental values is excellent for all linear primary alcohols
over the whole temperature range where experimental data
are available. The values of κ , which are chosen in order to
achieve this agreement, are shown in the inset of Fig. 10. It
is obvious that κ increases with increasing number of car-
bon atoms in the alkyl chain, which indicates the increasing
strength of the induction- or dispersion-type interaction. Since
the polarizability of a molecule increases with its molecu-
lar mass while the permanent dipole moment is the same
for all molecules of this series, this finding is perfectly rea-
sonable and underlines the importance of the induction- or
dispersion-type interaction for larger molecules, which we
hope to treat more consistently than here in future work.
However, it is clear that the κ parameter does not depend
linearly on the number of carbon atoms in the alkyl chain,
which shows that the latter parameter is not a trivial function
of the polarizability, particularly as a result of nonadditivity

024108-6



TEMPERATURE DEPENDENCE OF THE KIRKWOOD … PHYSICAL REVIEW E 105, 024108 (2022)

TABLE II. Parameters used in the computation of the static permittivity (28). Mean molecular polarizabilities from Ref. [20]. Molecular
dipole moments from Ref. [21] except (a) from Ref. [22] and (b) from Ref. [23], which is the value of the dipole moment of TBP in decalin,
which is a nonpolar solvent that has no influence on the molecular TBP dipole. (c) We performed refractive index measurements between
10 ◦C and 50 ◦C using an Abbe refractometer.

μg (D) ᾱ (Å3) κ gK Mv (T ) n(T )

Methanol 1.68 – 0.04 g1(−)
K Ref. [24] Ref. [25]

Ethanol 1.68 – 0.05 g1(−)
K Ref. [24] Ref. [25]

Propan-1-ol 1.68 – 0.22 g1(−)
K Ref. [26] Ref. [25]

Butan-1-ol 1.68 – 0.35 g1(−)
K Ref. [24] Ref. [25]

Pentan-1-ol 1.68 – 0.5 g1(−)
K Ref. [27] Ref. [25]

Hexan-1-ol 1.68 – 0.65 g1(−)
K Ref. [28] Ref. [25]

Heptan-1-ol 1.68 – 1.05 g1(−)
K Ref. [29] Ref. [25]

Octan-1-ol 1.68 – 1.5 g1(−)
K Ref. [30] Ref. [25]

Water 1.845 1.501 −0.15 g1(−)
K Ref. [24] L.-L.

Acetonitrile 3.92 4.44 0.345 g1(+)
K Ref. [24] L.-L.

Nitrobenzene 4.02a 12.26 0.67 g1(+)
K Ref. [31] L.-L.

Acetone 2.88 6.27 0.83 g1(+)
K Ref. [24] L.-L.

DMSO 3.96 7.97 0.73 g1(+)
K Ref. [32] Ref. [32]

TBP 2.6b – 0.85 g2(−)
K Ref. [33] Ownc

Glycerol 2.67 7.80 −0.3 g1(−)
K Ref. [34] L.-L.

of induction-dispersion energies [18]. Therefore, the determi-
nation of κ from molecular properties is beyond the scope of
this work and thus is left as a fitting parameter.

As indicated by the use of g1(−)
K , the preferred dipolar

order in these substances is, as is well known, the parallel
one. The temperature dependence of the calculated Kirkwood
correlation factor is shown in Fig. 11, only for some of these
substances for clarity.

It is obvious that the slope of gK (T ) is nontrivial and
behaves distinctly different for various linear alcohols and

FIG. 10. Experimental temperature dependence of the linear
static permittivity of methanol (1), ethanol (2), propan-1-ol (3),
butan-1-ol (4), pentan-1-ol (5), hexan-1-ol (6), heptan-1-ol (7), and
octan-1-ol (8). Solid line: theory. Dots: experimental data from
Ref. [19]. For heptan-1-ol, the experimental data are the same as
those published by Vij et al. [35] at normal pressures. Inset: variation
of κ with the number of carbon atoms nC in the alkyl chain.

it agrees with those found experimentally in the literature
[2]. Therefore, by adjusting the strength of the induction- or
dispersion-type interaction via the temperature-independent
κ , our theory is able to calculate the correct Kirkwood cor-
relation factor and thus reproduces the experimental static
permittivities using the correct dipole moment in the gas phase
μg. Last, since the graphical representation of g1(−)

K (κ ) is a
straight line, there is a bijective correspondence between a
selected value of κ and ε, so that our theoretical uncertainty
on all calculated parameters is zero.

B. Antiparallel alignment

In this subsection, we compare our theory with experimen-
tal static permittivities of substances, for which it is known
from techniques other than dielectric spectroscopy, that they

−80 0 80 160 240
1

2

3

4

8

4

3

1

g K
(T
)
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FIG. 11. Experimental temperature dependence of the Kirkwood
correlation factor of methanol (1), 1-propanol (3), 1-butanol (4), and
1-octanol (8).
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FIG. 12. Experimental temperature dependence of the linear
static permittivity of acetonitrile (1), acetone (2), nitrobenzene (3),
and DMSO (4). Solid line: theory. Dots: experimental points [19].
DMSO data, including density and refractive index from Schläfer
et al. [32].

exhibit preferred antiparallel dipolar ordering. These sub-
stances are acetonitrile [36], nitrobenzene [37], acetone [38],
and dimethyl sulfoxide (DMSO) [38]. Comparison between
theory and experiment is shown in Fig. 12. Experimental
data for these substances are available only over a narrow
temperature range. However, as can be seen in Fig. 13, the
Kirkwood correlation factors hardly depends on temperature,
thus this is not too much a drawback.

1. Acetonitrile and acetone

Our theoretical estimates of the static permittivity of ace-
tonitrile (ACN) apparently deviate from the experimental data
of Stoppa et al. [39] at high temperatures, of at most 4.7%,
while yielding good agreement at the lowest ones. It is difficult
to believe that the deviation between theory and experiment is
due to a poor representation of intermolecular interactions as λ

takes rather low values at high temperatures. Yet our theoreti-
cal findings remains not too far from the experimental data.
For ACN, the Kirkwood correlation factor remains almost

10 20 30 40 50 60 70 80
0.7

0.8

0.9
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FIG. 13. Theoretical temperature dependence of Kirkwood cor-
relation factor of acetonitrile (1), acetone (2), nitrobenzene (3), and
DMSO (4).

temperature independent between 10 ◦C and 60 ◦C, yielding
gK ≈ 0.82. Since g1(+)

K is used, the dipolar order is strictly
antiparallel, as expected. These values agree reasonably well
with the experimentally deduced values of Helambe et al. [40]
in the pure liquid phase.

Our theoretical estimates of the static permittivity of ace-
tone are in good agreement with the experimental ones.
We also find antiparallel order for acetone, using g1(+)

K as
a representative of gK. This substance exhibits the strongest
temperature dependence of gK out of the four substances
discussed in this subsection, as illustrated in Fig. 13. Our
values decrease from 1.22 to 1.19 when the temperature is
increased from 20 ◦C to 50 ◦C, and are slightly above the value
at 25 ◦C of pure acetone by Kumbharkhane et al. [41] which
is 1.02, while Vij et al. [42] found the value 1.38. Our values
are framed between both experimentally determined ones,
and therefore, our theoretical findings may be considered as
satisfactory for this substance in the considered temperature
range. We emphasize that due to the relatively large value of
κ = 0.83, the gK values of acetone are above unity, despite
preferred antiparallel alignment.

2. Nitrobenzene and DMSO

The same is true for Nnitrobenzene and DMSO, where a
Kirkwood correlation factor larger than unity (see Fig. 13)
reproduces the experimental data in Fig. 12 quite well, em-
ploying g1(+)

K , i.e., antiparallel alignment.
We emphasize here again that the expectation that antipar-

allel dipolar alignment has to result in a Kirkwood correlation
factor of less than unity has led, for example, Shikata et al.
[43], like many authors (including two of us [44] for methanol,
for example), to use too high of a value of ε∞ = 3.5 by
treating ε∞ as a fitting parameter, in order to obtain gK =
0.65 < 1 for nitrobenzene. Again this procedure is misleading
and results in some cases in somewhat arbitrary choices of ε∞,
just to fulfill the expectations about the value of the Kirkwood
factor in comparison with unity.

We also note here that great care must be taken regarding
the frequency at which the dielectric constant is measured.
If measurements are performed at a fixed frequency instead
of measuring a spectrum over several orders of magnitude in
frequency, one has to be sure that this frequency is sufficiently
low to neglect relaxation effects but also sufficiently high so
that one also can neglect electrode polarization effects stem-
ming from ionic impurities, which might be present in some
occasions. This is actually one of the reasons why it is very
difficult to determine the dielectric constant of supercooled
liquids as the glass temperature transition is approached from
above.

For example, in the case of DMSO we have compared
our theoretical findings with the data of Schläfer et al. [32],
who report measurements of the static permittivity at a mea-
suring frequency of 100 kHz. We were quite surprised that
the data of Schläfer et al. were the only ones (see Ref. [19])
that we were able to interpret. Yet they are the sole data
of Ref. [19] which, in our opinion, truly reflect the static
permittivity of DMSO, because all data but those of Schläfer
et al. were recorded at least at a ten times higher frequency,
indicating that dipolar relaxation might play a role, so that the
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FIG. 14. Experimental temperature dependence of the linear
static permittivity of water (1), glycerol (2), and TBP (3). Solid line:
theory. Dots: experimental points. Dashed line: empirical equation of
Matyushov and Richert [47] for glycerol.

measured permittivities can no longer be considered as the
static ones.

We note in passing that Schläfer et al. quote a dipole value
of DMSO μg = 4.3 ± 0.1 D, using Onsager’s equation [4]. In
effect, we find that the Onsager dipole μg

√
gK varies between

4.28 and 4.32 D, in agreement with the experimental one and
lies in the experimental uncertainty window. Finally, we re-
mark that Onsager’s equation [4] is generally most successful
in polar substances with antiparallel order (one exception be-
ing liquid water) because as illustrated in Fig. 13, generally gK

has almost no temperature dependence. However, as explained
by Coffey [45] and later in Ref. [46], this equation is difficult
to understand from a microscopic point of view. Yet it is
useful because it yields a relatively good estimate of the dipole
moment μg in dilute situations, for example, using Malecki’s
method [22].

C. Special cases: Water, TBP, and glycerol

In this subsection we compare our theory to experimental
values of three special liquids: water, glycerol, and tributyl
phosphate (TBP). The specialties of these substances will
become clear in the following. Figure 14 displays the experi-
mental ε values as points and the theoretical ones as solid lines
for these three liquids.

1. Water

A comparison of experimental static permittivities of wa-
ter with an earlier stage of our theory was already given in
Ref. [17]. Therein, the induction- or dispersion-type interac-
tion was not yet accounted for, the refractive index was kept
temperature independent and ε∞ = 1.03n2 was chosen. This
leads to a disagreement with the experimental data at temper-
atures above 80 ◦C. Here the induction and dispersion effects
together with inclusion of the temperature dependence of n
allows our theoretical findings to agree with experimental data
across the whole temperature range. The κ parameter was ad-
justed to −0.15 to achieve this agreement, indicating a slight
reduction of the total effective dipole moment (ε∞ + 2)μg/3.

−120 −60 0 60 120
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g
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FIG. 15. Theoretical temperature dependence of Kirkwood cor-
relation factor of water (1) and TBP (2).

Moreover it indicates a specific equilibrium geometry of the
water molecules in the liquid phase, which, however, is im-
possible to specify precisely in the present context.

The Kirkwood correlation factor of liquid water as a func-
tion of temperature is shown in Fig. 15. For water, it is known
that the experimental Kirkwood correlation factor is gK =
2.75 at 0 ◦C [2] and decreases to gK = 2.49 at T = 83 ◦C,
under the conditions that ε∞ = 1.05n2 and ε∞ is tempera-
ture independent [2]. In the present work, we find gK = 2.73
at T = 0 ◦C and gK = 2.72 at T = 83 ◦C, however, under
the condition ε∞(T ) = n2(T ), with n2 obeying the Lorenz-
Lorentz Eq. (31). Since we use g1(−)

K as a representative of gK

for this substance, the dipolar order in liquid water is the par-
allel one, in agreement with the Oster-Kirkwood predictions
[5,48]. We also remark, that, incidentally, the gK is basically
independent of temperature, which explains why Onsager’s
equation works at room temperature for liquid water with
values of ε∞ as large as 4.5 [2,49]. Again this exaggerated
value of ε∞ has led many authors, including two of us [17,50],
to treat ε∞ as a fitting parameter, in order to obtain values of
gK that comply with what is believed about dipolar order in
water. We insist again that this procedure is misleading and
has no serious theoretical grounding at all. Finally we note that
our present calculations for gK of water are also in reasonable
agreement with the molecular dynamics (SPC/E) numerical
simulations of van der Spoel et al. [51]

2. TBP

Tributyl phosphate (TBP) is special in so far as it is the only
substance—out of all we tested so far—where g2(−)

K has to be
employed to achieve agreement between theory and experi-
ment. The experimental static permittivities, which are shown
in Fig. 14, were obtained in our laboratory. Details of the ex-
perimental setup are described elsewhere [52]. As can be seen
in this figure, the theory is able to describe the experimental
data over a temperature range of more than 260 K, and since
the glass transition temperature of TBP is about Tg = −132 ◦C
[53], we may consider that unlike what was stated in Ref. [17],
the theory is sometimes able to predict correct values of the
static permittivity even below the calorimetric Tg.
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The temperature variation of gK for TBP is shown in
Fig. 15. Clearly, for this substance, gK > 1. However, since
g2(−)

K is used here with κ = 0.85, the permanent dipole pair
relative orientations continuously spread between 0◦ and 97◦,
as obtained from Eq. (26). This means that both parallel
and antiparallel alignment of dipolar pairs are present in this
substance.

A Kirkwood correlation factor of less than unity was ob-
tained in a different study by Saini et al. [53] and thus needs
a comment: The value of the molecular dipole moment μg of
tributyl phosphate (TBP) used in their study is 3.1 D, which is
the value of TBP dissolved in carbon tetrachloride. Although
this solvent is nonpolar, it still affects the value of μg as it has
a non-negligible effect on the phosphoryl group [23]. We used
the value of 2.60 D, which is obtained in an octane solution
and is almost identical to the value obtained in a decalin
solution [23], both unpolar solvents without influence on the
TBP molecules.

Moreover, in the work of Saini et al., ε∞ ≈ 5 was used,
which is far from ε∞ = n2. This value was read off the
spectrum at frequencies lower than the strong secondary relax-
ation, which is clearly due to molecular reorientation. Thus,
this choice is not justified in our opinion and leads together
with the too high dipole moment to a gK value less than unity.

The value 3.32 D of undiluted TBP quoted by Petkovic
et al. [23] is the one compatible with Onsager’s equation at
room temperature. If we use the Onsager dipole μg

√
gK with

our calculated gK, we find 3.27 D at room temperature, which
is rather close to Petkovic’s result.

3. Glycerol

As can be seen in Fig. 14, the experimental data points of
glycerol cannot be described by our theory at all. Here we
show the calculated values for g1(−)

K , however, also no other
representation of gK is able to reproduce the experimental
values with physically reasonable values of the parameters.

Often the specificity of H-bonding is invoked in order to
explain disagreement between theory and experiment. This
is not so here, since H-bonding specific mechanisms are not
needed at all in order to obtain agreement between theory
and experiment for linear primary alcohols and water, both
prominent examples of H-bonding liquids. Rather, we believe
that the disagreement is explained by the oversimplification
of the interaction potential (22) which, in effect, pertains to
molecules having their permanent dipole moment fixed with
respect to a given axis of symmetry of the molecule. Thus, due
to the floppyness of the glycerol molecules, and due to the fact
that comparable contributions to the overall dipole moment
are located in different positions in the molecule, the situation
for glycerol is quite different. Owing to this reason, we believe
that the interaction energy landscape is much too simple to
capture the main physics which is necessary for the theoretical
description of the temperature dependence of the dielectric
constant of this polar fluid. We note that the seemingly good
agreement between theory and experiment with the potential
(22) can be forced across the whole temperature range us-
ing the unphysical assumption ε(T ) = 0.5n2(T ) together with
gK = g1(−)

K and κ = 0.45. The relation ε(T ) = 0.5n2(T ) used
in such a fit actually reveals that the reason of our failure

indeed lies in the oversimplification of the intermolecular
interaction potential (22) and the resulting Kirkwood potential
of mean torques V eff

2 rather than in the specific H-bonding
mechanism, which is not explicitly accounted for. Therefore,
we state that glycerol is a nonsimple polar fluid (and even less
a simple liquid), where the intermolecular interaction is not
appropriately represented in our theory and thus, the substance
is out of scope of the present work.

V. SUMMARY OF RESULTS AND PERSPECTIVES

In this work, we have computed the Kirkwood correlation
factor of simple polar fluids from Eq. (3) which was derived
in a companion paper [13] and we have successfully com-
pared the outcomes of this formula with experimental data
regarding the temperature dependence of the linear dielectric
constant of simple polar fluids. This equation has a lot of
advantages, the first one being that it is independent on the
number of neighbors and that no molecule needs to be tagged
to achieve the calculation, the second being the fact that the
approach easily lends itself to tractable approximations, and
the third one being that our theory is quantitatively amenable
to comparison with experiment. We have also suggested how
to construct a model potential for the electrostatic interaction
that not only includes the permanent electric dipoles but also
in the next order some induction- and dispersion-like effects.
Finally, for each case of preferred parallel or antiparallel
alignment of permanent dipoles and their modification by
induced polarization, two different Kirkwood potentials of
mean torques are deduced, for which Eq. (3) is calculated
numerically to yield respective temperature-dependent values
of the static dielectric constant and the Kirkwood correla-
tion factor. The models contain only physical quantities, like
density, permanent dipole moment and refractive index, or
molecular polarizability, respectively, that are independently
accessible by experiment. Only one single material specific
and temperature independent parameter enters the calculation,
which is connected to the molecular polarizability, which can-
not be calculated from the latter in a straightforward manner
and thus needs to be a fitting parameter. In that way we are
able to quantitatively compare the calculated values of ε(T )
with experimental data, and it turns out that the derived model
potentials seem to capture the underlying main physics of dif-
ferent system classes to a rather good accuracy, at least from
the point of view of a static dielectric constant measurement.

A first important result from these calculations is the ob-
servation that a parallel alignment of the dipole pairs does
not necessarily imply gK > 1, and similarly an antiparallel
alignment of dipole pairs does not strictly imply gK < 1 either.
Rather, such alignment states are local minima of the effective
pair interaction orientational potential of mean torques, for
which not only permanent but also induced dipole moments
play a decisive role. For example, applying Eq. (26) to TBP,
we find that pairs of dipoles in this polar substance have a
trend to make angles spreading between 0◦ and 97◦, explain-
ing quantitatively the value of gK ≈ 2 of TBP near its glass
transition temperature and beyond [52].

We also discuss several examples of preferred antiparallel
alignment, not only for acetonitrile, where gK < 1 is found
as expected, but also for acetone, nitrobenzene and dimethyl
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sulfoxide, where despite the antiparallel alignment clearly
gK > 1 due to the non-negligible influence of the molecular
polarizability. This again underlines that the usual arguments
relating parallel (gK > 1) and antiparallel (gK < 1) align-
ments based on an oversimplified interpretation of Eq. (2)
hampers comparison of the results found from linear dielec-
tric measurements concerning dipolar alignment with those
obtained from other characterization techniques.

As examples for a preferred parallel alignment of dipoles
we have investigated a series of linear monohydroxy alco-
hols, where our theory reproduces the experimental ε(T )
for the full series from methanol to octanol with the im-
portance of the polarizability component increasing with
molecular volume (the number of carbon atoms involved in
the alkyl chain), as expected. Moreover, the static permit-
tivity of liquid water from the melting temperature to the
boiling point shows excellent agreement with the theory. This
is quite remarkable, as the theory does not explicitly con-
tain any particular H-bonding-related mechanism. Thus, the
idealization of a molecule which consists of its permanent
and induced dipole moments only is enough to explain the
temperature dependence of the static dielectric constant of
these hydrogen bonding liquids as first Debye, Kirkwood,
and Fröhlich assumed [1,2,6]. Interestingly, the situation is
different for the polyalcohol glycerol. Here apparently our
model for the pair potential is too simple to capture the actual
electrostatic interaction. The reason for this is unlikely the
specific role of hydrogen bonds, because our theory com-
pares favorably with experimental data concerning water and
monoalcohols. More likely, it may be suspected that since
the dipole moment of glycerol is composed of the moments
located in three different OH groups within the molecule,
considerable intramolecular flexibility leads to a rather ill
defined molecular dipole moment, resulting in turn in more
complicated interactions. Work to develop appropriate inter-
action potentials for such associated molecular liquids is in
progress.

In spite of the fact that our theory covers a large spectrum
of values for gK, it still does not explain the experimen-
tal temperature variation of the dielectric constant of some
carboxylic acids and also a couple of monohydroxy alco-
hols, where a minimum in the temperature dependence of
the dielectric constant is observed. For example, the dielectric

constant of acetic and caprylic acid [2] or of certain octanol
isomers [54,55] first decreases with temperature, but then in-
creases again. In fact, such unusual behavior of ε(T ) is usually
explained by the simultaneous presence of hydrogen-bonded
closed-ring structures, for which the net dipole moment is
approximately zero, together with linear multimer chains with
various concentrations [2]. A minimal modeling of such be-
havior may require to consider two different species in the
sample and correspondingly different λ factors appropriately
weighted by the temperature-dependent molar fractions of
closed rings and linear chains, respectively. Testing of such
ideas is currently in progress.

Certainly more demanding will be to adapt the present
theory to binary polar mixtures. Here a zero-order approxi-
mation for evaluating the static dielectric constant might be
to consider the coupled Langevin equations for the over-
damped nonlinear itinerant oscillator model [56] with a
specific pair interaction potential and the corresponding equi-
librium Smoluchowski equation [57] to deduce equilibrium
properties. Moreover, one may also try to extend the present
model to dynamics, similar to previous work [16], in both
linear and nonlinear responses. Finally, one could also think
of applying the present calculations to suspensions of mag-
netic nanoparticles similar to what was already pointed out
previously [16,58]. The development of the theory in all of
these directions is currently in progress.

In conclusion, the static limit of the kinetic Yvon-Born-
Green theory proposed in Ref. [13], is able to quantitatively
reproduce the temperature behavior of the dielectric constant
and Kirkwood correlation factor of simple polar fluids. This
theory particularly extends current DDFT approaches to the
problem [59,60]. The corresponding dynamics may also be
computed, and continuous distributions of relaxation times
included in the theory [13], so that this “extended DDFT” or
kinetic Yvon-Born-Green approach constitutes a strong cor-
pus for developing the theory of linear and nonlinear dipolar
relaxation in condensed phases.
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APPENDIX: DIPOLE-DIPOLE INTERACTIONS FOR PURELY POLAR MOLECULES

Here we derive the form of U ∞
m arising from dipole-dipole interactions, where we assume that all densities are normalized to

unity. Thus, the dipole-dipole interaction for a pair of identical molecules is

Uint (r, u1, u2) = μ2

4πε0r3
u1 · T(r̂) · u2, (A1)

where T(r̂) is a tensor that can be written in dyadic form as follows:

T(r̂) = I − 3r̂r̂, (A2)

where I is the unit tensor and r̂ is a unit vector along r. We recall the definition of U ∞
m in its time-independent version, viz.,

U ∞
m (u1, u2) =

∫ rC

0

∫ π

0

∫ 2π

0
Uint (r, u1, u2)G∞(r)r2 sin ϑr dr dϑr dϕr, (A3)
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where (ϑr, ϕr ) are the spherical polar angles specifying the orientation of r and rC is the radius of the minimal volume υmin of
the cavity given by

rC (T ) =
(

3

2πρ0(T )

)1/3

.

We expand G∞ in spherical harmonics so that

G∞(r) =
∞∑

n=0

n∑
m=−n

gn,m(r)Yn,m(r̂) (A4)

so that Eq. (A3) becomes

U ∞
m (u1, u2) = μ2

4πε0
u1 ·

∞∑
n=0

n∑
m=−n

∫ rC

0
dr

gn,m(r)

r

∫ π

0

∫ 2π

0
T(r̂)Yn,m(r̂) sin ϑr dϑr dϕr · u2. (A5)

It is obvious that only n = 2 terms will contribute to the double sum in Eq. (A5). Therefore, we have

U ∞
m (u1, u2) = μ2

4πε0
u1 ·

2∑
m=−2

∫ rC

0
dr

g2,m(r)

r

∫ π

0

∫ 2π

0
T(r̂)Y2,m(r̂) sin ϑr dϑr dϕr · u2. (A6)

Because G∞ is real, we must have

gn,−m(r) = (−1)mḡn,m(r), (A7)

where only the overbar denotes the complex conjugate. Separating real and imaginary parts in gn,m(r), we write

gn,m(r) = g′(n,m)(r) + ig′′(n,m)(r) (A8)

so that Eq. (A6) reads

U ∞
m (u1, u1) = μ2

4πε0

{
− 4

√
π

5
G20

[
u1,Z u2,Z − 1

2
(u1,X u2,X + u1,Y u2,Y )

]
+ 2

√
6π

5
G′

21(u1,X u2,Z + u1,Z u2,X )

− 2

√
6π

5
G′′

21(u1,Y u2,Z + u1,Z u2,Y ) − 2

√
6π

5
G′

22(u1,X u2,X + u1,Y u2,Y ) + 2

√
6π

5
G′′

22(u1,X u2,X + u1,Y u2,Y )

}
,

where

G′
nm =

∫ rC

0
g′(n,m)(r)d (ln r), (A9)

G′′
nm =

∫ rC

0
g′′(n,m)(r)d (ln r) (A10)

are both converging integrals for rC positive and finite.
Now, we come to modeling dipole-dipole interactions, because, we insist, solving the general problem is a very difficult one

[13]. In order to model dipole-dipole interactions, let us consider the terms in Eq. (A9). To this purpose, we assume that the
electric field is applied along the Z axis of the laboratory frame so that e = Ẑ . We largely anticipate below that U ∞

m as given by
Eq. (A9) will occur under the integral sign in Eq. (3) so that the “=” in the following equations mean “has the same effect as”
and does not represent an equality in the strict mathematical sense. The term proportional to G20 may be written (u · e = uZ )

u1,Z u2,Z − 1
2 (u1,X u2,X + u1,Y u2,Y ) = (u1 · e)(u2 · e) − 1

2 (u1 · u2 − (u1 · e)(u2 · e)) (A11)

= 3
2 (u1 · e)(u2 · e) − 1

2 (u1 · u2) (A12)

= 3
2 (u1 · e)(u2 · e) − 3

2 (u1 · e)(u2 · e) (A13)

= 0. (A14)

Hence, the term proportional to G20 does not contribute to the dielectric constant. The terms proportional to G′
21 and G′′

21
involve products between different dipole components. Since the field is directed along the Z axis, these terms have no effect.
Therefore these terms drop out because they are useless. Most interesting are the terms proportional to G′

22 and G′′
22. Both invoke

dipolar components that are perpendicular to the externally applied electric field. With the same meaning for the “=” sign as in
Eq. (A14), we have

u1,X u2,X + u1,Y u2,Y = u1 · u2 − (u1 · e)(u2 · e) = 3(u1 · e)(u2 · e) − (u1 · e)(u2 · e) (A15)

= 2(u1 · e)(u2 · e) (A16)

024108-12



TEMPERATURE DEPENDENCE OF THE KIRKWOOD … PHYSICAL REVIEW E 105, 024108 (2022)

so that U ∞
m becomes, using all the above results (and restoring the usual meaning for the “=” sign)

U ∞
m (u1, u2) = μ2

ε0

√
6

5π
(u1 · e)(u2 · e)

∫ rC

0
[g′′(2,2)(r) − g′(2,2)(r)] d (ln r). (A17)

We may compare this expression with Berne’s equation for U ∞
m which is [44,58,61]

U ∞
m (u1, u2) = ±ρ0μ

2

3ε0
(u1 · e)(u2 · e), (A18)

the ± sign being present because the integral in Eq. (A17) may be positive or negative, depending on the microstructure of the
liquid [17]. This leads to a transcendent equation for ρ0, viz.,

ρ0 =
√

54

5π

∣∣∣∣∣
∫ ( 3

2πρ0
)1/3

0
[g′′(2,2)(r) − g′(2,2)(r)] d (ln r)

∣∣∣∣∣, (A19)

and hence Eq. (15) results. The above equation explicitly shows, as was stated in Ref. [17], that the microstructure of the polar
fluid is hidden in ρ0.
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