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A growing body of empirical evidence suggests that the dynamics of wealth within a population tends to be
nonergodic, even after rescaling the individual wealth with the population average. Despite these discoveries,
the way in which nonergodicity manifests itself in models of economic interactions remains an open issue. Here
we shed valuable insight on these properties by studying the nonergodicity of the population average wealth
in a simple model for wealth dynamics in a growing and reallocating economy called reallocating geometric
Brownian motion (RGBM). When the effective wealth reallocation in the economy is from the poor to the rich,
the model allows for the existence of negative wealth within the population. In this work, we show that in
the negative reallocation regime of RGBM, ergodicity breaks as the difference between the time-average and
the ensemble growth rate of the average wealth in the population. In particular, the ensemble average wealth
grows exponentially, whereas the time-average growth rate is nonexistent. Moreover, we find that the system is
characterized with a critical self-averaging time period. Before this time period, the ensemble average is a fair
approximation for the population average wealth. Afterwards, the nonergodicity forces the population average to
oscillate between positive and negative values since the magnitude of this observable is determined by the most
extreme wealth values in the population. This implies that the dynamics of the population average is an unstable
phenomenon in a nonergodic economy. We use this result to argue that one should be cautious when interpreting
economic well-being measures that are based on the population average wealth in nonergodic economies.
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I. INTRODUCTION

Mathematical models of economies are often concerned
with the dynamics of the wealth within a population. By defi-
nition, wealth is a growing quantity, and hence it is nonergodic
[1]. The nonergodicity implies that ensemble values are not an
adequate representation for the behavior of the economy over
time. A standard approach for dealing with this problem is
to transform the wealth xi of each person i by dividing it with
the population average, 〈x〉N = ∑

i xi/N , and then assume that
the resulting rescaled wealth is ergodic [2]. This allows the
implementation of powerful mathematical tools for studying
the evolution of various economic phenomena which are a re-
sult of the wealth dynamics. For instance, economic inequality
and social mobility measures intuitively include rescaling in
their definitions for the purpose of being used for comparisons
across economies and between periods [3–6].

However, recent empirical investigations suggest that even
the rescaled wealth might be a nonergodic observable. In par-
ticular, by utilizing a model of economic interactions called
reallocating geometric Brownian motion (RGBM), and data
for the United States, Berman et al. [7] showed that the
dynamics of rescaled wealth over time varies between phases
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of ergodic and nonergodic behavior. RGBM is a simple model
of a closed one-generation economy that allows us to capture
the possible nonergodic dynamics within the system [8–11].
The model distinguishes three regimes depending on the ori-
entation of the wealth reallocation in the economy. In the first,
i.e., the positive regime where the reallocation is from the
rich to the poor, rescaled wealth is an ergodic quantity and
it is positive for each individual. The no-reallocation regime
reduces to independent geometric Brownian motion (GBM)
trajectories [12]. In this case, it is known that the system
is nonergodic, and eventually one person ends up owning
all the wealth in the economy [13]. Finally, in the negative
reallocation regime the reallocation of wealth is from the poor
to the rich. Besides the nonergodic dynamics, this regime
further allows the existence of negative wealth among the
individuals. A distinct characteristic of the negative realloca-
tion regime is the presence of a self-averaging time period
during which economic inequality increases, whereas social
mobility decreases, consistent with current empirical obser-
vations [14–16]. Strikingly, Berman et al. [7] found out that
the current wealth dynamics in the United States are best
described with this regime.

Since the negative reallocation regime has only recently
been discovered as a plausible explanation for realistic wealth
dynamics, the properties of RGBM in this regime remain
an open issue. In the absence of a theoretical background,
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research has focused on the properties of RGBM in infinite
populations for which ensemble estimates are a good approx-
imation [17]. While this is a fairly good assumption in a large
population, in reality every population is finite and eventually
it will not follow the ensemble behavior. This raises the im-
portant question of what happens to the population average
wealth in a nonergodic economy as time goes toward infinity.

In this paper, we provide mathematical reasoning for the
nonergodicity in the negative reallocation regime of RGBM.
We show analytically and display numerically that the non-
ergodic behavior is manifested in the difference between the
ensemble and time-average growth rate of the population aver-
age wealth. The ensemble average grows with an exponential
rate, whereas the time-average growth rate is nonexistent.
Moreover, we find that there is a self-averaging time period.
During this period, the ensemble average is a good approxi-
mation of the population behavior. After that, the population
average wealth oscillates nonregularly around two symmetri-
cal boundary values. The magnitude of the boundary values
implies that after self-averaging we are going to observe
phases in which the observed growth is larger than the ensem-
ble prediction but also phases in which the population average
wealth is negative. As a consequence, the standard rescaled
wealth may appear as an ill-defined quantity and, obviously,
dividing the individual wealth with the population average
cannot be used as an ergodic transformation. This opens up
a discussion on how the dynamics of wealth should be com-
pared in nonergodic economies in order to derive efficient
economic policies. We emphasize that RGBM and its exten-
sions have a long history in the statistical physics community.
The model is also known as the Bouchaud-Mezard model for
economic exchanges [8–10,18], and its applications vary from
explaining evolution of cooperation [19–21] to describing on-
togenetic mass properties [22,23]. Thus, our results may also
induce important implications to the long-time behavior of
multiple social and natural phenomena.

The rest of the paper is organized as follows. In Sec. II
we describe RGBM and its known properties. In Sec. III we
present our analysis for the nonergodicity of the model. The
last section discusses the implications created by our results.

II. RGBM AS A MODEL OF WEALTH DYNAMICS

Under RGBM, the dynamics of the wealth xi(t ) of each
individual i at time t is specified as

dxi = xi(μdt + σdWi ) − τ (xi − 〈x〉N )dt, (1)

with μ being the drift term, σ > 0 the noise amplitude, and
dWi is an independent Wiener increment, Wi(t ) = ∫ t

0 dWi. We
assume that the initial values xi(0) are identically distributed
with mean x0, variance v0 − x2

0, and a covariance r0 − x2
0.

In the equation τ is a parameter that quantifies reallocation
of wealth. The parameter implies that every year, everyone
in the economy contributes a proportion τ of their wealth to
a central pool, and then the pool is shared evenly across the
population. The parameter aggregates a multitude of effects:
collective investment in infrastructure, education, social pro-
grams, taxation, rents paid, private profits made, and so on.

Notice that the model does not account for a large
amount of important characteristics that may constitute an

economy, such as openness of the economy (trade with other
economies), intergenerationality (interactions between dif-
ferent generations), or direct effects of economic policies.
Instead, it focuses solely on the wealth dynamics that are due
to individual growth and a consequence of interactions be-
tween the individuals. While this may be seen as a drawback
of the model, we believe that in fact it is the major advantage
of RGBM. It allows us to isolate the effect of nonergodic
wealth dynamics and investigate the resulting implications.

The mathematical properties of RGBM when τ � 0 are
known [8,9]. In particular, for τ > 0 the growth rate of the
population average wealth is an ergodic observable and the
model exhibits mean reversion. That is, each xi eventually
reverts to the population average 〈x〉N . The large population
approximation for the population average wealth 〈x(t )〉N =
exp[μt] is valid, and rescaled wealth yi = xi/〈x〉N has a sta-
tionary probability distribution,

p(y) = (θ − 1)θ

�(θ )
exp

(
− θ − 1

y

)
y−(1+θ ), (2)

where θ = 1 + 2τ
σ 2 and �(·) is the Gamma function. This dis-

tribution exhibits a power-law tail and in probability theory is
known as the inverse gamma distribution.

The ergodicity of the population average wealth allows us
to use the stationary distribution in order analytically quantify
standard indices for economic well-being and subsequently
use them to derive economic policies. For instance, the Gini
coefficient of the stationary distribution can be used as a
measure of economic inequality [24]. The expression for the
Gini index is

G =
∫ ∞

0
F (y)[1 − F (y)]dy, (3)

where F (y) = ∫ y
0 p(z)dz = �(θ, θ−1

y ) is the cumulative distri-
bution function of the stationary distribution. Formally, eco-
nomic inequality is defined as the extent of concentration in
the distribution of wealth among the population. In this aspect,
a higher Gini coefficient implies that the total wealth in the
economy is concentrated in few individuals, i.e., the society is
more unequal. It can be shown that the solution to Eq. (3) is a
decreasing function with respect to τ and an increasing with
respect to σ . Thus, RGBM predicts that the inequality in the
economy can be reduced by increasing the rate of reallocation
or reducing the impact of randomness (reducing σ ).

Without reallocation (τ = 0), the model is just GBM. Un-
der GBM wealth is nonergodic and it follows a lognormal
distribution which broadens indefinitely over time. There is no
stationary nonzero distribution to which rescaled wealth con-
verges. In GBM inequality is always increasing and mobility
is always decreasing.

As pointed out, recent empirical evidence suggests that we
are currently living in a negative-τ regime [7]. Not much is
known about this regime except that there is a self-averaging
time period during which individual trajectories repel from the
population mean. This introduces negative individual wealth,
a phenomenon observed in almost every modern economy and
makes the system nonergodic. The properties of the model
after the self-averaging period are unknown. In what follows,
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FIG. 1. RGBM negative τ regime behavior. Scatter lines: Numerical estimations for the median, mean maximum and minimum of the
wealth 〈x(t )〉N averaged across 103 simulations of RGBM. Dashed line: Exponential growth with rate μ. Dotted line: Exponential growth with
rate μ − τ + σ 2

2 . Vertical line: Critical self-averaging time tc. Parameters: We set μ = 0.021, σ 2 = 0.02, τ = −0.01, and N = 10. The initial
condition xi(0) = 1 for all i.

we examine these properties from both an analytical and nu-
merical perspective.

III. NONERGODICITY IN RGBM

The nonergodic behavior of the population average wealth
in RGBM is summarized in Fig. 1. The figure illustrates
the dynamics of the population average 〈x(t )〉N when τ is
negative. To calculate the typical RGBM dynamics we aver-
age across 103 simulations of RGBM, as is done in practice
[13,17,25,26]. We observe two distinct behaviors in the dy-
namics which are divided by a critical self-averaging time tc
(the red vertical line). The time period when t < tc is the self-
averaging period. During this period the ensemble average is
a good approximation for the population behavior, 〈x(t )〉N ∼
exp[μt]. Afterwards, the nonergodicity forces the population
average to be dominated by extreme values, which can be both
positive and negative, due to the existence of individuals with
negative wealth. The gray lines in the background of the figure
show samples of trajectories of the single simulation runs.
It is evident that after the self-averaging period we observe
complex oscillatory behavior in the population average. This
behavior is characterized with envelopes (dashed black lines)
which determine the magnitude of fluctuations of 〈x(t )〉N . Let
us proceed with formal proofs for the long-time properties of
the population average wealth.

A. Time-average and ensemble growth rate of the population
average wealth

The nonergodicity depicted in Fig. 1 is a result of the dif-
ference between the ensemble and time-average growth rate
of the population average wealth. This growth rate is defined
as

g(t, N ) = 1

t
log [〈x(t )〉N ]. (4)

The ensemble growth rate is found by fixing the period t and
taking the limit as the population size grows infinitely. The
solution is

lim
N→∞

g(t, N ) = μ. (5)

This will be shown subsequently using Itô’s lemma. On the
other hand, the time-average growth rate is found by fixing the
population size N and letting time remove the stochasticity.
This limit is nonexistent. Let us study the noncomutativity in
the two limits of Eq. (4).

1. Ito lemma for RGBM

The ensemble growth rate can be found by studying Itô’s
lemma in the case of averages of autonomous functions of
RGBM. In general, the lemma states that the differential
of an arbitrary one-dimensional twice-differentiable function
f (x, t ) governed by an Itô drift-diffusion process [such as
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Eq. (1)] is given by

df (x, t ) =∂ f

∂t
dt +

∑
i

∂ f

∂xi
dxi + 1

2

∑
i

∑
j

∂2 f

∂xi∂x j
dxidx j .

(6)

From (6) the general Itô formula for averages of autonomous
functions is

dE[ f (x)] =
∑

i

E

[
∂ f

∂xi
dxi

]
+ 1

2

∑
i

∑
j

E

[
∂2 f

∂xi∂x j
dxidx j

]
,

(7)

where we introduce the notation

E[ f (x)] = lim
N→∞

= 〈 f (x)〉N

as a means to differentiate between ensemble average and a
finite sample average of size N .

For RGBM we can utilize the independent Wiener incre-
ment property 〈dW 2

i 〉 = dt , and omit terms of order dt2 as
they are negligible. Then

E

[
∂ f

∂xi
dxi

]
= (μ − τ )E

[
∂ f

∂xi
xi

]
dt + τE

[
∂ f

∂xi
〈x〉N

]
dt (8)

and

E

[
∂2 f

∂xi∂x j
dxidx j

]
=

{
σ 2E

[
∂2 f

∂xi∂x j
xix j

]
dt if i = j,

0 otherwise.
(9)

The result in Eq. (9) can be seen by writing out one cross-term
of dxidx j as

O(dt2) + O(dtσdWi ) + O(dtσdWj ) + xix jσ
2dWidWj .

By inserting the estimates in Eq. (7) we can write the Itô for-
mula for the average of nonautonomous functions in RGBM
as

dE[ f (x)]

dt
= (

μ − τ
) ∑

i

E

[
∂ f

∂xi
xi

]
+ τE

[
〈x〉N

∑
i

∂ f

∂xi

]

+ σ 2

2

∑
i

E

[
∂2 f

∂x2
i

x2
i

]
. (10)

2. Ensemble average growth rate

To calculate the ensemble growth rate we set f (x) = x.
Then the differential equation which governs the evolution of
E[x(t )] is

dE[x]

dt
= μE[x], (11)

whose solution is simply

E[x(t )] = E[x(0)] exp [μt]. (12)

Inserting Eq. (12) in Eq. (4) we get that the ensemble growth
rate is Eq. (5).

3. Time-average growth rate

We prove that the time-average growth rate does not exist
by using contradiction. That is, we assume that this limit exists

and limt→∞ g(t, N ) = γ . Then, for large-enough t , we can
approximate Eq. (1) as

dxi = xi([μ − τ ]dt + σdWi ) + τ exp [γ t]dt . (13)

Equation (13) is a one-dimensional linear stochastic differen-
tial equation whose solution reads

xi(t ) = exp

[(
μ − τ − σ 2

2

)
t + σWi(t )

]

×
(

τ

∫ t

0
exp

{[
γ −

(
μ − τ − σ 2

2

)]
s

− σWi(s)

}
ds + xi(0)

)
. (14)

Let us examine two cases: (i) γ � μ − τ − σ 2

2 and (ii) γ <

μ − τ − σ 2

2 . In the first case the integral in Eq. (14) diverges
and, since τ < 0, eventually each xi(t ) becomes negative.
Therefore, the solution to g(t, N ) is undefined as t → ∞.

In the case when γ < μ − τ − σ 2

2 the integral converges
to a certain value ci which may be dependent on the random
realization. For a sufficiently large t we can write Eq. (14) as

xi(t ) = exp

[(
μ − τ − σ 2

2

)
t + σWi(t )

][
xi(0) + τci

]

and the population average as

〈x(t )〉N = exp

[(
μ − τ − σ 2

2

)
t

]

× 1

N

∑
i

exp [σWi(t )][xi(0) + τci].

Next we define the event Ai as the situation when ci > xi (0)
|τ | .

The probability Pr(Ai ) is always greater than zero. This fol-
lows directly from the properties of Brownian motion. In
particular, notice that

Pr

{
min

t∈[a,b]
[κt − σWi(t )] > ε

}
> 0,

for any constants κ and ε and 0 < a < b [27]. Exponentiation
of the term inside the probability notation yields Pr(Ai ) > 0.

Let A be the intersection of all Ai. Notice that A is included
in the event that the limit superior of the average population
wealth 〈x(t )〉N is less than zero. Since the Wiener processes
(Wi)i∈{1,...,N} are independent, this leads to the independence
of (Ai )i∈{1,...,N}. Hence,

Pr

[
lim sup

t→∞
〈x(t )〉N < 0

]
� Pr

(
N⋂

i=1

Ai

)
=

N∏
i

Pr(Ai ) > 0

for any finite population size N . In words, there is always
a positive probability in the time limit that the population
average becomes negative. This violates our initial assumption
for its limiting growth rate, thus concluding the proof that the
time-average growth rate in RGBM is nonexistent.

We point out that the same techniques can be used for
showing that the population average is not always negative
in the time limit. In particular, by assuming that 〈x(t )〉N =
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− exp[γ t] and substituting it into Eq. (1), we can arrive at
the same contradictory arguments, i.e., there is always a pos-
itive probability to observe a positive population average in
the time limit. Hence, due to the nonergodicity, the popula-
tion average will oscillate within an interval with symmetric
boundaries.

B. Critical self-averaging time

We showed how the population average wealth behaves
for finite N as time goes toward infinity. To characterize the
behavior of the population average wealth for finite t and
fixed N we resort to the concept of self-averaging. In statis-
tical physics self-averaging is known as the situation when a
sample average resembles the corresponding ensemble value,
i.e., the time until Eq. (12) is valid. A simple strategy for
estimating when this occurs is to look at the relative variance
of the population average wealth 〈x(t )〉N ,

RN (t ) ≡ var(〈x(t )〉N )

E[〈x(t )〉N ]2 , (15)

where var(x) = E[x2] − E[x]2 is the variance of x.
If RN (t ) converges to 0 in the time limit, then the system is

self-averaging and the population average wealth will always
resemble the ensemble average. In RGBM this is always true

for τ � σ 2

2 . When τ < σ 2

2 , the system will experience self-
averaging until some critical time tc which is dependent on
both the initial condition and the population size N . After-
wards it will collapse to its time-average behavior. The critical
time can be found by rewriting Eq. (15) as

RN (t ) = E
[〈x(t )〉2

N

] − E[〈x(t )〉N ]2

E[〈x(t )〉N ]2
,

= 1

N2

E
[∑

i

∑
j xi(t )x j (t )

]
E[〈x(t )〉N ]2 − 1,

=
∑

i

∑
j E[xi(t )x j (t )]

{∑i E[xi(t )]}2 − 1. (16)

If R(N, t ) << 1, then the population average will likely be
close to its ensemble average value. Thus, the system will
be self-averaging until the critical point tc which occurs at
RN (tc) = 1.

The difficulty in estimating the relative variance arises be-
cause the dynamics of E[xi(t )x j (t )] are coupled for every i and
j whenever τ 	= 0, and therefore their evolution is interdepen-
dent. This issue can be resolved by interpreting the dynamics
of E[xi(t )x j (t )] as a system of differential equations and uti-
lizing the RGBM Itô lemma. Then, by setting f (x) = xix j

in (10), it follows that the dynamics of E[xi(t )x j (t )] can be
described as

dE[xix j]

dt
=

{
2(μ − N−1

N τ + σ 2

2 )E
[
x2

i

] + τ
N (

∑
k 	=i E[xixk] + ∑

k 	=i E[xixk]) if i = j,
2(μ − N−1

N τ )E[xix j] + τ
N (

∑
k 	=i E[xkx j] + ∑

k 	= j E[xkxi]), otherwise.
(17)

In the case of initial conditions that are identically distributed,
it follows that for all i E[x2

i (t )] = v(t ) and for all pairs i
and j, with i 	= j, E[xi(t )x j (t )] = r(t ). Thus, the system of
equations (17) reduces to

dv

dt
= 2

(
μ − N − 1

N
τ + σ 2

2

)
v + 2

N − 1

N
τ r, (18)

dr

dt
= 2

(
μ − 1

N
τ

)
r + 2

N
τv. (19)

This is a linear system whose solution can be ex-
plicitly found. Using the solution to the above sys-
tem, and knowing that E[xi(t )] = x0 exp[μt], the relative
variance can be rewritten as

RN (t ) = v(t ) + (N − 1)r(t )

Nx0 exp [2μt]
− 1. (20)

Hence, the critical self-averaging time tc can be phrased as
the solution to

v(tc) + (N − 1)r(tc)

Nx0 exp [2μtc]
= 2. (21)

In the special case when τ = 0, Eq. (20), it follows that
v(t ) = exp[(2μ + σ 2)t] and r(t ) = 0. Thus, the relative vari-
ance reduces to

RN (t ) ∝ exp [σ 2t] − 1

N
,

and the critical self-averaging time is

tc = log(N )

σ 2
. (22)

This is the standard result for GBM and is known in the
literature (see, for example, Ref. [17]). Finding a general
solution of Eq. (20) in terms of tc for an arbitrary τ < 0 is
impossible. Only an implicit solution can be derived. This
solution, for various population sizes N , is displayed in Fig. 2.
Obviously, the magnitude of τ affects nonlinearly the critical
self-averaging time. More importantly, more negative τ values
also lead to lower tc.

C. Magnitude of fluctuations

We showed that after the self-averaging time, the popula-
tion average wealth 〈x(t )〉N will randomly oscillate between
positive and negative values. The fluctuations of the oscil-
lations have upper and lower bounds, for respectively, their
maximum and minimum values. The bounds are determined
by the values of the RGBM parameters. To quantify the mag-
nitude of these fluctuations we utilize Markov’s inequality.
The inequality states that

Pr[|〈x(t )〉N | � h(t )] � E[φ(|〈x(t )〉N |)]
φ[h(t )]

, (23)

where φ(·) is a monotonically increasing function for the non-
negative reals. We set φ(x) = x2. Notice that in our setting
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FIG. 2. Critical self-averaging time tc. Critical self-average time
tc as a function of τ for μ = 0.021, σ 2 = 0.02, and varying N .

φ(x) is even, i.e., φ(x) = φ(−x) = φ(|x|), which, as will be
seen, greatly eases our analysis. For further simplicity, we are
going to consider the situation where the initial condition is
x0 = 1. The results can be easily generalized to the case of
arbitrary initial conditions.

From Eq. (20) we know that

E[φ(〈x(t )〉N )] = Nv(t ) + N (N − 1)r(t )

= exp
[
(2μ − τ + σ 2

2 )t
]

C
×

{
C cosh

[
Ct

2
√

N

]

−
√

N (σ 2 − 2τ ) sinh

[
Ct

2
√

N

]}
, (24)

where C =
√

N (σ 2 − 2τ )2 + 8σ 2τ . In the above equation, we
substituted the exact values for v(t ) and r(t ), which can be
found by solving the system given with Eqs. (18) and (19).

It follows that

E[φ(〈x(t )〉N ] � exp

[(
2μ − τ + σ 2

2

)
t

]
cosh

[
Ct

2
√

N

]

≈ exp

[(
2μ − τ + σ 2

2
+ C

2
√

N

)
t

]

� exp

[
2

(
μ − τ + σ 2

2

)
t

]
. (25)

Setting hδ (t ) = exp[δ(μ − τ + σ 2

2 )t], where δ > 0 is an arbi-
trary constant, we get that

Pr[|〈x(t )〉N | � hδ (t )] � exp

[
(1 − δ)2

(
μ − τ + σ 2

2

)
t

]
,

(26)

which implies convergence in probability whenever δ > 1,
i.e., for any η > 0, δ > 1, as t → ∞

Pr

[ |〈x(t )〉N |
hδ (t )

� η

]
−→ 0. (27)

This implies that exp[(μ − τ + σ 2

2 )t] is an upper bound

for the maximum average wealth and − exp[(μ − τ + σ 2

2 )t]
is a lower bound for the minimum average wealth in the
population.

Interestingly, the bounds indicate that there might be cir-
cumstances in which the observed time-averaged growth in a
negative reallocation economy is larger than the one predicted
by the ensemble average. However, we again restate the find-
ing that there might also be time periods when the wealth is
negative, and the time-average growth rate is undefined.

IV. DISCUSSION

We studied the nonergodicity of the population aver-
age wealth in RGBM, a baseline model for a growing and
reallocating economy. We found out that nonergodicity is
manifested in the difference between the time-average growth
rate and the ensemble growth rate of the observable. Identi-
cally to the standard case of GBM, in srGBM the ensemble
growth rate has exponential growth with a rate equal to the
drift. The time-average growth rate, however, is nonexistent
as long as the reallocation rate is negative.

The existence of negative average population wealth in
RGBM is rather counterintuitive. We believe that this ob-
servation can be explained through real-world factors that
are not captured by RGBM. For instance, one such factor
is debts to other generations [28]. Obviously, this can be
observed only in models that account for intergenerational
interactions. Another factor is debts toward other economies
[29], which are also excluded from the model. Our analysis
reveals that negative average population wealth can arise in
a closed one-generation economy simply as a consequence
of nonergodicity. To understand this result, let us look at the
deterministic version of RGBM, i.e., the situation when σ = 0
in Eq. (1). In this case, we end up with an N-dimensional
system of linear differential equations. Its ith solution reads

xi(t ) =〈x(0)〉N exp [μt] + [xi(0) − 〈x(0)〉N ] exp [(μ − τ )t].
(28)

Obviously, the deterministic model is ergodic because it
displays no randomness. The population average is always
〈x(0)〉N exp [μt]. We showed that in the stochastic model,
after self-averaging the randomness makes the population
average to be dominated by extreme values. Due to the neg-
ativity of τ , the extremes can be both positive and negative.
This drives the system out of equilibrium even after rescaling.

RGBM is a continuous stochastic process and the observed
oscillations within the range of the magnitude of fluctuations
imply that at some point the average is zero. At this point,
the rescaled wealth is undefined. We argue that this questions
the validity of rescaling wealth by the population average in a
nonergodic economy, at least after the point of self-averaging.
More importantly, in this case, the majority of the standard
measures for economic well-being (such as inequality) are
also undefined, since they are based on the assumption of
positive population average wealth. Thus it can be argued that
policies based on their dynamics cannot be conducted in a
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nonergodic economy. In fact, the exact dynamical behavior
of economic well-being measures in a nonergodic economy is
an ongoing debate [24]. We believe that the results presented
here can represent a starting point for resolving this issue.
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