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Extended-range percolation on various regular lattices, including all 11 Archimedean lattices in two dimen-
sions and the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) lattices in three
dimensions, is investigated. In two dimensions, correlations between coordination number z and site thresholds
pc for Archimedean lattices up to 10th nearest neighbors (NN) are seen by plotting z versus 1/pc and z versus
−1/ ln(1 − pc ) using the data of d’Iribarne et al. [J. Phys. A 32, 2611 (1999)] and others. The results show
that all the plots overlap on a line with a slope consistent with the theoretically predicted asymptotic value
of zpc ∼ 4ηc = 4.51235, where ηc is the continuum threshold for disks. In three dimensions, precise site and
bond thresholds for BCC and FCC lattices with 2nd and 3rd NN, and bond thresholds for the SC lattice with
up to the 13th NN, are obtained by Monte Carlo simulations, using an efficient single-cluster growth method.
For site percolation, the values of thresholds for different types of lattices with compact neighborhoods also
collapse together, and linear fitting is consistent with the predicted value of zpc ∼ 8ηc = 2.7351, where ηc is
the continuum threshold for spheres. For bond percolation, Bethe-lattice behavior pc = 1/(z − 1) is expected
to hold for large z, and the finite-z correction is confirmed to satisfy zpc − 1 ∼ a1z−x , with x = 2/3 for three
dimensions as predicted by Frei and Perkins [Electron. J. Probab. 21, 56 (2016)] and by Xu et al. [Phys. Rev. E
103, 022127 (2021)]. Our analysis indicates that for compact neighborhoods, the asymptotic behavior of zpc has
universal properties, depending only on the dimension of the system and whether site or bond percolation but
not on the type of lattice.
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I. INTRODUCTION

It is well known that percolation is an important model
in statistical physics [1,2]. As a paradigmatic model, it can
describe diverse phenomena in various fields, such as liquids
moving in porous media [3,4], forest-fire problems [5,6], and
epidemics [7,8]. Considering percolation on a lattice, each
edge (vertex) is occupied by a bond (site) with probability p,
and clusters of neighboring occupied sites or connected bonds
can be constructed. As p increases, the clusters become larger,
and at the threshold point pc, an infinite cluster spanning over
the whole lattice emerges. Over the past several decades, a
tremendous amount of work has gone into finding exact or
approximate values of the percolation thresholds for a vari-
ety of systems, as well as finding formulas to approximately
predict those thresholds.

Many kinds of percolation models have been established.
The most common one is to occupy sites or bonds on a reg-
ular lattice with statistically independent probability p. Site
and bond percolation can be distinguished depending on the
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method of obtaining the cluster. One can also consider con-
tinuum percolation systems [9–12], such as overlapping disks
and spheres placed randomly. Further variations involve corre-
lated percolation [13,14], like for example drilling percolation
[15,16]. In bootstrap percolation [17–20], sites and/or bonds
are first occupied and then successively culled from a system
if a site does not have at least k neighbors. Another important
model of percolation, which is in a different universality class,
is directed percolation [21–24], where connectivity along a
bond depends on the direction of the flow.

Among numerous models, percolation on lattices with ex-
tended neighborhoods has been of longstanding interest. In
fact, this kind of percolation system has many applications.
For example, site percolation on lattices with extended neigh-
borhoods relates to problems of adsorption of extended shapes
on a lattice, such as disks and squares [25,26], and bond per-
colation with extended neighbors has long-range links similar
to small-world networks [27]. In addition, bond percolation
with extended neighbors is also similar to spatial models of
the spread of epidemics via long-range links [28]. Just re-
cently [8], it was pointed out how the threshold is related to
the basic epidemic infectivity parameter R0, for trees (Bethe
lattice), trees with triangular cliques, and nonplanar lattices
with extended-range connectivity.
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The investigation of percolation on lattices with extended
neighborhoods dates back to the “equivalent neighbor model”
of Dalton, Domb, and Sykes from 1964 [29–31], and nu-
merous studies have appeared since then. Extended-range
site percolation on compact regions in a diamond shape
on a square lattice, up to lattice distance of 10, was stud-
ied by Gouker and Family [32]. Other lattices, including
body-centered cubic (BCC) and face-centered cubic (FCC)
with extended neighborhoods, have also been studied [33,34].
d’Iribarne, Rasigni, and Rasigni [35–37] studied site per-
colation on all 11 Archimedean lattices (“mosaics”) with
extended-range connections up to the 10th nearest neighbors
(NN), which we will discuss in detail later. It has been sug-
gested that these results may be applicable to a model of
constrained percolation [38]. Malarz and coworkers [39–46]
carried out extensive numerical simulations on lattices with
combinations of “complex neighborhoods” in two, three, and
four dimensions. Koza and collaborators [25,26] studied per-
colation of overlapping shapes on a lattice, which can be
mapped to extended-range site percolation. While much of the
earlier work concerned site percolation, bond percolation on
extended lattices has been studied more extensively recently
[9,47–50].

Many studies have focused on exploring the correlations
between percolation thresholds pc and coordination number z
or other properties of lattices. It has been argued [25,26,31,37]
that for extended-range site percolation, the threshold pc for
large z can be related to the continuum percolation threshold
ηc for objects of the same shape as the neighborhood, and this
relationship is further clarified [51] by pc ∼ 2dηc/z, where d
is the dimension of the system. In this paper, we show that the
asymptotic behavior of zpc for site percolation,

zpc ∼ 2dηc, (1)

is indeed universal for neighborhoods limiting to a circle or
sphere for z large. In the first task of this paper, we investi-
gate site percolation of the 11 two-dimensional Archimedean
lattices and the three-dimensional simple cubic (SC), BCC, and
FCC lattices with extended neighbor connections. By fitting
the data to the forms z versus 1/pc and z versus −1/ ln(1 −
pc), we find good agreement with the predicted behavior of
Eq. (1) with 4ηc = 4.51235 for lattices in two dimensions and
8ηc = 2.7351 for lattices in three dimensions, suggesting a
universal asymptotic behavior of zpc for lattices with compact
extended neighborhoods.

For bond percolation, one expects that Bethe-lattice behav-
ior pc = 1/(z − 1) to hold for large z, because for large z and
small p, the chance of hitting the same site twice is low and the
system behaves basically like a tree [52]. Theoretical analysis
of finite-z corrections for bond thresholds has recently been
given by Frei and Perkins [53], Hong [54], and Xu et al. [9] as

zpc − 1 ∼ a1z−x, (2)

where x = (d − 1)/d for d = 2, 3, implying x = 1/2 in two
dimensions and 2/3 in three dimensions. In the second task of
this paper, we study bond percolation on three-dimensional
SC, BCC, and FCC lattices with extended neighborhoods by
Monte Carlo simulation using a single-cluster growth algo-
rithm. We find many precise bond percolation thresholds, and
data fitting is consistent with Eq. (2) with x = 2/3.

The remainder of the paper is organized as follows. Sec-
tion II describes the theoretical prediction of the asymptotic
behavior of zpc for site percolation. The results and analysis
in two and three dimensions are given in Sec. III and Sec. IV,
respectively, and in Sec. V we present our conclusions.

II. THEORETICAL ANALYSIS

We analyze the effective extended-range neighborhood for
an object of an arbitrary shape. First we consider a continuum
system of volume V with the random placement of N overlap-
ping objects of the given shape. The continuum percolation
threshold ηc represents the total volume fraction of the ad-
sorbed objects, including overlapping volume, at the critical
point

ηc = ad rd N

V
, (3)

where r is the radius or other length scale of the object and
ad rd is its volume, with ad depending on the shape of the
object. Covering the space occupied by the objects with a fine
mesh of any lattice type, the system can be mapped to site
percolation on that lattice with an extended neighborhood of
essentially the same shape but with a length scale 2r about
the central point. The ratio Nv0/V = pc corresponds to the
site occupation threshold on the lattice, where v0 is the area or
volume per site. The effective z is equal to the number of sites
within that region of influence of length scale 2r,

z = ad (2r)d/v0. (4)

For example, for squares or cubes of length 2k on a square or
cubic lattice with v0 = 1 [55], z = (2k)d . Then it follows from
Eqs. (3) and (4) that

zpc = [ad (2r)d/v0](Nv0/V ) = 2d (ad rd N/V ) = 2dηc, (5)

as given in Eq. (1). This equation should describe the behavior
of pc for large z where the objects become similar to a contin-
uum, for systems with compact neighborhoods, and where ηc

is the critical coverage for continuum systems of the shape of
the neighborhood.

Figure 1 illustrates the situation where we have the con-
tinuum percolation of disks, here of radius 3, embedded on a
kagome lattice of unit edge length. The system is seen to be
equivalent to an extended-range percolation model with the
centers of the disks being sites connected if they fall within a
radius 6 with each other. The disk of radius 3 covers 27 sites
on the lattice, while the range of the equivalent site percolation
model covers 97 sites and extends to the 15th NN. Note here
the number of sites in circle of radius 6 (97 sites) is not four
times the number as in the disk (27 sites), as that ratio would
be for larger circles or indeed objects of any shape according
to Eq. (4).

We will choose neighborhoods with sites that fall within a
radius r. As z → ∞, the shape of the neighborhood becomes
more circular (or spherical), so one can naturally suppose that
the asymptotic behavior of zpc should be universal, with ηc for
a disk or spheres depending on the dimension of the system.
For circular neighborhoods in two dimensions, where ηc for
disks equals 1.128087 [9–12,56], one should thus expect

zpc ∼ 4.51235, (6)
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FIG. 1. Illustration showing the relation between continuum per-
colation of disks of radius 3, and the equivalent extended-range site
percolation model of range 6, embedded on a kagome lattice. The
smaller disk covers 27 sites while the larger one covers 97 sites and
is equivalent to having z = 96 (we do not count the central site when
considering z) with a range up to the 15th NN.

for large z, while for spherical neighborhoods in three di-
mensions, where ηc for spheres equals 0.34189 [57–59], one
should expect

zpc ∼ 2.7351. (7)

A related approach comes from Ref. [25], where Koza et al.
investigated squares of size k × k and cubes of size k × k × k,
randomly distributed in an overlapping manner on square or
cubic lattices. The critical number (per site) of these objects
for percolation between neighboring occupied sites defines
the threshold pc. At the percolation point, the fraction of sites
on the lattice covered by at least one square or cube, φc(k), can
be related to pc by φc(k) = 1 − (1 − pc)kd

, which can also be
written as

pc = 1 − [1 − φc(k)]1/kd
. (8)

For large k, the model limits to the percolation of aligned
squares or cubes on a continuum, and φc(k) limits to φc for
the corresponding continuum system. Replacing φc(k) by the
continuum value φc in Eq. (8), one obtains an approximation
to find pc for discrete hypercubic objects of volume kd with
large but finite k [25,26],

pc = 1 − (1 − φc)1/kd
. (9)

One defines ηc as the total area or volume of the objects
placed or adsorbed in the system, including the area or volume
of the overlapped parts, divided by the area or volume of
the system. The quantity ηc is related to φc by φc = 1 − e−ηc

which can be substituted into Eq. (9) to yield

pc = 1 − e−ηc/kd
. (10)

We can generalize Eq. (10) to objects of arbitrary shape
and an arbitrary lattice by replacing kd by z/(2d ) (the number
of sites in the neighborhood), yielding the general formula

pc = 1 − e−2d ηc/z. (11)

The above formula does not depend on the type of lattice
(square, triangular, etc.) used, because for lattices with z NN,
the number of sites of the equivalent object (disk, sphere,
etc.) is always z/(2d ). The type of lattice does not matter
because the volume per lattice site v0 cancels out, as seen
in Eq. (5). Note that Eq. (11) was also given in Ref. [51],
although without a complete derivation as given here.

Solving for z, Eq. (11) yields

z = 2dηc

− ln(1 − pc)
. (12)

In the limit of large z, Eq. (11) limits to Eq. (1) and this
gives an alternative derivation of that result. However, for
moderate z, it has been found [51] that for some systems,
Eq. (11) gives a better estimate of pc than Eq. (1). One of the
goals of this paper is to compare Eqs. (11) and (1) in modeling
the finite-z behavior.

In Ref. [51], we also found that the finite-z effect can be
taken into account by assuming pc = c/(z + b), where b and
c = 2dηc are constants. We can write this relation as

z = c

pc
− b. (13)

In contrast to Eq. (12), this formula contains a new adjustable
parameter, b. For more details about these formulas, one can
also see Refs. [25,26,51].

Equations (12) and (13) show that if we plot z versus
−1/ ln(1 − pc) or z versus 1/pc, one can directly get the value
of c = 2dηc from the slopes, and in the latter case, the value
of −b from the intercept.

III. SITE PERCOLATION ON ARCHIMEDEAN LATTICES
WITH EXTENDED CONNECTIONS

Figure 2 shows drawings of the 11 Archimedean lattices, in
which all polygons are regular and each vertex is surrounded
by the same sequence of polygons. Each lattice is character-
ized by a standard notation; for example, the notation (34, 6)
means that each vertex is surrounded by four triangles and one
hexagon, in that order.

In the late 1990s, d’Iribarne, Rasigni, and Rasigni [35–37]
determined the site percolation thresholds of all Archimedean
lattices with extended ranges up to the 10th NN. We
have listed those thresholds in Table I, updated with more
precise results in some cases [46,51], and precise thresholds
for the standard lattices (with first NN). Furthermore, we can
make use of the fact that some of the extended-range lattices
are matching lattices of the same lattice with first NN and
therefore have the complementary threshold 1 − pc, as shown
in Fig. 3. (In a matching lattice, all faces with more than three
sides are replaced by a complete graph that connects all pairs
of vertices together.)

We can also find additional results by using the fact that a
bond problem can be converted to a site problem by replacing
the lattice by the line graph or covering lattice, which connects
the centers of the bonds together to create a new lattice. The
(4, 82) lattice with first and second NN is the covering lattice
of the square lattice with double bonds (the Lieb lattice),
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Triangular (36)

Kagomé (3,6,3,6)

Square (44) Honeycomb (63)

(33,42)(3,4,6,4)

(32,4,3,4) (34,6)

(4,82) (3,122) (4,6,12)

FIG. 2. Illustrations of the 11 Archimedean lattices.

with each bond having a threshold of pc = √
1/2, and con-

sequently this is the site threshold of the (4, 82) lattice with
first and second NN bonds as shown in Fig. 4. The covering
lattice of the kagome (3,6,3,6) lattice is the (3,4,6,4) lattice
with first and second NN, and therefore the bond threshold
of the kagome lattice 0.524405 is the site threshold of the
(3,4,6,4)-1,2 lattice [Fig. 5(b)]. A similar construction on the
kagome lattice with double bonds shows that the site threshold
of the (4,6,12) lattice with first and second NN is equal to
the square root of the bond threshold of the kagome lattice,
(0.524405)1/2 = 0.724158 [Fig. 5(d)]. These results are all
included in Table I. Comparing these improved values to

Square (44)-1,2 Honeycomb (63)-1,2,3 (33,42)-1,2(32,4,3,4)-1,2

FIG. 3. Illustration showing that the matching lattices of these
four Archimedean lattices are the same lattices with the first NN, the
second NN, and in the honeycomb case, the third NN. The thresholds
of these lattices is one minus the threshold of the same lattices with
just the first NN.

(a) (b) (c)

FIG. 4. Derivation of the threshold of the (4, 82) lattice with first-
and second-NN bonds by the bond-to-site (covering) transformation:
(a) Bond percolation on a square lattice, pc(bond) = 1/2. (b) Bond
percolation on the square lattice with double bonds (the Lieb lat-
tice), pc(bond)= 1/

√
2. (c) Site percolation on the (4, 82)-1,2 lattice,

pc(site)= 1/
√

2.

those found by d’Iribarne et al., we find that the latter are
accurate to at least two digits, with some variation in the
third digit; for example for the (4,6,12)-1,2 lattice, they give
0.720 compared to the value 0.724158 that we find above.
Still, the results of d’Iribarne et al. are sufficiently accurate
for our discussion of the general behavior of the thresholds.
In Table I, we also list NN, the number of nearest neighbors
in each shell, the total z up to that shell ztotal, and the square
of the radius of that shell r2. An example of the first five
shells of neighbors of the kagome (3,6,3,6) lattice is shown
in Fig. 6.

Using the data of Table I, we plot the behavior of z versus
1/pc and z versus −1/ ln(1 − pc), proposed by Eqs. (13) and
(12), for the different lattices, in Figs. 7 and 8, respectively.
In these plots, the discrete points represent the data for each
lattice, and the virtual straight line is a guideline with a
slope of 4.512 and intercept of zero representing Eq. (6). It
is seen that nearly all the lattices collapse to the same line,
and most of the plots give a slope near the predicted value of
4.512. The range of the fitted slope in Fig. 7 of the individual
Archimedean lattices is 4.38 to 4.59, with errors from 0.02
to 0.09. The slopes of the individual curves in Fig. 8 vary
from 4.30 to 4.56, with similar errors. The intercepts are
−2.13 to −3.44 in Fig. 7 and 0.49 to = −0.88 for Fig. 8.
Slopes and intercepts with errors for each lattice are listed in
the Supplemental Material [62]. This result demonstrates the

(a) (b) (c) (d)

FIG. 5. (a) Kagome lattice with pc(bond) = 0.524405 [60].
(b) Covering lattice of (a), the (3,4,6,4) lattice with first and sec-
ond NN, with pc(site) = 0.524405. (c) Kagome double-bond lattice
with pc(bond)= (0.524405)1/2 = 0.724128. (d) Covering lattice of
(c), the (4,6,12) lattice with first and second NN, with pc(site)=
0.724128. Note you can go directly from (d) to (b) by replacing
two sites along the inner edges of the hexagons by one site, so that
the threshold pc becomes squared, similar to the case of the (3, 122)
versus the (63) lattice [61].
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TABLE I. Site percolation thresholds and other properties, including r2, NN, and total z, for the 11 Archimedean lattices with extended
neighborhoods, up to the 10th NN. Values of pc shown to three significant digits are from Ref. [37], while higher precision results (many
truncated) are from aRef. [46], bRef. [60], cRef. [51], dRef. [61], eexact, f by matching, and gby bond-to-site transformation.

Nearest-neighbor number

Lattice 1 2 3 4 5 6 7 8 9 10

(36) r2 1 3 4 7 9 12 13 16 19 21
TRI NN 6 6 6 12 6 6 12 6 12 12

Total z 6 12 18 30 36 42 54 60 72 84
pc 0.500000e 0.29026a 0.21546a 0.13582a 0.11574a 0.099 0.078 0.071 0.059 0.051

(44) r2 1 2 4 5 8 9 10 13 16 17
SQ NN 4 4 4 8 4 4 8 8 4 8

Total z 4 8 12 20 24 28 36 44 48 56
pc 0.592746b 0.407254f 2891230.c 0.196729c 0.164712c 0.143255c 0.115348c 0.095766c 0.086 0.075

(63) r2 1 3 4 7 9 12 13 16 19 21
HC NN 3 6 3 6 6 6 6 3 6 12

Total z 3 9 12 18 24 30 36 39 45 57
pc 0.697040b 0.359 0.302960f 0.210 0.164 0.135 0.115 0.108 0.092 0.075

(3,6,3,6) r2 1 3 4 7 9 12 13 16 19 21
KAG NN 4 4 6 8 4 6 8 6 8 8

Total z 4 8 14 22 26 32 40 46 54 62
pc 0.652703e 0.386 0.263 0.179 0.155 0.126 0.103 0.091 0.079 0.069

(3,4,6,4) r2 1 2 3 2+√
3 4 4+√

3 4 + 2
√

3 5 + 2
√

3 6 + 3
√

3 8 + 2
√

3
NN 4 2 2 4 1 4 7 4 4 4

Total z 4 6 8 12 13 17 24 28 32 36
pc 0.621812b 0.524405b,g 0.398 0.294 0.279 0.223 0.164 0.145 0.128 0.120

(33, 42) r2 1 2 3 2+√
3 4 5 4 + √

3 7 4 + 2
√

3 5 + 2
√

3
NN 5 2 2 4 2 2 4 2 1 4

total z 5 7 9 13 15 17 21 23 24 28
pc 0.550213d 0.449787f 0.366 0.279 0.244 0.222 0.186 0.171 0.165 0.144

(32, 4, 3, 4) r2 1 2 3 2 + √
3 4 + √

3 4 + 2
√

3 5 + 2
√

3 7 + 2
√

3 6 + 3
√

3 8 + 2
√

3
NN 5 2 1 8 4 6 6 2 4 2

Total z 5 7 8 16 20 26 32 34 38 40
pc 0.550806d 0.449104f 0.405 0.237 0.195 0.153 0.129 0.121 0.108 0.096

(34, 6) r2 1 3 4 7 9 12 13 16 19 21
NN 5 5 5 11 5 5 10 5 10 11

Total z 5 10 15 26 31 36 46 51 61 72
pc 0.579498b 0.335 0.249 0.153 0.132 0.114 0.092 0.083 0.069 0.060

(4, 82) r2 1 2 2 + √
2 3 + 2

√
2 4 + 2

√
2 5 + 2

√
2 6 + 3

√
2 6 + 4

√
2 7 + 4

√
2 9 + 4

√
2

NN 3 1 4 6 2 2 4 5 4 1
Total z 3 4 8 14 16 18 22 27 31 32

pc 0.729723b 0.707107e,g 0.399 0.261 0.239 0.213 0.179 0.149 0.132 0.129

(3, 122) r2 1 2 + √
3 4 + 2

√
3 5 + 2

√
3 6 + 3

√
3 7 + 4

√
3 8 + 4

√
3 10 + 5

√
3 11 + 6

√
3 12 + 6

√
3

NN 3 4 4 2 4 8 2 4 6 2
Total z 3 7 11 13 17 25 27 31 37 39

pc 0.807901e 0.464 0.312 0.272 0.216 0.159 0.151 0.133 0.112 0.108

(4,6,12) r2 1 2 3 2 + √
3 4 4 + √

3 4+2
√

3 5 + 2
√

3 6 + 3
√

3 8 + 2
√

3
NN 3 1 2 2 1 2 4 2 4 1

Total z 3 4 6 8 9 11 15 17 21 22
pc 0.747801b,g 0.724158g 0.571 0.421 0.403 0.348 0.251 0.231 0.190 0.180

universality of asymptotic behavior for zpc for site percolation
on all extended-range Archimedean lattices over a wide range
of z.

While both plots have a slope near the predicted value from
ηc, the points of Fig. 8 fit well the assumption of an intercept

equal to zero, while those of Fig. 7 fit to a line with the
correct slope but a nonzero intercept, which corresponds to
the constant −b in Eq. (13). The data for the various lattices
predicts b in the range 2.13 to 3.44, with an average value
of ≈3.0. By using Eq. (12) rather than Eq. (13) to fit the
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FIG. 6. Illustration showing the first five shells of nearest neigh-
bors (NN) of the kagome (3,6,3,6) lattice. In the first shell (radius
r = 1), there are 4 NN, in the second shell (r = √

3), there are 4 NN,
in the third shell (r = 2), there are 6 NN, in the fourth shell (r = √

7),
there are 8 NN, and in the fifth shell (r = 3), there are 4 NN, as listed
in Table I. Looking at larger r, we find that the shell index number
appears to grow with r as a power law ∼r2.27.

thresholds, we get a satisfactory fit of the finite-z behavior
without the need of an additional parameter.

We can also look at different lattices that share the same
value of z = ztotal and compare their thresholds. For exam-
ple, z = 12 corresponds to the TRI-1,2 lattice (pc = 0.29026),
the SQ-3 lattice (pc = 0.289123), the HC-1,2,3 lattice (pc =
0.302960), and the (3,4,6,4)-1,2,3,4 lattice (pc = 0.294),
where the numbers after the lattice name represents the NN.
Notice that the thresholds are close together. Our theoretical
formulas give pc = 0.37602 [Eq. (6)], pc = 0.30082 [Eq. (13)
with b = 3], and pc = 0.31341 [Eq. (11)]. Clearly, Eq. (13)
with b = 3 gives the best approximation to the actual thresh-
olds.

For a larger z = 36, we find the thresholds also close
together: TRI-1,2,3,4,5 (pc = 0.11574), SQ-1,. . . ,7 (pc =
0.115348), HC-1,. . . ,7 (pc = 0.115), (3,4,6,4)-1,. . . ,10 (pc =
0.120), and (34,6)-1,. . . ,6 (pc = 0.114). The approximation
formulas give pc = 0.12534 [Eq. (6)], pc = 0.11570 [Eq. (13)
with b = 3], and pc = 0.11780 [Eq. (11)]. Once again,

0 4 8 12 16 20

0

20

40

60

80

100

3
6

4
4

6
3

3,6,3,6

3,4,6,4

3
3
,4

2

3
2
,4,3,4

3
4
,6

4,8
2

3,12
2

4,6,12

z

1/p
c

y=4.512x

FIG. 7. Plots of z versus 1/pc for the 11 Archimedean lattices
with various ranges of NN, using the data of Table I. The virtual
straight line is a guideline with a slope of 4.512 and intercept of 0,
corresponding to Eq. (6).
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FIG. 8. Plot of z versus −1/ ln(1 − pc ) for the 11 Archimedean
lattices with various ranges of NN. The virtual straight line is a
guideline with a slope of 4.512 and intercept of 0, corresponding
to Eq. (6).

Eq. (13) with b = 3 gives the best approximation. To make
a better comparison with theory, it would be useful to have
the results of the last three lattices above to higher precision.

IV. SITE AND BOND PERCOLATION ON SC, BCC, AND
FCC LATTICES WITH EXTENDED CONNECTIONS

Here we carried out extensive Monte Carlo simulations, us-
ing a single-cluster growth method [49,50,63]. In this method,
many individual clusters are generated from a seeded site on
the lattice, and clusters with different sizes s are put in differ-
ent bins with the range of (2n, 2n+1 − 1) for n = 0, 1, 2, . . ..
Clusters still growing when they reach an upper size cutoff
(this value is set to avoid wrapping around the boundaries and
to limit the run time) are counted in the last bin. Define ns(p)
as the number of clusters (per site) containing s occupied sites
as a function of the site or bond occupation probability p. In
the scaling limit, in which s is large and (p − pc) is small such
that (p − pc)sσ is constant, ns(p) behaves as

ns(p) ∼ A0s−τ f [B0(p − pc)sσ ], (14)

where τ , σ , and f (x) are universal (having same values in
a given dimension), while A0 and B0 are lattice-dependent
factors. The probability that a point belongs to a cluster of
size greater than or equal to s is given by P�s = ∑∞

s′=s s′ns′ ,
and it follows for large s and small (p − pc)sσ that sτ−2P�s

behaves as

sτ−2P�s ∼ A1 + B1(p − pc)sσ + C1s−�. (15)

Here we also added a correction-to-scaling term with expo-
nent �. The A1, B1, and C1 are nonuniversal constants. From
the behavior of this quantity, we can easily determine if we
are above, near, or below the percolation threshold. One can
see Refs. [49,50,63] for more details about the single-cluster
method.

With regard to the universal exponents τ , �, and σ , in
three dimensions, relatively accurate and acceptable results
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FIG. 9. Plot of sτ−2P�s versus sσ with τ = 2.18905 and σ =
0.4522 for site percolation of the BCC-1,2 lattice under different
values of p. The inset indicates the slope of the linear portions of the
curves shown in the main figure as a function of p, and the predicted
value of pc = 0.1759432 can be calculated from the p intercept.

are known: 2.18906(8) [64] and 2.18909(5) [65] for τ ; 0.64(2)
[63], 0.65(2) [66], 0.60(8) [67], and 0.64(5) [68] for �;
and 0.4522(8) [64], 0.45237(8) [65], and 0.4419 [69] for σ .
In our simulations, τ = 2.18905(15), � = 0.63(4), and σ =
0.4522(2) are chosen. Here we take large error bars on these
values for the sake of safety.

The upper size cutoff is set to be smax = 216 occupied sites.
Monte Carlo simulations are performed on systems of size
L × L × L with L = 512 under periodic boundary conditions
(although the boundaries are actually never reached). Some
109 independent samples were produced for BCC and FCC

lattices with 2nd and 3rd NN, and 108 for the SC lattice with
nth NN, with n from 5 to 13. The number of clusters greater
than or equal to size s could be found based on the data
from our simulations, and the quantity sτ−2P�s could easily
be calculated.

A. Site percolation

We use the notation BCC-a, b, . . . to indicate a BCC lattice
with the ath NN, the bth NN, etc., and similarly for the FCC

and SC lattices.
Figure 9 shows the relation of sτ−2P�s versus sσ for

site percolation of the BCC-1,2 lattice, under probabilities
p = 0.175941, 0.175942, 0.175943, 0.175944, and 0.175945.
(Preliminary work narrowed the search to this range.) For
small clusters, we can see a steep rise of sτ−2P�s correspond-
ing to the finite-size-effect term, s−�, while for large clusters,
the plot shows linear behavior as expected from Eq. (15). The
linear portion of the curve become more nearly horizontal
when p is close to pc. The estimated value of pc can then
be deduced using d (sτ−2P�s)/d (sσ ) ∼ B1(p − pc), as shown
in the inset of Fig. 9, where pc = 0.1759432 can be estimated
from the p intercept of the plot of the derivative versus p.

When p is close to pc, a plot of sτ−2P�s versus s−� is useful
to estimate the percolation threshold. Figure 10 shows this
plot for the BCC-1,2 lattice under probabilities p = 0.175941,
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FIG. 10. Plot of sτ−2P�s versus s−� with τ = 2.18905 and � =
0.63 for site percolation of the BCC-1,2 lattice under different values
of p.

0.175942, 0.175943, 0.175944, and 0.175945. Linear behav-
ior for large s (small abscissa) can be seen when p is very
close to pc, while when p is away from pc, the curves show
obvious deviations from linearity for large s. Based on these
curves, the range 0.175943 < pc < 0.175944 can be con-
cluded, which is consistent with the value we deduced from
Fig. 9, pc = 0.1759432.

Thus, we conclude that the site percolation threshold of the
BCC-1,2 lattice to be pc = 0.1759432(8), where the number
in parentheses represents the estimated error in the last digit,
by comprehensively considering the two methods mentioned
above, as well as the errors for the values of τ , �, and σ . The
simulation results for the other three lattices we considered
(BCC-1,2,3, FCC-1,2, and FCC-1,2,3) are shown in the Supple-
mental Material [62,70] in Figs. S1–S6, and the corresponding
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FIG. 11. Plot of z versus 1/pc for the three-dimensional lattices
shown in Table II. The green line is a fit through the data and has
a slope 2.722(11), close to the predicted value 2.7351 from Eq. (7),
and intercept −b = −1.92(28).
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TABLE II. Site percolation thresholds for the SC, BCC, and FCC lattices with various ranges of NN. The BCC and FCC results were determined
here, while the results for the SC lattice come from Ref. [51]. Previous results are also shown.

Lattice z pc zpc Previous values

BCC-1,2 14 0.1759432(8) 2.4632 0.175 [29], 0.1686(20) [33]
SC-1,2 18 0.1373045(5) 2.4715 0.137 [29], 0.136 [34]

0.1372(1) [42]
FCC-1,2 18 0.1361408(8) 2.4505 0.136 [29]
SC-1,2,3 26 0.0976444(6) 2.5388 0.097 [29], 0.0976(1) [42]
BCC-1,2,3 26 0.0959084(6) 2.4936 0.095 [30]
SC-1,2,3,4 32 0.0801171(9) 2.5637 0.10000(12) [43]
FCC-1,2,3 42 0.0618842(8) 2.5991 0.061 [30], 0.0610(5) [34]
SC-1,. . . ,5 56 0.0461815(5) 2.5861
SC-1,. . . ,6 80 0.0337049(9) 2.6964
SC-1,. . . ,7 92 0.0290800(10) 2.6754
SC-1,. . . ,8 122 0.0218686(6) 2.6680
SC-1,. . . ,9 146 0.0184060(10) 2.6873

thresholds are summarized in Table II. Previously reported
results are also shown, and it can be seen that the accuracy
of the thresholds has been greatly increased. Our results are
generally consistent with previous works, except for the case
of the SC-1,2,3,4 lattice where a previous result from Ref. [43]
was evidently in error [49].

For the convenience of the following analysis, in Table II,
we also show our former site percolation thresholds for SC-
1, . . . , n (2 � n � 9) lattices [51]. In addition, the values of
zpc are also shown in the fourth column of Table II. With the
increase of coordination number z, the value of zpc shows a
gradual increase. Further investigations are performed by plot-
ting the relation of z versus 1/pc and z versus −1/ ln(1 − pc),
as shown in Figs. 11 and 12, respectively. One can see that the
results of different lattices collapse onto a line, which has a
slope of 2.722 for Fig. 11 and 2.721 for Fig. 12, both very near
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FIG. 12. Plot of z versus −1/ ln(1 − pc ) for site percolation
threshold for the three-dimensional lattices listed in Table II. The
green line is a linear fit through the data and has a slope 2.721(11),
close to the predicted value 2.7351 from Eq. (7), and intercept
−0.53(27).

to our predicted universal asymptotic value of zpc = 2.7351
of Eq. (7).

B. Bond percolation

For bond percolation on BCC-1,2 lattice, under probabilities
p = 0.101211, 0.101212, 0.101213, 0.101214, and 0.101215,
the corresponding plots are shown in Figs. 13 and 14. Simi-
larly to the procedure for site percolation, the bond percolation
threshold pc = 0.1012133(7) is estimated for this system. It
turns out that this system is identical to the SC-3,4 lattice,
and in Ref. [49] we found the identical value of the thresh-
old for that lattice. The simulation results for the other 12
bond lattices that we considered [including BCC-1,2,3, FCC-
1,2, FCC-1,2,3, and SC-1,. . . , n (5 � n � 13)] are shown in
the Supplemental Material [62,70] in Figs. S7–S30, and the
corresponding bond percolation thresholds are summarized in
Table III.
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FIG. 13. Plot of sτ−2P�s vs. sσ with τ = 2.18905 and σ =
0.4522 for bond percolation of the BCC-1,2 lattice under different
values of p. The inset indicates the slope of the linear portions of the
curves shown in the main figure as a function of p, and the estimated
value of pc = 0.1012133 can be deduced from the p intercept.
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TABLE III. Bond percolation thresholds for the SC, BCC, and FCC lattices with various ranges of NN. The values for SC-1,2, SC-1,2,3, and
SC-1,2,3,4 lattices come from Ref. [50], while the results for other lattices were determined here. The identical threshold value for BCC-1,2 was
previously found by us for the equivalent SC-2,3 lattice [49]. The only other previous value appears to be 0.0991(5) for BCC-1,2 of Ref. [33].

Lattice z pc zpc

BCC-1,2 14 0.1012133(7) 1.4170
SC-1,2 18 0.0752326(6) 1.3542
FCC-1,2 18 0.0751589(9) 1.3529
SC-1,2,3 26 0.0497080(10) 1.2924
BCC-1,2,3 26 0.0492760(10) 1.2812
SC-1,2,3,4 32 0.0392312(8) 1.2554
FCC-1,2,3 42 0.0290193(7) 1.2188
SC-1,. . . ,5 56 0.0210977(7) 1.1815
SC-1,. . . ,6 80 0.0143950(10) 1.1516
SC-1,. . . ,7 92 0.0123632(8) 1.1374
SC-1,. . . ,8 122 0.0091337(7) 1.1143
SC-1,. . . ,9 146 0.0075532(8) 1.1028
SC-1,. . . ,10 170 0.0064352(8) 1.0940
SC-1,. . . ,11 178 0.0061312(8) 1.0914
SC-1,. . . ,12 202 0.0053670(10) 1.0841
SC-1,. . . ,13 250 0.0042962(8) 1.0741

In Table III, we also list some previously known values, for
lattices with various ranges of NN. We show the value of zpc

in the fourth column of that table. The results show that the
value of zpc decreases from 1.4170 to 1.0741 with the increase
of coordination number z from 14 to 250. In Fig. 15, we plot
zpc versus z−x, and find that a good linear fit is obtained when
x ≈ 2/3. This is in agreement with the theoretical predictions
of Refs. [9] and [53]. Figure 15 also exhibits an intercept
very close to 1, implying that the Bethe result pc = 1/(z − 1)
accurately holds as z → ∞.

V. CONCLUSIONS

To summarize, in this paper, correlations between percola-
tion threshold pc and coordination number z for lattice models
with compact neighborhoods, including both the asymptotic

0.000 0.002 0.004 0.006 0.008
0.743

0.744

0.745

0.746

0.747

0.748

0.749

0.750

s-�

s-2
P >

=
s

p=0.101211

p=0.101212

p=0.101213

p=0.101214

p=0.101215

FIG. 14. Plot of sτ−2P�s versus s−� with τ = 2.18905 and � =
0.63 for bond percolation of the BCC-1,2 lattice under different values
of p.

and finite-z behavior, are investigated systematically. To study
these correlations, extensive Monte Carlo simulations are car-
ried out for site and bond percolation on BCC, FCC lattices
with 2nd and 3rd NN and bond percolation on SC lattice with
up to 13th NN. We find precise estimates of the percolation
thresholds for these systems. We also include previous results
by ourselves and others to make our analysis.

For site percolation, two-dimensional Archimedean lattices
and three-dimensional SC, BCC, and FCC lattices with compact
neighborhoods (up to 10th NN for Archimedean lattices, 3rd
for BCC and FCC lattices, and 9th for SC lattice) are analyzed by
plotting z versus 1/pc and z versus −1/ ln(1 − pc). We find,
in a given dimension, nearly all the plots overlap in a line,
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FIG. 15. Plot of zpc versus z−x with x = 0.5, 0.6667, and 0.8
for the bond percolation thresholds of all three-dimensional lattices
listed in Table III, showing that Eq. (2) with x = 2/3 gives a good
representation of the behavior of zpc. The intercept of the line for the
fit with x = 2/3, 1.0208(22) is close to 1 as is required from Eq. (2).
The slope gives a1 = 2.315(24).
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with the slopes consistent with our predicted values of zpc ∼
4ηc = 4.51235 in two dimensions and zpc ∼ 8ηc = 2.7351 in
three dimensions. The plot of z versus −1/ ln(1 − pc) gives a
good fit of the behavior including the finite-z corrections, with
no additional adjustable parameters.

For bond percolation in three dimensions, the thresholds of
SC, BCC, and FCC lattices with compact neighborhoods (up to
3rd for BCC and FCC lattices and 13th for SC lattice) confirm
the finite-z corrections of Eq. (2) with x = 2/3 predicted by
Frei and Perkins [53] and Xu et al. [9] and verify that Bethe-
lattice behavior pc ∼ 1/(z − 1) holds for large z.

The work in this paper indicates that the asymptotic behav-
ior of zpc for compact neighborhoods, at least in two and three
dimensions, is universal, depending only on the dimension
of the system but not on the type of lattice. Of course, this
universality is not as strong as the universality of critical ex-
ponents and scaling functions, which applies to all systems of
a given dimensionality. Here the behavior depends on whether
the percolation type is site or bond. For bond percolation, the
universality in the formula for pc is rather robust since for
large z, a critical system acts like a Bethe lattice. For site per-
colation, the universality we discuss here refers to all systems
of compact neighbors that fall in a circular or spherical region.
If the range of the neighborhood is in a different shape, such

as an elongated one, then one would use Eq. (6) with ηc being
the continuum threshold for objects of that shape. Note that
for both site and bond percolation, pc ∼ c/z for large z, but the
coefficient c differs for the two types of percolation. It would
be interesting of course to further investigate these ideas for
neighborhoods of different shapes and in higher dimensions.
(Systems of other shapes have been investigated in Refs. [32],
[26], and [45], for example.)

Overall, we see that percolation with extended-range bonds
is interesting for both site and bond percolation, has many
connections with literature in the field, and shows a form of
universality. The formulas of Eq. (1) (for site percolation)
and Eq. (2) (for bond percolation) can be used to get good
estimates for the thresholds for extended-range percolation
models, as we have verified here for many systems.
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