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Self-similar but not conformally invariant traces obtained by modified Loewner forces
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The two-dimensional Loewner exploration process is generalized to the case where the random force is self-
similar with positively correlated increments. We model this random force by a fractional Brownian motion with
Hurst exponent H � 1

2 ≡ HBM, where HBM stands for the one-dimensional Brownian motion. By manipulating
the deterministic force, we design a scale-invariant equation describing self-similar traces which lack conformal
invariance. The model is investigated in terms of the “input diffusivity parameter” κ , which coincides with
the one of the ordinary Schramm-Loewner evolution (SLE) at H = HBM. In our numerical investigation, we
focus on the scaling properties of the traces generated for κ = 2, 3, κ = 4, and κ = 6, 8 as the representatives,
respectively, of the dilute phase, the transition point, and the dense phase of the ordinary SLE. The resulting
traces are shown to be scale invariant. Using two equivalent schemes, we extract the fractal dimension, Df (H ),
of the traces which decrease monotonically with increasing H , reaching Df = 1 at H = 1 for all κ values. The
left passage probability (LPP) test demonstrates that, for H values not far from the uncorrelated case (small
εH ≡ H−HBM

HBM
), the prediction of the ordinary SLE is applicable with an effective diffusivity parameter κeff. Not

surprisingly, the κeff’s do not fulfill the prediction of SLE for the relation between Df (H ) and the diffusivity
parameter.

DOI: 10.1103/PhysRevE.105.024103

I. INTRODUCTION

The Loewner exploration process for generating confor-
mal invariant (CI) random traces helps to uncover statistical
properties of loopless paths of two-dimensional critical mod-
els with conformal invariance and therefore makes a bridge
between these models and self-similar stochastic processes. In
an equivalent backward process, the Schramm-Loewner evo-
lution (SLE) theory maps the two-dimensional (2D) stochastic
traces to a one-dimensional Brownian motion (1DBM), or-
ganizing the traces into universality classes distinguished by
one single parameter [1,2]. The representative of each class
is the proportionality coefficient (

√
κ) of the relation between

the driving function of the SLE map and the 1DBM; i.e., the
variance of the driving function is proportional to time (as the
parametrization of the stochastic graphs), with the proportion-
ality coefficient κ . The importance of this theory is due to the
fact that many properties of its traces are known. Examples of
the predictions of SLE are the left passage probability (LPP)
[3,4], the Fokker-Planck equation [5], the winding angle (WA)
statistics [6,7], the crossing probability [1], the relation be-
tween the fractal dimension and κ [1,8], locality for κ = 6,
and restriction for κ = 8

3 [1].
Despite its power in characterizing models, the SLE theory

is applicable only to systems fulfilling conformal invariance.
There are, however, some circumstances under which one
is interested in traces which are not conformally invariant.

*morteza.nattagh@gmail.com

The SLE driven by flights is an example, where the driving
function is an addition of a 1DBM [9]. Using the techniques
described in Ref. [9], the “subordinated” SLE was developed
[10] by considering time as a nondecreasing stochastic pa-
rameter (i.e., subordinating the process by the inverse time).
Another example concerns anisotropic systems for which
application of the SLE theory on anisotropic traces gives
a power-law driving function [11], the exponent of which
depends on the strength of anisotropy. This motivates us to
analyze a more general Loewner exploration process, where
the stochastic “force” follows a power law with time. At
the same time, one should also generalize the “deterministic
force” in order to recover the scale invariance of the governing
equations, giving rise to self-similar traces. This is the aim of
our paper, in which we use fractional Brownian motion (FBM)
with Hurst exponent H as the time series for the stochastic
force (the driving function).

The paper is organized as follows: In Sec. II we introduce
the Loewner process as backward SLE equations (known also
as the Langevin equations for SLE) and generalize it in a sys-
tematic way. After introducing the FBM, we also describe our
statistical tools for characterizing the random traces, i.e., LPP.
We numerically simulate the traces in Sec. IV and analyze the
results. Conclusions are presented in Sec. V.

II. THE LOEWNER EXPLORATION PROCESS

Two-dimensional extended traces, such as the domain
walls of 2D random systems or the trace of random walk-
ers, can often be viewed as exploration processes [1]. For
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conformally invariant models, the global properties of self-
avoiding domain walls are well understood thanks to the
SLE theory, provided that they have domain Markov property
[3,12]. The corresponding Loewner exploration process is
defined as the exploration process governed by the backward
SLE equation [5], to be described in the next section.

A. SLE and Loewner exploration process

Let us give a brief introduction to (chordal) SLE, which
aims to describe 2D random traces (e.g., the domain walls in
2D conformally invariant statistical models) by parametrizing
them with time t , mapping them to a dynamical process. Let
us denote the trace by γt : t → zt = xt + iyt , which is a nonin-
tersecting path in the upper half plane S = {z ∈ C, Imz > 0}.
The hull Kt is defined as the set of points which are located
exactly on γt , or are disconnected from infinity by the trace.
Then SLE is defined by unique conformal maps (parametrized
by t) gt (z) : St → S, where St := S\Kt is the complement of
Kt , i.e., gt (z) uniformizes the trace by sending it to the real
axis. gt (z) is the solution of the stochastic Loewner equa-
tion [1,13,14]

∂t gt (z) = 2

gt (z) − ξ (t )
, (1)

with the initial condition gt=0(z) = z, where ξ (t ) is a real
valued function called the driving function. In the hydro-
dynamical normalization gt (z) = z + 2t

z + o( 1
z2 ) as z → ∞,

which fixes gt (z) according to the Riemann mapping theorem
[15]. For fixed z, gt (z) is well defined up to time τz for which
gt (z) = ξt , and the tip of γt is mapped to ξt on the real axis.
Then the hull (up to time t) is formally defined as Kt ≡
{z ∈ S : τz � t}. Schramm [1,2] proved that for conformally
invariant systems ξt is a real valued function proportional to a
one dimensional (1D) Brownian motion (BM, denoted by Bt ),
i.e., ξt = √

κBt where κ is a proportionality coefficient known
as the diffusivity parameter.

Many two-dimensional critical statistical models are classi-
fied using this theory. For example, loop-erased random walks
and Abelian sandpiles correspond to κ = 2, the critical Ising
model corresponds to κ = 3, the harmonic explorer and the
Gaussian free field correspond to κ = 4, critical percolation
corresponds to κ = 6, and the uniform spanning trees corre-
spond to κ = 8 [1]. κ < 4 (κ > 4) belong to the dilute (dense)
phase, while κ = 4 is the transition point, and κ = 8 is a space
filling trace.

The Markov property, stationarity, and continuity of the
SLE process follow from the properties of the 1DBM: (i) the
domain Markov property is due to the fact that for s > t > t ′,
ξs − ξt is independent of ξt ′ ; (ii) the stationarity has its origin
in the fact that ξs − ξt only depends on s − t ; and (iii) the
continuity is expected since lims→t (ξs − ξt ) = 0 for all values

of t [1–3,5,8,16]. Notice that ξt
d= ξ−t

d= −ξt is an important
symmetry relation for uncovering the properties of the driving

function [16], where
d= means the equality of the distribu-

tions of stochastic processes. A deep connection between SLE
and conformal field theory (CFT) [1,3,5,11,17–19] stimulated
many analytical and numerical studies for obtaining prop-
erties of 2D conformally invariant models [13,20–22]. This
correspondence is made via the relation between the central

charge c in CFT and the diffusivity parameter κ in SLE,
i.e., c = (6 − κ )(3κ − 8)/(2κ ). We sometimes need to make
stochastic curves (xt , yt ) from an already known BM time
series, i.e., the inverse of the above process. This is possible
defining the backward SLE equation. Let It be a conformal
homeomorphism from S → St satisfying the equation

∂t It (w) = −2

It (w) − ξ (t )
, (2)

normalized in such a way as to satisfy It (w) = w − 2t
w

+
o( 1

w2 ) as w → ∞. It was shown that the probability distri-
bution of It is the same as that of g−1

t [5,9], i.e., It (ω) −
ξt

d= g−1
t (ω + ξt )

d= h−1
t (ω), where ht (z) is the shifted confor-

mal map, i.e., ht (z) = gt (z) − ξt . In particular, the tip of the
SLE trace can be obtained by 	T = limω→0g−1

T (ω + ξT ) =
limω→0h−1

T (ω). Therefore, using the backward equation of the
SLE we find the trajectory of the tip of the trace zt = xt + iyt

[notice that Re(	t ) and Im(	t ) have the same joint distribution
as xt and yt , respectively],

d

dt
xt = − 2xt

x2
t + y2

t
− d

dt
ξt ,

d

dt
yt = 2yt

x2
t + y2

t
, (3)

with the initial values x0 = u and y0 = v in which w = u + iv
is the initial point.

We note that ξ (λ2t )
d= λξ (t ) (λ being a nonzero positive

scaling parameter), which implies special scaling properties
of SLE, and helps in understanding the space-time structure
of the exploration processes. The scaling relation in Eq. (1)

and consequently Eq. (3) implies that gλ2t (λz)
d= gt (z), and

xλ2t
d= λxt and yλ2t

d= λyt . One can directly examine this by
applying t → λ2t and z → λαz (in which α is an exponent to
be determined). Then the SLE equation is

1

λ2
∂t gλ2t (λ

αz) = 2

gλ2t (λαz) − ξ (λ2t )
, (4)

which can only be satisfied if α = 1 and gλ2t (λz) = λgt (z),
as mentioned above, which is also expected from the very
beginning considering the initial condition g0(z) = z. This ex-
ploration process can be rephrased in terms of a self-avoiding
walker subjected to random forces, which provides another
perspective on the Loewner evolution. Considering xt and
yt as the components of this random exploration process,
the right hand side of Eq. (3) plays the role of a stochas-
tic force, called the Loewner force, represented by �fL. This
force, that determines the global properties of the model at
hand, has two components, �fL ≡ �fd + �fr , which are a deter-
ministic force �fd ≡ 2

r2 (−x, y), where r ≡ (x2 + y2)1/2 is the

distance from the origin, and a random force �fr ≡ −( d
dt ζt )x̂,

that brings stochasticity into the problem. Then, for an explo-
ration process driven by the Loewner force, the trace becomes
(isotropic) self-similar with an already known fractal dimen-
sion D f , provided that ζt is proportional to a 1DBM, i.e.,
ζt = √

κBt (D f = 1 + κ
8 ). A very important property of the

exploration process driven by the Loewner force is conformal
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invariance, meaning that the probability measure of the traces
is invariant under conformal transformations.

B. Exploration process produced by modified Loewner forces

The natural question arising here concerns the possible
modifications of the stochastic force �f on the right hand side
of Eq. (3) in such a way that the trajectory of the random
traces, previously introduced, remains self-similar. Changing
both the deterministic force as well as the random force will
obviously modify the random traces, including their scale
invariance, isotropicity, etc. We call them the scale-invariant
non-Loewnerian forces. An important class of random forces
(here ξt ’s) are those for which their variance behaves like a
power law with time, i.e.,

〈ξ (t )2〉 = cta, (5)

where a is a positive parameter in the interval (0,2) (one
retrieves the Loewner force by setting a = 1 and c = κ). An
example is presented in Ref. [11] where, after applying the
chordal SLE to random traces of anisotropic systems, the driv-
ing function was shown to be a 1D time series with power-law
variance, the Hurst exponent of which depends on the strength
of anisotropy. Another example can be found in Refs. [9,10],
where the driving function of the ordinary Loewner differen-
tial equation contains Lévy flights in addition to the 1DBM.

An important class of 1D correlated time series with
power-law variance is the FBM, for which a = 2H , where
H is the Hurst exponent. For this random force, the Markov
property and the stationarity are violated [23,24]. Note that
when we have domain Markov property, stationarity, and con-
tinuity for a time series, then it should be proportional to a
one-dimensional Brownian motion. FBM is a generalization
of the Brownian motion defined by

BH (t ) = 1

	(H + 1
2 )

∫ t

0
(t − s)H− 1

2 dB(s), (6)

where 	 is the gamma function, dB(s) ≡ B(s + ds) − B(s) is
the increment of the 1DBM, and the Hurst exponent H is a
real number in (0,1). It has the following covariance:

〈BH (t )BH (s)〉 = 1
2 (|t |2H + |s|2H − |t − s|2H ), (7)

and also 〈BH (t )〉 = 0, where 〈 〉 is the expectation value.
A 1DBM is retrieved by setting H = 1

2 , whereas for H >
1
2 (H < 1

2 ) the increments are positively (negatively) corre-
lated, also called the superdiffusive (subdiffusive) regime.
The corresponding increments, X (t ) = BH (t + 1) − BH (t ),
are known to constitute the so-called fractional Gaussian
noise.

Here we model the random force by a FBM, i.e., ξ =
fR(t ) = ξFBM ≡ κH BH (t ), so that

ξFBM(λ1/Ht )
d= λξFBM(t ),

and 〈ξFBM
t 〉 = 0 (note that in the Loewnerian case we have

fR(t ) = κ
1
2 Bt , as expected). We treat κ as an input parameter,

which determines the phase of the trace in the H = 1
2 limit. To

be consistent with the above construction, we should set a =
2H . If we define T ≡ t a, then T → λ2T implies t → λ2/at ,
so that 〈ξFBM

t
2〉 → λ2〈ξFBM

t
2〉. Let us now turn to the aim of

this paper, i.e., to make the exploration process self-similar.
Once the FBM random force is incorporated into the evolution
equations (3), one can easily check that it is impossible to have
scale invariance for a �= 1, unless the deterministic force is
modified as well. One needs to find the possible forms of the
deterministic forces which also modify the spatial properties
of the resulting traces. The next task will then be to obtain
the behavior of the traces, including their presumable fractal
properties, which will be the focus of the second part of the
paper.

To make the equation scale invariant, let us multiply the
forces by Vi(r), i.e., f i

d → Vi(r) f i
d , where i = x, y. When we

insert this into the evolution equations, and find that

d

dt
xt = − 2xt

x2
t + y2

t
Vx(xt , yt ) − d

dt
ξFBM

t ,

d

dt
yt = 2yt

x2
t + y2

t
Vy(xt , yt ). (8)

Generally Vi (i = x, y) can depend on fixed reference points
in space which could break the translational invariance of the
system. To preserve translational invariance, these functions
should be a power law in terms of r, if the only reference
point is the origin (which is equivalent to the point ξt in the
ordinary SLE equation). Therefore, we propose the following
general form for the deterministic force:

Vx(x, y) = xαx−1

rβx−2
and Vy(x, y) = yαy−1

rβy−2
. (9)

Note that the limit αi → 1, βi → 2 (i = x, y) recovers the
Loewner force. Also, αx should be an integer, so that the
function stays analytical in the region x < 0. We notice that
a proportionality constant can be incorporated in Eq. (9),
which is not of importance since it can be absorbed by a
reparametrization of time, and to be compatible with the
limit a → 1, we set it to unity. The singularity at r → 0,
like the singularity of the Loewner force, is not of central
importance. By tuning the parameters for making the process
scale invariant, we note that if αx �= αy, or βx �= βy, then the
system will not be scale invariant because of the dependence
on r =

√
x2 + y2. Therefore we must have αx = αy ≡ α, and

βx = βy ≡ β, for which x and y have the same scaling behav-
ior. By applying the scale transformation, one can easily show
that the relation between the constants is

β = α − 1 + 2

a
. (10)

The trajectories of the tip of the traces corresponding to the
forces of Eq. (9) for the parameters a = 1 and 1.5, and also
α = 1, 2, and 3 are shown in Fig. 1. These trajectories identify
the temporal evolution of trial points in the upper half plane,
according to Eq. (8) without stochastic force. As is seen in
Fig. 1 for α = 1 (whatever a is) the force field is symmetric
[Vx = Vy; see Eq. (8)] and the orientation of the forces is the
same as for ordinary SLE (α = 1, a = 1). The magnitude of
the forces, however, changes with a. For the case α �= 1 (i.e.,
Vx �= Vy) both orientations and magnitudes change. For even
values of α, the structure of the force field changes qualita-
tively (having the attractor x = −∞ and y = +∞ for x < 0,
and x = 0 and y = +∞ for x � 0, in contrast to the ordinary
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FIG. 1. The streamlines of the deterministic forces for different values of a = 2H and α [see Eq. (8)].

chordal SLE). For odd values of α, although the structures
are the same as for α = 1, the orientation of the stream flows
changes. Since the strategy of this study is to minimally
change the Loewner evolution equations, we choose the case
α = 1. Note also that the quantity A defined via the differential
equation dA ≡ �fd · d�l is not a complete differential unless
α = 1, suggesting that there is an extra conservation law in
this case that is not fulfilled for other α values. Therefore, we
set α = 1 throughout the rest of this paper, for which Eq. (3)
are modified to

d

dt
xt = − 2xt(

x2
t + y2

t

) 1
a

− d

dt
ξFBM

t ,

d

dt
yt = 2yt(

x2
t + y2

t

) 1
a

. (11)

Note also that the deterministic force in the Loewner equa-
tion decays with 1/r which is long range. For the subdiffusive
FBM (β > 2) this force decays faster than 1/r, while for
the superdiffusive (β < 2) it decays slower. Let us highlight
some points about the equation governing gNL

t (NL stands for
non-Loewnerian) for Eq. (11) generated by the modified force.
We recall that in the ordinary Loewner evolution, the SLE
equations are obtained using the fact that It (w = 0) − ξt =
xt + iyt . Similarly we define the map INL

t (w = 0) − ξFBM
t =

xt + iyt , so that
d

dt
(xt + iyt ) = −2(xt − iyt )

(x2 + y2)
1
a

− d

dt
ξFBM

t , (12)

or equivalently,

dINL

dt
= −2

(xt − iyt )
1
a −1(xt + iyt )

1
a

= −2(
INL∗ − ξFBM

t

) 1
a −1(

INL − ξFBM
t

) 1
a

, (13)

where the superscript ∗ denotes the complex conjugation oper-
ation. Therefore, the equation governing INL

t for the modified
Loewner evolution is

∂t I
NL(w) = ∣∣INL(w) − ξFBM

t

∣∣2− 2
a × −2

INL(w) − ξFBM
t

, (14)

where the first term on the right hand side is the additional
term with respect to the ordinary SLE equation. Then the
direct equation is obtained simply by the transformation t →
−t , so that

∂t g
NL
t (z) = 2∣∣gNL − ξFBM

t

∣∣ 2
a −2(

gNL − ξFBM
t

) . (15)

For a piecewise constant driving function, the solution of the
above equation (which corresponds to the slit map in the
ordinary SLE) is given in the Appendix [see Eq. (A9)].

III. THE NUMERICAL OBSERVABLES

In this section, we introduce the observables that are in-
vestigated here in terms of κ , which is treated here as an input
parameter. By the transformation T = t a, the non-Loewnerian
Eq. (11) are obtained as

dx

dT
= T

1
a −1 −2a−1x

(x2 + y2)
1
a

− d

dT
ξFBM(T ),

dy

dT
= T

1
a −1 2a−1y

(x2 + y2)
1
a

. (16)

In Fig. 2 we show some examples of traces generated
by the above generalized equation for κ = 2, 4, 8 and H =
0.5, 0.7, 0.9, 1.0. We see that, as the Hurst exponent increases,
the traces become smoother, and as κ increases, the paths
become more twisted and rough, leading to higher fractal
dimensions. To quantify these properties we have applied
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κ
=

2

H = 0.5 H = 0.7 H = 0.9 H = 1.0

κ
=

4
κ

=
8

FIG. 2. Samples of traces obtained from Eq. (16). H = 0.5 (first column) shows the results for the ordinary SLE traces.

some standard statistical measures, which are the LPP, the
fractal dimension (D f ), and the winding angle statistics. For
a curve that goes from the origin to infinity, the LPP corre-
sponds to the probability p(x, y) that the curve passes at the
left of the point (x, y). In Fig. 3 we show the LPP in polar
coordinates (r, ϕ). An important test to validate the calculation
of the diffusivity parameter is based on Schramm’s formula
for a chordal SLEk′ when applied to systems with conformal
invariance,

pκ ′ (r, ϕ) = pκ ′ (ϕ) = 1

2
+ 	

(
4
κ ′

)
√

π	
(

8−κ ′
2κ ′

) cot(ϕ)

× 2F1

(
1

2
,

4

κ ′ ,
3

2
,− cot (ϕ)2

)
, (17)

where 2F1 is a hypergeometric function. Also note that
pκ ′ (r, ϕ) = pκ ′ (ϕ) for conformally invariant systems. κ ′ is the
test diffusivity parameter and coincides with the input κ for
the conformally invariant system H = 1

2 . Interestingly, we
have observed that, for small enough H , this formula remains

FIG. 3. The schematic procedure of calculating LPP and the
fractal dimension using the yardstick method.
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FIG. 4. (a) Log-log plot of N as a function of ξ for different Hurst exponents H and κ = 2. (b) Log-log plot of
√

〈R2〉 against 〈l〉 for
different Hurst exponents for κ = 2.

nearly valid for any κ value. Therefore we can define an ef-
fective κeff by minimizing the weighted mean square deviation

KH (κ ′) = 1

N

∑
i

∑
ϕ

[pH (ϕ, Ri ) − pκ ′ (ϕ)]2, (18)

where pH is the LPP obtained numerically for curves with
Hurst exponent H , and the outer sum goes over values
of Ri+1 = Ri − 0.01 that are computed iteratively for i =
0, 1, . . . , 10 in which R0 = 〈Rmax〉/2, where 〈Rmax〉 is defined
as the average distance between the beginning and the end
of the curves. The second sum goes over ϕ in the interval
0 � ϕ � π , in steps of 0.01, and N is the total number of
points. The value of κ ′ that minimizes Eq. (18) is κeff.

Let us define R as the Euclidean distance between the
starting point and the end point of the scale invariant path.
R is related to the length of the curve l via the scaling relation√

〈R2〉 ∼ lν, (19)

where 〈 〉 denotes the ensemble average, and ν is related to the
fractal dimension via ν = 1

D f
. There are also other methods

to obtain the fractal dimension, like the yardstick method, as
depicted in Fig. 3. In this scheme, we use a yardstick of fixed
length ξ to measure the length of the curve which we denote
by N (ξ ). Following the definition of the capacity dimension,
one has N (ξ ) ∝ ξD f or, equivalently, D f = lim

ξ→0

N (ξ )
ξ

. The frac-

tal dimension obtained using this method should be compared
with the inverse of ν to check for consistency.

IV. SIMULATION RESULTS

In this section we present the results of the simulations for
H � 1

2 , setting tmax = 1 for all samples. We investigate the
properties of the model for κ = 2, 3, 4, 6, 8. For the numer-
ical analysis, we produced 4 × 103 traces of length 104. To
this end, we discretized Eq. (16) using the finite-difference
method for fixed values of a = 2H and κ . To produce the
FBM time series, we used the direct method, i.e., Eq. (6) for
a given H . The fractal dimensions obtained with the yardstick
method for κ = 2 are presented in Fig. 4(a) for H = 0.5, 0.6,
0.7, 0.8, 0.9, and 1.0. One should note that D f = 5/4 for
H = 0.5 [25]. The analysis for the ν exponent is presented in
Fig. 4(b). The values for the exponents for κ = 2 can be found
in Table I. We observed power-law behavior for all values
of κ and H , showing that the curves driven by the proposed
scale invariant non-Loewnerian forces are self-similar. The
results are reported in tables II, III, IV, and V for κ = 3, 4,
6, and 8, respectively. For small Hurst exponents (H � 0.7),
the numerical values of D f are in agreement within their error
bars with νκ = 1

Dκ
f
. The dependence of Dκ

f and ν−1
κ on H

is presented in Fig. 5(a), from which we see that D f is a
monotonically decreasing function of H , as one intuitively
expects from the traces presented in Fig. 2. Note also that the
fractal dimension becomes nearly unity as H → 1 for all κ

values. The dependence of Dκ
f (H ) on κ is shown in Fig. 5(b),

displaying a monotonically increasing behavior with average
slopes that depend on H . As a verification, one can inspect the
fractal dimensions for H = 0.5. The data fit well the relation
D f = 1 + κ

8 [1], which gives 5
4 for κ = 2, 11

8 for κ = 3, 3
2 for

TABLE I. The exponents ν, Df , and κLPP
eff for various Hurst exponents for κ = 2. In the last two columns we show the functions Dν

f = 1
ν

and Df (κ ) = 1 + κ

8 .

H ν Df κLPP
eff Dν

f D f (κLPP
eff )

0.5 0.795 ± 0.02 1.246 ± 0.02 1.26 ± 0.03
0.6 0.868 ± 0.02 1.14 ± 0.02 1.96 ± 0.03 1.15 ± 0.03 1.25 ± 0.004
0.7 0.893 ± 0.03 1.08 ± 0.03 2.16 ± 0.03 1.12 ± 0.04 1.27 ± 0.004
0.8 0.84 ± 0.03 1.09 ± 0.03 1.19 ± 0.04
0.9 0.80 ± 0.03 1.07 ± 0.04 1.25 ± 0.05
1.0 0.82 ± 0.03 1.01 ± 0.04 1.22 ± 0.04
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FIG. 5. (a) The fractal dimension Df (κ, H ) as a function of H for different diffusivities κ . Inset: The 1
ν

exponent in terms of H . (b) The
fractal dimension Df (κ, H ) as a function of κ for various H values.

κ = 4, 7
4 for κ = 6, and 2 (space filling) for κ = 8. The fractal

dimensions for κ > 4 show deviations [see Fig. 5(b)], which
are due to the fact that in this limit the trace touches itself in
the thermodynamic limit, requiring the generation of a much
larger number of numerical samples. In the inset of Fig. 5(a)
we show the variation of 1/ν which has the same trend as D f ,
but deviates from it for large values of H .

We have also investigated the distribution function of
jumps or flights ε ≡ |r(t ) − r(t − 1)|, which is essential in
understanding the structure of the model, and especially the
master equation governing the probability distribution func-
tion. For a Markov process, it is known that the sample paths
are continuous, i.e., limδt→0

1
δt

∫
|x−z|>ε

dxp(x, t + δt |z, t ) =
0, where p(x, t ′|z, t ) is a conditional probability [26]. In our
model, the H > 0.5 cases are non-Markovian, and the cor-
responding exploration processes are discontinuous (already
observed in Fig. 2), so that the mentioned quantity can be
nonzero. We observed that the jumps become larger when H
increases. In Fig. 6 we plot the distribution function of ε for
non-Loewnerian curves for κ = 2. The distribution functions
show power-law behavior for high H values, and the range of
the function increases when H increases (see the correspond-
ing exponent τ in the inset) in accordance with Fig. 2.

The LPP analysis shows that for small H values (small
εH ≡ H−0.5

0.5 ) our results are numerically indistinguishable
from the predictions of the standard SLE with an effective
κ , called κeff. It is obtained from the minimum of K (κ ′, H ) in

TABLE II. The exponents ν, Df , and κLPP
eff for various Hurst

exponents for κ = 3. In the last two columns we show the functions
Dν

f = 1
ν

and Df (κ ) = 1 + κ

8 .

H ν Df κLPP
eff Dν

f D f (κLPP
eff )

0.5 0.73 ± 0.02 1.376 ± 0.02 1.37 ± 0.04
0.6 0.8 ± 0.02 1.22 ± 0.02 3.04 ± 0.05 1.25 ± 0.04 1.38 ± 0.006
0.7 0.8 ± 0.02 1.18 ± 0.03 3.5 ± 0.05 1.25 ± 0.04 1.44 ± 0.006
0.8 0.76 ± 0.02 1.21 ± 0.03 1.32 ± 0.03
0.9 0.78 ± 0.03 1.16 ± 0.04 1.28 ± 0.05
1.0 0.82 ± 0.03 1.0 ± 0.05 1.22 ± 0.04

Eq. (18). It is worthy to note that verifying the SLE predictions
is not meaningful due to the lack of conformal symmetry, and
our LPP results are only “numerically indistinguishable” from
the predictions of SLE. Therefore, we used the term “effective
κeff.” Consider, for example, the LPP for H = 0.6 and κ = 3
which is shown in the main panel of Fig. 7(a) for various R <

R̄max where R̄max = 〈Rmax〉. We see a nearly perfect matching
with the SLE prediction, i.e., Eq. (17) with κeff = 3.0 ± 0.1.
We observe that the LPP fits the SLE prediction of Eq. (17)
quite well for H < 0.8 with the κeff that is shown in the inset.
As also shown in the inset, the error bars increase with κ ,
indicating that the matching becomes worse. For larger Hurst
exponents, Eq. (17) does not work, as depicted in Fig. 7(b) for
H = 1 and κ = 3. We see that in this case PH (R, ϕ) depends
on R showing that it does not obey SLE properties. We report
κeff and the related exponents in Tables I–V.

V. CONCLUSIONS

This paper was devoted to a generalization of the Loewner
forces in the Loewner evolution process. The Loewner force
has two components: a deterministic and a random force. We
argued that, for the processes in which the random force fol-
lows a power law with time, one can retrieve scale invariance
(self-similar traces) by a modification of the deterministic
force. We considered a minimal change to define a modified
power-law force. We modeled the random force by a fractional
Brownian motion (FBM) characterized by the Hurst exponent

TABLE III. The exponents ν, Df , and κLPP
eff for various Hurst

exponents for κ = 4. In the last two columns we show the functions
Dν

f = 1
ν

and Df (κ ) = 1 + κ

8 .

H ν Df κLPP
eff Dν

f D f (κLPP
eff )

0.5 0.68 ± 0.03 1.49 ± 0.02 1.47 ± 0.07
0.6 0.75 ± 0.03 1.33 ± 0.02 4.0 ± 0.2 1.33 ± 0.05 1.5 ± 0.13
0.7 0.75 ± 0.03 1.29 ± 0.03 4.5 ± 0.2 1.33 ± 0.05 1.56 ± 0.13
0.8 0.74 ± 0.03 1.3 ± 0.03 1.35 ± 0.05
0.9 0.78 ± 0.04 1.19 ± 0.04 1.28 ± 0.07
1.0 0.83 ± 0.04 1.0 ± 0.1 1.20 ± 0.06
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TABLE IV. The exponents ν, Df , and κLPP
eff for various Hurst

exponents for κ = 6. In the last two columns we show the functions
Dν

f = 1
ν

and Df (κ ) = 1 + κ

8 .

H ν Df κLPP
eff Dν

f D f (κLPP
eff )

0.5 0.64 ± 0.04 1.61 ± 0.1 1.56 ± 0.09
0.6 0.7 ± 0.04 1.45 ± 0.1 6.22 ± 1 1.43 ± 0.08 1.78 ± 0.13
0.7 0.73 ± 0.04 1.4 ± 0.1 6.68 ± 1 1.37 ± 0.07 1.86 ± 0.13
0.8 0.81 ± 0.06 1.35 ± 0.1 1.23 ± 0.09
0.9 0.83 ± 0.06 1.20 ± 0.1 1.2 ± 0.09
1.0 0.88 ± 0.06 1.0 ± 0.1 1.14 ± 0.08

H , which controls the correlations in the model, and becomes
Loewnerian when H = 0.5.

The model was then investigated by simulating the random
traces that are driven by non-Loewnerian forces. We numer-
ically showed that the traces are self-similar by analyzing
the fractal dimensions with two different methods: scaling
of the end-to-end distance, and the yardstick method. The
fractal dimensions where shown to decrease monotonically
with H reaching D f = 1 for H = 1 for all κ values. Finally,
the analysis of the left passage probability (LPP) revealed
that for small H values (small εH , especially for H = 0.6
and H = 0.7 in this paper) the prediction of SLE, Eq. (17),
is still applicable. For these values of H we found a new set of
effective coefficients κeff.
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APPENDIX: DISCRETIZATION OF THE PROCESS;
PIECEWISE CONSTANT DRIVING FUNCTION

In this Appendix we aim to find the solution of Eq. (15)
for a piecewise constant ξFBM, i.e., considering the driving
function to be ξi = const in an interval [ti, ti+1]. It is more con-

venient to work with η(T ) ≡ ξFBM(t ), and η(λ2T )
d= λη(T ),

for which Eq. (15) becomes

∂T GT (z) = 2a−1T
1
a −1

|GT (z) − η(T )| 2
a −2(GT (z) − η(T ))

, (A1)

where we have defined GT (z) ≡ gt (z) with the property
Gλ2 (λz) = λGT (z). Now we suppose that η is (piecewise)

TABLE V. The exponents ν, Df , and κLPP
eff for various Hurst

exponents for κ = 8. In the last two columns we show the functions
Dν

f = 1
ν

and Df (κ ) = 1 + κ

8 .

H ν Df κLPP
eff Dν

f D f (κLPP
eff )

0.5 0.59 ± 0.05 1.70 ± 0.1 1.7 ± 0.14
0.6 0.66 ± 0.05 1.53 ± 0.1 6.84 ± 2 1.52 ± 0.11 1.86 ± 0.25
0.7 0.71 ± 0.05 1.47 ± 0.1 7.2 ± 2 1.41 ± 0.1 1.9 ± 0.25
0.8 0.77 ± 0.08 1.37 ± 0.1 1.3 ± 0.13
0.9 0.8 ± 0.08 1.17 ± 0.1 1.11 ± 0.12
1.0 0.87 ± 0.08 1.0 ± 0.1 1.15 ± 0.1

FIG. 6. Log-log plot of the distribution function of the distance
between two consecutive points (ε) in the trajectory for κ = 2 and
different Hurst exponents H . Inset: The exponent τ in terms of H .

constant η in the time interval [Ti, Ti+1]. For the ordinary SLE,
the solution is gti+1 (z) = ξi + √

(gti (z) − ξi )2 + 4δti. Then by
requiring gδti (z1) = ξi (in which z1 is the first point in the
discrete random sequence which should be mapped to ξ ) we
find that δti = 1

4 (Im[z1])2, and ξi = Re[z1], which is called the
slit map. Now we do the same for the generalized SLE map.
For constant η we have

∂T GT (z) = 2a−1T
1
a −1

|G(z) − ηi| 2
a −2(G(z) − ηi)

, (A2)

which, after integrating on both sides, becomes∫ GTi+1

GTi

dGT |G(z) − ηi| 2
a −2(G(z) − ηi)=2a−1

∫ Ti+1

Ti

dT T
1
a −1.

(A3)

The right hand side is 2(T
1
a

i+1 − T
1
a

i ), whereas the left hand side
of Eq. (A3) has two (real and imaginary) parts, and setting
the imaginary part to zero gives an extra equation to be self-
consistent. Assuming that G = G1 + iG2, the left hand side
becomes∫

(dG1 + idG2)
[
(G1 − ηi )2 + G2

2

] 1
a −1

(G1 − ηi + iG2).
(A4)

The imaginary part of which is∫ [
(G1 − ηi )

2 + G2
2

] 1
a −1

[(G1 − ηi )dG2 + G2dG1] = 0.

(A5)
Since this equation should be satisfied for all trajectories, the
argument of the integral should vanish, so that

(G1 − ηi )dG2 + G2dG1 = 0

⇒ dG2

G2
= − dG1

G1 − ηi

⇒ G2 = G2
0

(
G1

0 − ηi

G1 − ηi

)
, (A6)

where G0
1 and G0

2 are some constants. Now we apply this to
the real part of the integral, giving us
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FIG. 7. (a) LPP for various radial distances R for H = 0.6 and κ = 3. Inset: κLPP
eff in terms of κ . (b) LPP for various values of R for H = 1.0,

κ = 3. Inset: R̄max in terms of H .

∫ [
(G1 − ηi )

2 + G2
2

] 1
a −1

[(G1 − ηi )dG1 − G2dG2] =
∫ [

(G1 − ηi)
2 + G2

2

] 1
a

dG1

G1 − ηi

= −a

2

(
(G1 − ηi )2

(Gi
1 − ηi )2Gi

2
2

)(
(G1 − ηi )

2 + (Gi
1 − ηi )2Gi

2
2

(G1 − ηi )2

)1+ 1
a

2F1

[
1, 1 + 1

2a
, 1 − 1

2a
,

(G1 − ηi )4

(Gi
1 − ηi )2Gi

2
2

]
. (A7)

Let us define the last line as Fa(G1, ηi ), then one can easily show that

Fa
(
Gi

1, ηi
) = − a

2Gi
2

2

((
Gi

1 − ηi
)2 + Gi

2
2)1+ 1

a
2F1

[
1, 1 + 1

2a
, 1 − 1

2a
,

(
Gi

1 − ηi
)2

Gi
2

2

]
. (A8)

Therefore the final result is

T
1
a

i+1 = T
1
a

i − 1
2

[
Fa

(
Gi+1

1 , ηi
) − Fa

(
Gi

1, ηi
)]

. (A9)
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