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Length and area generating functions for height-restricted Motzkin meanders
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We derive the length and area generating function of planar height-restricted forward-moving discrete paths
of increments ±1 or 0 with arbitrary starting and ending points, the so-called Motzkin meanders, and the more
general length-area generating functions for Motzkin paths with markers monitoring the number of passages
from the two height boundaries (“floor” and “ceiling”) and the time spent there. The results are obtained by
embedding Motzkin paths in a two-step anisotropic Dyck path process and using propagator, exclusion statistics,
and bosonization techniques. We also present a cluster expansion of the logarithm of the generating functions that
makes their polynomial structure explicit. These results are relevant to the derivation of statistical mechanical
properties of physical systems such as polymers, vesicles, and solid-on-solid interfaces.
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I. INTRODUCTION

Random walks of given length and area on planar lat-
tices are of inherent mathematical and physical interest. In
mathematics, their combinatorial properties, statistics, and
generating functions are the subject of intense study. In
physics, they arise either in actual diffusion processes near
boundaries or, indirectly, in the quantum mechanics of par-
ticles moving in a periodic two-dimensional potential. The
Hofstadter problem is the canonical example of the latter,
leading to the famous “butterfly” energy spectrum [1].

In physical contexts, random walks are generated through
the action of a Hamiltonian on the Hilbert space of the sys-
tem. This connection was used to study the enumeration of
closed walks of given length and (algebraic) area on the
square lattice. Such walks are generated by the Hofstadter
Hamiltonian, with the magnetic field playing the role of the
variable dual to the area, and their properties can be derived
from the study of the secular determinant of the Hamilto-
nian. The area enumeration generating function for walks of
given length was derived in Ref. [2] in terms of a set of
factors extracted from the secular determinant (the so-called
Kreft coefficients [3]), leading to explicit albeit complicated
expressions.

An interesting connection was made in Ref. [4] be-
tween a general class of two-dimensional walks and quantum
mechanical particles obeying generalized exclusion statis-
tics with exclusion parameter g depending on the type of
walks (g = 0 for bosons, g = 1 for fermions, and higher g
means a stronger exclusion beyond Fermi). The relevance
of generalized quantum statistics to Calogero particles with
inverse-square potential interactions was first pointed out in
Ref. [5]. Exclusion statistics was proposed by Haldane [6]
as a distillation of the statistical mechanical properties of
Calogero-like spin systems. Exclusion statistics also emerges
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in the context of anyons projected on the lowest Landau
level of a strong magnetic field [7] and has been extended to
more general systems [8]. (For a review of exclusion statistics
see Ref. [9].) Remarkably, the algebraic area considerations
of a class of lattice walks directly map to the statistical
mechanics of particular many-body systems with exclusion
statistics [4].

In recent work [10] the Hamiltonian description of ran-
dom walks and the exclusion statistics connection were
used to study the generating function of a family of walks
referred to as Dyck paths and their height-restricted gener-
alizations [11–19].1 These are walks on a two-dimensional
lattice that propagate one step in the horizontal direction
(“time”) and one step either up or down in the vertical direc-
tion (“height”) but without dipping below a “floor” at height
zero nor exceeding a “ceiling” of maximal height. Paths that
start and end at the floor are usually termed “excursions,”
while more general paths are “meanders.” The Hamiltonian
method for forward-moving paths is equivalent to the tran-
sition matrix formulation, which has been used in previous
work to calculate the length generating function for such
walks. In Ref. [10] these results were extended to length and
area generating functions for meanders with arbitrary starting
and ending points. Further, using the connection to exclusion
statistics, the generating functions were expressed in terms
of statistical mechanical properties of relatively simple par-
ticle systems with an equidistant energy spectrum that are
amenable to a full solution by the technique of bosoniza-
tion. Using a cluster expansion, an alternative form for the
logarithm of the generating functions was derived in terms
of sums over compositions (i.e., ordered partitions) of the

1The literature on Dyck and related Motzkin and Lukasiewicz paths
is quite extensive. We refer the reader to T. Prellberg’s site [20] and
to the references in Ref. [21] for a comprehensive list of relevant
papers.
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FIG. 1. A typical Motzkin path (meander) for k = 5, starting at m = 1 and ending at n = 2, with lu = 8 (green) up-steps, lh = 5 (blue)
horizontal steps, and ld = 7 (red) down-steps for a total length of l = 20 steps. The area under it is 49.5 plaquettes (shaded gray).

integer length of the path that made their polynomial structure
explicit.

Motzkin paths are walks that can also propagate by a
single step horizontally, in addition to up or down, with all
remaining properties and definitions as in Dyck paths. Their
combinatorial enumeration is given by the so-called Motzkin
number [22] and they have been extensively studied from
several points of view (see, e.g., Refs. [21,23–28]). Various
physical systems can be mapped to Motzkin-like paths, such
as solid-on-solid interfaces, vesicles, and, most straightfor-
wardly, polymers. The floor represents a physical boundary
that the polymer cannot cross, while the ceiling confines the
polymer on a strip. The statistical mechanics of these poly-
mers (or other systems) is determined by the combinatorics
of Motzkin paths and, in general, exhibits phase transitions
between diffuse and localized states.

Several combinatorial properties and generating functions
of Motzking paths have been considered and studied. The full
length and area generating function for Motzkin meanders,
however, has apparently not been calculated (Ref. [26] comes
closest to that goal, evaluating generating functions for ex-
cursions, that is, Motzkin paths starting and ending on the
floor). In this paper we apply the techniques of Ref. [10] to
calculate the length and area generating function of Motzkin
paths, with different weights assigned to each kind of step (up,
horizontal or down) and a set of additional variables probing
their boundary properties. Although the basic methodology
is the same as for Dyck paths, the application of exclusion
statistics techniques in the Motzkin case presents additional
challenges that require some new tricks. Nevertheless, the
full generating function is derived in terms of determinants,
related to exclusion-2 statistical systems and calculated via
bosonization.

In the next section we set up the Hamiltonian description
of Motzkin paths and express their generating functions in
terms of matrix elements of the propagator, while in Sec. III
we derive the basic determinant formula for the generating
functions, including additional variables (markers), monitor-
ing their passage and time spent on the floor or ceiling, and
examine several special cases. In Sec. IV we introduce the
anisotropic two-step Dyck process that generates Motzkin
paths, review the exclusion statistics connection, and use it
to express the basic building block of the generating func-
tions, i.e., the secular determinant of the two-step process,

in terms of grand partition functions and Chebyshev poly-
nomials. In Sec. V we use cluster decomposition techniques
to derive expressions for the logarithm of the generating
functions of Motzkin paths. We conclude in Sec. VI with
some remarks on previous work and directions for future
research.

This is an opportune moment to log an apology to any
mathematician readers. The introduction of concepts such as
quantum exclusion statistics and bosonization may present
for them an additional burden of familiarization and sup-
plant a purely mathematical treatment that would eschew such
schemes and jargon. We feel, nevertheless, that this approach,
apart from reflecting the parochial point of view of the author,
may add some physical context to the calculations and could
be a source of inspiration and insight to those approaching the
problem from other vantage points. (This paper is also written
in a narrative style rather than the proposition-theorem format
canonical to mathematics publications.)

II. MOTZKIN PATH HAMILTONIAN

Motzkin paths are forward-moving random walks on a
square lattice on the first quadrangle of the plane consisting
of points (i, j), i = 0, 1, 2, . . . , j = 0, 1, 2, . . . k. The walk in
each step moves one horizontal unit, i → i + 1, and either 0
or 1 vertical units in either direction, j → j, j ± 1. (Walks
where the horizontal step j → j is forbidden are called Dyck
paths.) Paths can never dip below a lowest level (“floor”)
j = 0 nor exceed a maximum height (“ceiling”) at j = k.
Relevant quantitative features of the path are its starting and
finishing heights m and n, respectively, the number of upward,
horizontal, and downward steps lu, lh, ld , as well as the total
area vertically under the walk A, the total length of the walk
being l = lu + lh + ld (see Fig. 1).

An object of special interest is the generating function of
walks “packaging” the above quantitative features, defined as

Gk,mn(zu, zh, zd , q) =
∞∑

lu,lh,ld ,A

zlu
u zlh

h zld
d qANk,mn;lu,lh,ld ,A, (2.1)

with Nk,mn;lu,lh,ld ,A the number of walks with the given param-
eters. We can eliminate one of the dual variables zu, zd , right
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away: Clearly, lu − ld = n − m, and

Gk,mn(zu, zh, zd , q) = zm−n
d

∞∑
lu,lh,A

(zuzd )lu zlh
h qANk,mn;lu,lh,lu+m−n,A.

(2.2)

So the dependence on zd is trivial, the relevant variable being
zuzd . The choice zd = 1 could have been made, but we prefer
the choice zu = zd = z, making the Hamiltonian symmetric

and the generating function depend only on z, zh, q. The cal-
culation of Gk,mn(z, zh, q) will be the main focus of this paper.

Discrete forward-moving paths can be described in terms
of a Hamiltonian (transition matrix) acting on a Hilbert space
of dimensionality equal to the number of states (vertical posi-
tions) that the path can visit. Its structure encodes the allowed
steps and keeps an account of the quantitative properties of
the paths. The Hamiltonian for Motzkin paths of maximum
height k can be expressed as the (k + 1)-dimensional matrix

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zh zq1/2 0 0 · · · 0 0

zq1/2 zhq zq3/2 0 · · · 0 0

0 zq3/2 zhq2 zq5/2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · zhqk−1 zqk−1/2

0 0 0 0 · · · zqk−1/2 zhqk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3)

Hk includes the parameters z, zh, and q of the generat-
ing function and is symmetric (and Hermitian, for real
parameters, although this will be of no import for our con-
siderations). In previous work on Dyck paths [10] the variable
z dual to the length was an external multiplicative parame-
ter, but here we prefer to include all dual variables in the
Hamiltonian.

We will assume that the Hamiltonian acts on a Hilbert
space with basis elements | j〉 and produces a single step.
Repeated action of Hk produces a superposition of all possible
walks with weights as they appear in the generating function.
Specifically, the left-action of Hk on the dual state 〈 j| produces
the superposition

〈 j| Hk = zq j+1/2 〈 j + 1| + zhq j 〈 j| + zq j−1/2 〈 j − 1| (2.4)

with |k + 1〉 ≡ 0 ≡ |−1〉. (We chose Hk to act on the left
to match time evolution from left to right to the ordering
of operators.) Mapping the vertical position j to the Hilbert
space element | j〉, we can interpret the action of Hk as pro-
ducing a unit vertical step either up to | j + 1〉, horizontally
to | j〉, or down to | j − 1〉. A single application of Hk cor-
responds to a unit step i → i + 1. The vertical area under
such a step (i, j) → (i + 1, j + � j) measured in units of
lattice plaquettes is a = [ j + ( j + � j)]/2 = j + 1

2 , j, j − 1
2

for an up, horizontal, or down step, respectively, and there-
fore the weighting factors in (2.4) are ziqa with zi = z, zh

depending on the type of step. The repeated application Hl
k

then produces a superposition of all possible Motzkin paths
of l steps starting at height j, each path weighted by a
factor arising from the products of the above coefficients
in each step; that is, by a factor zlu zlh

h zld qA with A the to-
tal area under the path. States |0〉 and |k〉 [corresponding
to lattice points (i, 0) and (i, k)] constitute a “floor” and a
“ceiling.”

The above correspondence of Motzkin paths with the ac-
tion of Hl

k makes it clear that the m, n matrix element of Hl
k

reproduces the sum of walks with l steps starting at height m
and ending at height n weighted by their area and number of

each type of steps,

〈m| Hl
k |n〉 =

∞∑
lu,lh,ld ,A

zlu+ld zlh
h qANk,mn;lu,lh,ld ,A δ(lu+ lh+ ld − l ),

(2.5)

and the full generating function becomes a matrix element of
the “propagator” (1 − Hk )−1,

Gk,mn(z, zh, q) =
∞∑

l=0

〈m| Hl
k |n〉 = 〈m| (1 − Hk )−1 |n〉 (2.6)

(we assumed small enough |zi| and |q| for convergence of the
sums). It is clear from this form that the generating function
satisfies the convolution property

Gk,mn(z, zh, q) =
k∑

j=0

Gk,m j (z, zh, q)Gk, jn(z, zh, q). (2.7)

For later convenience, we will adopt the simplifying (and
hopefully intuitive) convention that indices k = ∞ (no ceil-
ing) and mn = 00 (excursions) are omitted, while indices
mn = kk (paths “hanging” from the ceiling) are replaced by
overbar; that is,

G∞,mn = Gmn, Gk,00 = Gk, Gk,kk = Gk, G∞,00 = G.

(2.8)

In the following sections we will show that the above
generating function can be expressed as a rational expression
of determinants and will evaluate these determinants by con-
necting them to generalized quantum exclusion statistics of
order 2 and using bosonization.

III. DETERMINANT FORMULA FOR
THE GENERATING FUNCTION

Our goal is the evaluation of the matrix elements of the
propagator matrix (1 − Hk )−1 that appear in the generating
function.
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A. Basic result

The derivation proceeds much along the lines of the corresponding calculation for Dyck paths [10]. We define the secular
matrix,

Dk (zi, q) = 1 − Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − zh −zq1/2 0 0 · · · 0 0

−zq1/2 1 − zhq −zq3/2 0 · · · 0 0

0 −zq3/2 1 − zhq2 −zq5/2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · 1 − zhqk−1 −zqk−1/2

0 0 0 0 · · · −zqk−1/2 1 − zhqk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.1)

with zi denoting collectively z, zh, as well as its determinant and matrix elements of its inverse (generating function),

Fk (zi, q) = det Dk (zi, q), Gk,mn(zi, q) = 〈m| Dk (zi, q)−1|n〉. (3.2)

Clearly, F0(zi, q) = 1 − zh, and we also define F−1(zi, q) = 1 and Fk (zi, q) = 0 for k � −2.
Gk,mn is calculated by the standard formula for the elements of the inverse of a matrix in terms of its cofactors. Applied to

matrix Dk (zi, q) it yields

〈m| Dk (zi, q)−1 |n〉 = (−1)m−n det Dk (zi, q)(nm)

det Dk (zi, q)
, (3.3)

where the complement Dk (zi, q)(nm) is the matrix Dk (zi, q) with the nth row and mth column removed.
The denominator in the right-hand side is Fk (zi, q). The remaining determinant of Dk (zi, q)(nm) can be related to simple secular

determinants. First, observe that the secular matrix with its first n rows and columns truncated, denoted Dk (zi, q)[n], is related to
the secular matrix for a reduced k. Specifically,

Dk (zi, q)[n] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − zhqn −zqn+1/2 0 · · · 0 0

−zqn+1/2 1 − zhqn+1 −zqn+3/2 · · · 0 0

0 −zqn+3/2 1 − qn+2 · · · 0 0
...

...
. . .

...
...

0 0 0 · · · 1 − zhqk−1 −zqk−1/2

0 0 0 · · · −zqk−1/2 1 − zhqk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Dk−n(ziq
n, q). (3.4)

Assuming, for now, m � n, it is easy to see that the complement Dk (zi, q)(nm) becomes block-triangular of the form

Dk (zi, q)(nm) =

⎛
⎜⎝

Dm−1(zi, q) 0 0

A Q 0

B C Dk (zi, q)[n+1]

⎞
⎟⎠ (3.5)

with Q a lower-diagonal matrix. The crucial property of Hk and Dk (zi, q) that leads to this form of Dk (zi, q)(nm) and Q is the fact
that they are paradiagonal with two off-diagonals flanking the diagonal, a feature shared with Dyck paths. This block diagonal
form of Dk (zi, q)(nm) implies

det Dk (zi, q)(nm) = det Dm−1(zi, q) det Q det Dk (zi, q)[n+1], (3.6)

where Q is lower-triangular with diagonal elements −zqm+1/2,−zqm+3/2, . . . ,−zqn−1/2 for m < n and is completely absent if
m = n. Therefore,

det Q = (−z)n−m q
n2−m2

2 . (3.7)

Putting everything together, and using (3.4), we finally obtain

Gk,mn(zi, q) = zn−m q
n2−m2

2
Fm−1(zi, q) Fk−n−1(ziqn+1, q)

Fk (zi, q)
, n � m

= zm−n q
m2−n2

2
Fn−1(zi, q) Fk−m−1(ziqm+1, q)

Fk (zi, q)
, n � m, (3.8)

the second formula following from the symmetry
Gk,mn(zi, q)=Gk,nm(zi, q). The formula holds for all values
of k, m, n under the conventions for Fk for negative values
of k.

Formula (3.8) is our first main result. It is practically
identical in form to the corresponding result for Dyck paths,
the difference between the two kinds of paths being in the
properties of the secular determinant Fk (zi, q). In the next
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section we will calculate this determinant by relating it to a
two-step alternating Dyck process, which will allow us again
to express it as the grand partition function of a quantum
exclusion statistics system but for a more involved spectrum
than the one in the Dyck case.

B. Special cases

A few interesting special cases are worth recording. For
diagonal height-restricted paths starting and ending at the
same height m = n (higher excursions) we have

Gk,nn(zi, q) = Fn−1(zi, q)Fk−n−1(ziqn+1, q)

Fk (zi, q)
. (3.9)

For excursions, in particular, Gk,00 = Gk becomes the ratio of
determinants,

Gk (zi, q) = Fk−1(ziq, q)

Fk (zi, q)
, (3.10)

and for “dual” paths hanging from the ceiling, Gk,kk (zi, q) =
Gk (zi, q) becomes the simpler expression,

Gk (zi, q) = Fk−1(zi, q)

Fk (zi, q)
. (3.11)

Finally, for unrestricted Motzkin excursions (higher and floor
ones) we have

Gnn(zi, q) = Fn−1(zi, q)G(zi, q), G(zi, q) = F (ziq, q)

F (zi, q)
.

(3.12)

C. Duality and recursion relations

The secular matrix and determinant satisfy the duality re-
lation

Dk (ziq
k, q−1) = σDk (zi, q) σ ⇒ Fk (ziq

k, q−1) = Fk (zi, q),
(3.13)

where σmn = δm+n,k is the reflection matrix. This expresses
the symmetry of walks under vertical reflection around the
median line at k/2, mapping |n〉 → |k − n〉. Equation (3.13)
implies the corresponding duality relation for generating
functions,

Gk,mn(zi, q) = Gk;k−n,k−m(ziq
k, q−1). (3.14)

Several generating function recursion relations can be de-
duced directly from the form itself of (3.8), irrespective of the
form of Fk (zi, q). For instance,

Gk,mn(zi, q)

= zqn−1/2 Gk;m,n−1(zi, q) Gk−n(ziq
n, q) (m < n)

= zql+1/2 Gk;l+1,n(zi, q) Gl;m,l (zi, q) (m � l < n).
(3.15)

Further recursion relations, more specific to Motzkin paths,
can be derived by expanding det Dk (zi, q) in terms of its top
row, as in the Dyck path case. We obtain

Fk (zi, q) = (1 − zh)Fk−1(ziq, q) − z2qFk−2(ziq
2, q) (3.16)

which leads to corresponding relations for Gk,nm(zi, q).
Several such relations can be written, and we choose to
present two: for generic paths, applying (3.16) to the term
Fk−n−1(ziqn+1, q) in (3.8) yields

(1 − zhqn)Gk,mn(zi, q)

= zqn−1/2 Gk;m,n−1(zi, q)

+ zqn+1/2 Gk;m,n+1(zi, q) (m < n < k) (3.17)

and for excursions, dividing (3.16) by Fk (zi, q) yields

(1 − zh)Gk (zi, q) = 1 + z2q Gk−1(ziq, q) Gk (zi, q). (3.18)

All the above recursion relations admit geometric interpreta-
tions in terms of decomposing paths into their parts. Figure 2
demonstrates the geometric significance of (3.18), which gen-
eralizes a similar construction for Dyck paths.

D. Top and bottom event markers

Before proceeding to the calculation of the secular de-
terminant in the next section, we derive the expression of
a generalization of the generating function that also keeps
track of the times a path “hits” the floor n = 0 (a “touch-
down”), the total time (in step units) that it spends on the
floor (“creep-down”), the number of times it hits the ceiling
n = k (“touch-up”), and the total time it spends on the ceil-
ing (“creep-up”). For example, the path of Fig. 2 has three
touch-downs, one creep-down, one touch-up, and one creep-
up. These are examples of various “markers” that we can add
to monitor local properties of the paths.

Weighing each touch-down with a factor of t , each creep-
down with a factor of s, each touch-up with a factor of t̄ , and
each creep-up with a factor of s̄, the generating function for
paths from m to n with length l , area A, lh horizontal steps,
a touch-downs, b creep-downs, c touch-ups, and d creep-ups
becomes

Ĝk,mn(t, s; t̄, s̄ |zi, q)

=
∞∑

A,l,a,b,c,d=0

t a sb t̄ c s̄d zl−lh zlh
h qANk,mn;l,lh,A,a,b,c,d (3.19)

(we continue setting zu = zd = z). Clearly, Ĝk,mn(1, 1; 1, 1
|zi, q) = Gk,mn(zi, q).

This generalization can be implemented in our Hamil-
tonian framework with minor modifications. Consider the
Hamiltonian Ĥk (k � 1),

Ĥk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

szh zq1/2 0 0 · · · 0 0

tzq1/2 zhq zq3/2 0 · · · 0 0

0 zq3/2 zhq2 zq5/2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · zhqk−1 t̄ zqk−1/2

0 0 0 0 · · · zqk−1/2 s̄zhqk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.20)

024102-5



ALEXIOS P. POLYCHRONAKOS PHYSICAL REVIEW E 105, 024102 (2022)

k = 5

i

j

FIG. 2. An interpretation of (3.18), written as Gk (zi ) = zhGk (zi ) + z2q Gk−1(ziq) Gk (zi ) + 1, as a “first passage” equation. The first step
of excursions starting at (0,0) can be either horizontal or up. If it is horizontal (not shown in the figure), it contributes a factor of zh and the
remaining path is also a general excursion, accounting for the term zhGk (zi ). If the first step is up (such a path of length 26 is depicted above), it
can be decomposed into a path returning to the floor j = 0 for the first time [first part (green and red) of path] and the remaining (blue) arbitrary
excursion. For paths of length at least two, the first-passage path has one first step and one last step (green), each contributing a factor of zq1/2.
The remaining upper (red) part never dips below j = 1 and can be interpreted as an excursion, but with a ceiling reduced by 1 and an area
increased by its length (shaded plaquettes), contributing the factor Gk−1(ziq), the shift zi → ziq accounting for the extra area. The remaining
(blue) path contributes Gk (zi ). Finally, the trivial path of length zero cannot be decomposed and contributes the term 1. Relations (3.15) also
admit a similar first-passage interpretation.

where Ĥk is the same as Hk but with the |0〉 〈0| element mul-
tiplied by s, the |1〉 〈0| element multiplied by t , the |k − 1〉 〈k|
element multiplied by t̄ , and the |k〉 〈k| element multiplied by
s̄. It should be obvious that Ĥ l

k counts area-weighted paths of
length l , as before, but also multiplies by an appropriate factor
each up- or down-event. Therefore, as before,

Ĝk,mn(t, s, t̄ , s̄ |zi, q) =
∞∑

l=0

〈m| Ĥ l
k |n〉 = 〈m| (1 − Ĥk )−1|n〉.

(3.21)
Note that Ĥk is not symmetric for t, t̄ �= 1. The asymmetry is
due to the fact that paths entering or exiting the floor or the
ceiling are weighted differently and implies Ĝk,mn �= Ĝk,nm if

m, n = 0, k. Nevertheless, we can render Ĝmn fully symmetric
by assigning an extra weight t to paths starting from the floor
and an extra weight t̄ to paths starting from the ceiling, and we
shall adopt this convention. (Another alternative, often used
in the literature, would be to not count the final touch-down
or touch-up of paths ending at 0 or k. However, as we shall
see, our symmetrization convention leads to more compact
expressions.)

Denoting

F̂k (t, s; t̄, s̄ |zi, q) = det(1 − Ĥk ), (3.22)

a calculation entirely analogous to the t = s = t̄ = s̄ = 1 case
yields for 2 � m � n � k − 2,

Ĝk,mn(t, s; t̄, s̄ |zi, q) = zn−m q
n2−m2

2
F̂m−1(t, s; 1, 1|zi, q) F̂k−n−1(1, 1; t̄ , s̄ |ziqn+1, q)

F̂k (t, s; t̄, s̄ |zi, q)
. (3.23)

Ĥk and F̂k are not defined for k < 1. Nevertheless, if we define

F̂0 = t + t̄ − t s̄zh − t̄ szh − t t̄ + t t̄ zh, F̂−1 = t t̄,

F̂k = 0(k � −2), (3.24)

then (3.23) becomes valid for all values of n, m: For m = 1
or n = k − 1, F̂0 as defined in (3.24) reproduces the correct
factors 1 − szh or 1 − s̄zhqk arising from the evaluation of the
corresponding matrix elements of (1 − Ĥk )−1. For n = k, the
last factor in the numerator is absent, but the matrix element
includes an extra factor of t̄ arising from the structure of the
Q matrix appearing in the analogs of (3.5) and (3.6), which
involves the 〈k − 1| Ĥk |k〉 element of Hk , and this factor is
reproduced by F̂−1(1, 1; t̄ , s̄) in (3.23). Finally, for m = 0 the
first factor in the numerator is absent, but by our symmetriza-
tion convention we must include an extra factor of t , which
is reproduced by F̂−1(s, t ; 1, 1). Therefore, conventions (3.24)
make formula (3.23) valid for the full range of values of m, n.

To relate F̂k to Fk , we expand the determinant in terms of
its top row. We obtain, for k � 1,

F̂k (t, s; t̄, s̄ |zi, q) = (1 − szh)F̂k−1(1, 1; t̄ , s̄ |qzi, q)

− t z2qF̂k−2(1, 1; t̄ , s̄ |q2zi, q) (3.25)

and combining with the same formula for s = t = 1 yields

F̂k (t, s; t̄, s̄ |zi, q)

= t F̂k (1, 1; t̄ , s̄ |zi, q)

+ (1 − t − szh + tzh)F̂k−1(1, 1; t̄ , s̄ |qzi, q). (3.26)

Similarly, expanding F̂k in terms of its bottom row gives

F̂k (t, s; t̄, s̄; |zi, q)

= (1 − s̄zhqk )F̂k−1(t, s; 1, 1|zi, q)

− t̄ z2q2k−1F̂k−2(t, s; 1, 1|zi, q) (3.27)

and combining with the same formula for t̄ = s̄ = 1 yields

F̂k (t, s; t̄, s̄ |zi, q)

= t̄ F̂k (t, s; 1, 1|zi, q)

+ (1 − t̄ − s̄zhqk + t̄ zhqk )F̂k−1(t, s; 1, 1|zi, q).
(3.28)
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Finally, applying formula (3.26) for t̄ = s̄ = 1 and inserting
in (3.28) (or vice versa) gives

F̂k (t, s; t̄, s̄ |zi, q)

= t t̄ Fk (zi, q) + t (1 − t̄ − s̄zhqk + t̄ zhqk )Fk−1(zi, q)

+ t̄ (1 − t − szh + tzh)Fk−1(ziq, q)

+ (1− t − szh+ tzh)(1 − t̄ − s̄zhqk + t̄ zhqk )Fk−2(ziq, q).

(3.29)

Note that, with the definitions (3.24), the above formula holds
for all k, including k < 1. (This motivates the somewhat unin-
tuitive form of F̂−1.)

We have thus related the secular determinant of the process
with markers to that of the unmarked process, which will be
calculated in the next section. Applying the above formula for
the terms in (3.23), and also using the expression (3.8) for
Gk,mn, leads to the relation for Ĝk,mn = Ĝk,nm for m � n

Ĝk,mn(t, s; t̄, s̄)

= [t + A0(t, s) Gm−1][t̄ Gk,mn + Ak (t̄, s̄) Gk Gk−1,mn]

Ak (t̄, s̄)[t + A0(t, s) Gk−1]Gk + t̄[t + A0(t, s) Gk]
,

(3.30)

where, for brevity, we suppressed the (common) arguments
zi, q and defined

Ar (t, s) = 1 − t + (t − s) zh qr . (3.31)

Formula (3.30) is our second main result and expresses
the generating function Ĝk,mn in terms of Gk,mn. It is con-
ceivable that a relation between Ĝk,mn and Gk,mn could be
obtained combinatorially, with arguments similar to the ones
of Fig. 2. However, the rather complicated form of (3.30) sug-
gests that such an argument would be quite convoluted. Our
Hamiltonian approach allowed for a relatively straightforward
derivation of this relation without combinatorial ingenuity.

We conclude with a few remarks and special cases. Ĝk,mn

satisfies the floor-ceiling duality relation

Ĝk,mn(t, s; t̄, s̄ |zi, q) = Ĝk;k−m,k−n(t̄, s̄; t, s |ziq
k, q−1).

(3.32)

This is a consequence of the duality relation for F̂k ,

F̂k (t, s; t̄, s̄ |zi, q) = F̂k (t̄, s̄; t, s |ziq
k, q−1), (3.33)

which is obvious from the form of Ĥk (3.20) but also follows
from (3.29) and the corresponding duality (3.13) for Fk . Ex-
pression (3.30) does not appear to respect this duality, as it
does not look symmetric in t, s and t̄, s̄. However, this is an
artifact of the specific form of the expression; using identities
as derived in Sec. III C, and the fact that (3.30) is valid for
m � n, duality is restored.

For zh = 0, Ĝk,mn has no dependence on s and s̄. Indeed, for
zh = 0 the process degenerates to Dyck paths, which cannot
creep over the floor nor over the ceiling. For t̄ = s̄ = 1, only
touch-downs and creep-downs are monitored. Ĝk,mn becomes

Ĝk,mn(t, s; 1, 1) = Gk,mn
t + [1 − t + (t − s)zh] Gm−1

t + [1 − t + (t − s)zh] Gk

(3.34)

and for zh = 0 the above formula reproduces the result for
Dyck paths with touch-downs obtained in Ref. [10].

For s = t , s̄ = t̄ , only the total number of lattice sites on
the floor and on the ceiling are monitored. Remarkably, (3.30)
does not involve zh in that case, other than the implicit depen-
dence through Gk,mn, so the same formula remains valid for
the case of Dyck paths.

For k = ∞ (no ceiling), Gk = 0. The dependence on t̄, s̄
drops, as expected, and Ĝ(t, s) is given by (3.34) with G (the
unrestricted excursions generating function) instead of Gk in
the denominator.

Finally, for

s = t + 1 − t

zh
, s̄ = t̄ + 1 − t̄

zh
qk ⇒ Ĝk,mn = Gk,mn (3.35)

Remarkably, there is a two-parameter family of Hamiltonians
that produce the same generating functions.

IV. TWO-STEP WALK AND EXCLUSION STATISTICS

The calculation of the secular determinant Fk (zi, q) and
of Gk,mn(zi, q) can be most intuitively and conveniently
performed through the connection of the random walk
process with exclusion statistics, as was pointed out in
Ref. [4].

Specifically, the secular determinant det(1 − M) of a para-
diagonal matrix M with zero diagonal and two nonzero
off-diagonals, one (with elements fn) just above the diagonal
and the other (with elements gn) g − 1 steps below the diago-
nal, is given by the grand partition function of noninteracting
particles of exclusion statistics g with single-particle statistical
factors s(n) = e−β(εn−μ), n = 0, 1, 2, . . . (1/β = kB T ) given
by

s(n) = −gn fn fn+1 · · · fn+g−2. (4.1)

The spectral function s(n) encodes the single-particle energy
spectrum Boltzmann factor e−βεn together with the fugacity
parameter x = eβμ. Exclusion g means that no more than
one particle can occupy any set of g adjacent single-particle
states.

The Dyck path Hamiltonian is of the above form. However,
the Motzkin path matrix Hk in (2.3) is actually not of this form,
since it has a nonvanishing diagonal. Nevertheless, it can be
expressed as the grand partition function of a g = 2 exclusion
statistics system. This is achieved by realizing Motzkin paths
as two-step Dyck paths and calculating the generating func-
tion of the two-step process.

A. Two-step Dyck process

Consider a path realized by the alternation of two Dyck
processes (see Fig. 3): one starting at even sites (i, 2 j) and
jumping to odd sites, up to (i + 1, 2 j + 1) with weight z1

or down to (i + 1, 2 j − 1) with weight z2 and another start-
ing at odd sites (i, 2 j + 1) and jumping to even sites up to
(i + 1, 2 j + 2) with weight z2 or down to (i + 1, 2 j) with
weight z1. The full process is height restricted with floor j = 0
and ceiling j = 2k + 2. The (2k + 3)-dimensional Hamilto-
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2k+2=8

|3

j

|1

|0

i

FIG. 3. The two-step Dyck process: (green) steps (2i, 2 j + 1) → (2i + 1, 2 j + 1 ± 1) with amplitudes z1, z2 alternating with (red) steps
(2i + 1, 2 j) → (2i + 2, 2 j ± 1) with reversed amplitudes z2, z1 on a lattice with ceiling 8. The points on the (blue) sublattice (2i, 2 j + 1)
generate a Motzkin path (thick meander) of length 12 from m = 0 to n = 1 with ceiling k = 3, such that 2k + 2 = 8.

nian transition matrix of the full process is

H2D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 z1 0 0 0 · · · 0 0

z1 0 z2 0 0 · · · 0 0

0 z2 0 z1qo 0 · · · 0 0

0 0 z1qo 0 z2qo · · · 0 0

0 0 0 z2qo 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 0 z2qk
o

0 0 0 0 0 · · · z2qk
o 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2)

with qo a new area-counting parameter. Denoting the basis
states of this (2k + 3)-dimensional Hilbert space | j〉〉, j =
0, 1, . . . , 2k + 2, H2D acts on them as

〈〈2 j |H2D = z1q j
o〈〈2 j + 1 | + z2q j−1

o 〈〈2 j − 1 |
〈〈2 j + 1 |H2D = z2 q j

o〈〈2 j + 2 | + z1q j
o〈〈2 j | (4.3)

with | − 1〉〉 ≡ 0 ≡ |2k + 3〉〉.
It is clear that the path “distilled” from the above process

by considering the height of the walk only at the odd sites
|2 j + 1〉〉, j = 0, 1, . . . , k every second time step is a Motzkin
path of restricted height k (see Fig. 3). Specifically, acting with
H2D twice on an odd state,

〈〈2 j + 1 |H2
2D = z1z2 q2 j+1

o 〈〈2 j + 3 | + (
z2

1 + z2
2

)
q2 j

o 〈〈2 j + 1 |
+ z1z2 q2 j−1

o 〈〈2 j − 1 |. (4.4)

Defining | j〉 = |2 j + 1〉〉, j = 0, 1, . . . , k, the above relation
implies that H2

2D acts on the (k + 1)-dimensional subspace | j〉
as the Motzkin Hamiltonian,

〈 j| H2
2D = zq j+1/2 〈 j + 1| + zhq j 〈 j| + zq j−1/2 〈 j − 1| ,

(4.5)
provided we identify

q = q2
o, z = z1z2,

zh = z2
1 + z2

2 ⇒ z2
1,2 = zh

2
±
√

z2
h

4
− z2. (4.6)

(Note that the choice of roots for z1 and z2 in (4.6), or equiv-
alently the order of the two Dyck processes, is irrelevant; the

Motzkin process does not depend on that choice.) We will also
adopt the (z, ω) parametrization

z2
1 = zω, Z2

2 = zω−1,

ω = zh

2z
+
√

z2
h

4z2
− 1 ⇒ zh = z(ω + ω−1) (4.7)

so that powers of z count the total number of steps: zlu zlh
h zld =

zlu+lh+ld (ω + ω−1)lh .
We note that the complementary process restricted to even

states also generates a Motzkin process of height k + 1.
The amplitudes of the steps |0〉〉 → |0〉〉 and |2k + 2〉〉 →
|2k + 2〉〉, however, are truncated, since the intermediate steps
|0〉〉 → | − 1〉〉 and |2k + 2〉〉 → |2k + 3〉〉 are missing and do
not contribute to the amplitude. The odd states, on the other
hand, provide a faithful realization of Motzkin paths with the
proper weights on identifying states and parameters as in (4.5)
and (4.6).

It remains to connect the secular determinant of the
Motzkin process with that of the two-step Dyck process. To
this end, define the projection operator on odd states P and
the projector on even states P̄ = 1 − P. Clearly,

H2DP = P̄H2D, H2DP̄ = PH2D,

PP̄ = P̄P = 0, P + P̄ = 1. (4.8)

The Motzkin Hamiltonian Hk and the “complementary” quasi-
Motzkin Hamiltonian H̄k+1 are, up to zero modes when acting
on the “wrong” subspace,

Hk = H2
2DP, H̄k+1 = H2

2DP̄ (4.9)

and therefore

det(1 − Hk ) = det
(
1 − H2

2DP
) = det(1 − H2DP̄H2DP)

= det(1 − H2DPH2DP̄) = det(1 − H̄k+1).

(4.10)

The zero modes are irrelevant, due to the presence of the unit
matrix, so the secular determinants of the Motzkin process and
its complement in their respective subspaces are equal. Thus

det
(
1 − H2

2D

) = det
[(

1 − H2
2D

)
P + (

1 − H2
2D

)
P̄
]

= det(1 − Hk ) det(1 − H̄k+1) = det(1 − Hk )2.

(4.11)
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Finally, (4.8) implies that H2D anticommutes with the parity
matrix � = P̄ − P, �2 = 1. Therefore,

det(1 − H2D) = det(1 + �H2D�)

= det[�(1 + H2D)�] = det(1 + H2D) (4.12)

and

det
(
1 − H2

2D

) = det(1 − H2D) det(1 + H2D)

= det(1 − H2D)2. (4.13)

Comparing with (4.11) we eventually obtain

det(1 − H2D) = det(1 − Hk ) (4.14)

(the sign is fixed by continuity from zi = 0).
The end result is that we can calculate the secular determi-

nant Fk (zi, q) by evaluating instead the secular determinant of
the two-step Dyck path Hamiltonian.

B. Two-step secular determinant and bosonization

The two-step Hamiltonian is of the g = 2 exclusion statis-
tics form. The spectral parameters can be read off from the
product of conjugate off-diagonal elements:

s(2n) = −z2
1 q2n

o , s(2n + 1) = −z2
2 q2n

o , n = 0, 1, . . . , k.

(4.15)
Calling, for ease of distinction, s(2n) = α(n), s(2n + 1) =
β(n), and remembering that z2

1,2 = zω±1, q2
o = q, the spectral

parameters (4.15) are

α(n) = −zω qn, β(n) = −zω−1qn, n = 0, 1, . . . , k.

(4.16)

The secular determinant Fk (zi, q) is the grand partition func-
tion of exclusion-2 particles in levels with spectral parameters
s(0), s(1), . . . , s(2k + 1) in that order. Particles placed on
these levels must have at least one empty level between them.
Calling Zk,N the N-body partition function in the above spec-
trum, the grand partition function Zk becomes

Zk =
k+1∑
N=0

Zk,N =
k+1∑
N=0

∑
{0�ni�ni+1−2�2k−1}

s(n1)s(n2) · · · s(nN ),

(4.17)
where ni = 0, 1, . . . , 2k + 1 mark the levels on which parti-
cles are placed, in increasing order, and the condition ni �
ni+1 − 2 in the partition function ZN enforces exclusion-2
statistics. It is clear that at most k + 1 particles can be accom-
modated in the available 2k + 2 levels.

In the case of Dyck paths, the spectral factors s(n) corre-
sponded to the equidistant spectrum of a truncated harmonic
oscillator and the partition function could be found using
bosonization. For general exclusion statistics g, bosonization
is achieved by redefining the occupied level numbers ni �
ni+1 − g as

ni = 
i + g(i − 1) ⇒ 
i � 
i+1. (4.18)

This reduces the “gap” between successive occupied levels 
i

and 
i+1 by g, making the new occupation numbers 
i obey

α(0)

α(1)

α(9)

β(2)

β(5)

β(6)

β(7)

β(10)

α(0)

α(1)

α(2)

α(3)

β(0)

β(1)

β(2)

β(3)Bosonization

Exclusion-2 particles Bosons

FIG. 4. An example of bosonization for a state of g = 2, k = 10,
N = 8. In the exclusion-2 picture, on the left, there are 11 (green)
α levels and 11 (blue) β levels. The distance between successive α

or β levels represents a factor of q, while the distance between an α

level and the next β level represents a factor of ω−2. Particles, repre-
sented by (red) dots, cannot occupy the same or neighboring levels,
irrespective of level type. Bosonization shrinks k to k − (N − 1) = 3
and lowers the ith lowest particle by i − 1 steps in its own level
type: α(0) → α(0), α(1) → α(1 − 1) = α(0), β(2) → β(2 − 2) =
β(0), β(5) → β(5 − 3) = β(2), and so on, leading to the bosonic
state on the right. The number of particles in α levels (Nα = 3) and β

levels (Nβ = 5) is preserved. The total “height” of particles has been
reduced by N (N − 1)/2 = 28, leading to a factor of qN (N−1)/2 = q28

relating the g = 2 state to the bosonic state.

bosonic statistics. The N-body spectral factor becomes

s(n1)s(n2) · · · s(nN ) = s(
1)s(
2 + g) · · · s(
N + (N − 1)g).
(4.19)

In general, this is no simpler than the expression in terms of
ni. Bosonization becomes useful for an equidistant spectrum,
for which s(n) = aqn for some a, q. In that case (4.19) gives

s(
1)s(
2 + g) · · · s(
N + (N − 1)g)

= qg N (N−1)
2 s(
1)s(
2) · · · s(
N ) (4.20)

and the N-body exclusion-g partition function Z (g)
N becomes

the bosonic one Z (B)
N up to an overall coefficient

Z (g)
N = qg N (N−1)

2 Z (B)
N . (4.21)

Remarkably, bosonization also works for the two-step
spectrum of the Motzkin process, although the spectrum cor-
responding to s(n) is not equidistant. The redefinition (4.18)
for the two-step Dyck (i.e., Motzkin) case, with g = 2, in-
volves a shift by an even integer, so it maps α levels to α levels
and β levels to β levels (see Fig. 4):

ni = 
i + 2(i − 1) so: 
i = 2li :

s(ni ) = α(li + i − 1) = qi−1α(li ) = qi−1s(
i)


i = 2li + 1 : s(ni ) = β(li + i − 1) = qi−1β(li )

= qi−1s(
i ). (4.22)
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Consequently, s(ni ) = qi−1s(
i) and the relation (4.21) re-
mains valid. The range of 
i, though, is reduced to
0, 1, . . . , 2k + 1 − 2(N − 1). Therefore,

Zk =
k+1∑
N=0

Zk,N =
k+1∑
N=0

q
N (N−1)

2 Z (αβ )
k−N+1,N , (4.23)

where Z (αβ )
k−N+1,N is the partition function of bosons distributed

to two towers of equidistant levels, α(n) and β(n), with level
numbers in each li = 0, 1, . . . , k − N + 1. The partition func-
tion for fixed numbers of particles Nα and Nβ in each tower
factorizes. The full grand partition function, however, does
not, due to the factor qN (N−1)/2 that involves Nα + Nβ = N ,
and the fact that each tower contains k − Nα − Nβ + 1 levels,
coupling the two towers.

C. Calculation of the secular determinant

We now have all the components for calculating Zk =
det(1 − H2D) = Fk (zi, q). The bosonic partition function of N
particles in a truncated equidistant spectrum s(n) = aqn, n =
0, 1, . . . , k is (see Ref. [10] for other alternative expressions)

Z (B)
k,N = aN

N∏
j=1

1 − q j+k

1 − q j
= aN

k∏
j=1

1 − q j+N

1 − q j
. (4.24)

Applying the above to towers of type α or β with spectra as
in (4.16), for Nα and Nβ particles and k → k − N + 1, N =
Nα + Nβ , we have

Z (α)
k−Nα−Nβ+1,Nα

= (−zω)Nα

Nα∏
j=1

1 − q j+k−Nα−Nβ+1

1 − q j

= (−zω)Nα

k−Nα−Nβ+1∏
j=1

1 − q j+Nα

1 − q j

Z (β )
k−Nα−Nβ+1,Nβ

= (−zω−1)Nβ

Nβ∏
j=1

1 − q j+k−Nα−Nβ+1

1 − q j

= (−zω−1)Nβ

k−Nα−Nβ+1∏
j=1

1 − q j+Nβ

1 − q j

(4.25)

and

Zk =
Nα+Nβ�k+1∑

Nα,Nβ=0

q
(Nα+Nβ )(Nα+Nβ −1)

2 Z (α)
k−Nα−Nβ+1,Nα

Z (β )
k−Nα−Nβ+1,Nβ

.

(4.26)

Using either the first or the second expressions in (4.25) and
changing summation variables we obtain for Zk = Fk (zi, q)
the two alternative forms

Fk (zi, q) =
k+1∑
N=0

(−z)N
N∑

n=0

ωN−2n
n∏

j=1

q
N−1

2 − q j+k− N−1
2

1 − q j

×
N−n∏
l=1

q
N−1

2 − ql+k− N−1
2

1 − ql

=
k+1∑
N=0

(−z)N q
N (N−1)

2

N∑
n=0

ωN−2n

×
k−N+1∏

j=1

(1 − q j+n)(1 − q j+N−n)

(1 − q j )2
. (4.27)

Although ω can be complex, the above expressions are invari-
ant under ω → ω−1 = ω∗ (on n → N − n, for real z) and thus
are real. In fact, we can use this property to express Fk (zi, q)
in terms of Chebyshev polynomials Tn(zh/2z). Adding the
expressions for ω and ω−1 in (4.27) and (4.28) we obtain

Fk (zi, q) =
k+1∑
N=0

(−z)N
N∑

n=0

T|2n−N |

(
zh

2z

) n∏
j=1

q
N−1

2 − q j+k− N−1
2

1 − q j

×
N−n∏
l=1

q
N−1

2 − ql+k− N−1
2

1 − ql

=
k+1∑
N=0

(−z)N q
N (N−1)

2

N∑
n=0

T|2n−N |

(
zh

2z

)

×
k−N+1∏

j=1

(1 − q j+n)(1 − q j+N−n)

(1 − q j )2
. (4.28)

Equations (4.27) and (4.28) are our third main result. Using
the above expressions for Fk (zi, q) in (3.8), we obtain the
generating function of Motzkin paths Gk,mn(zi, q).

Expressions (4.28) are explicit polynomials in z, zh. For
even N , only even Chebyshev polynomials appear with de-
grees 0 up to N , leading to polynomials in z, zh of total degree
N and terms from zN

h to zN . For odd N , only odd Chebyshev
polynomials appear, leading again to total degree N polyno-
mials in z, zh but now with terms from zN

h to zN−1zh. This is
related to the fact that excursions with an odd number of steps
cannot consist entirely of up and down steps (factors z) and
must contain at least one horizontal step (zh).

Finally, we point out that the products in the above formu-
las, as well as in other formulae in this paper, can be expressed
in terms of the q-Pochhammer symbol (a; q)n, but we will not
do this transcription.

D. Checks and special cases

A few checks can be performed on formulas (4.27)
and (4.28), reducing them to known cases.

(case a) Identical underlying Dyck processes: z1 = zD q1/2
D

,
z2 = zD q3/2

D
, qo = q2

D. This reduces the two-step process (4.2)
into a standard Dyck path process with parameters zD , qD .
From (4.6) and (4.15) the above choices imply

q = q4
D
, z = z2

D
q2

D
, Zh = z2

D

(
qD + q3

D

)
,

ω = qD ; s(n) = −z2
D
q2n+1

D , (4.29)

where s(n) is the standard equidistant spectrum of the
Dyck process. Equation (4.27) reproduces the Dyck path
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determinant given in Ref. [10] on use of the identity

N∑
n=0

qn
k∏

j=1

(1 − q2( j+n) )(1 − q2( j+N−n) )

(1 − q2 j )2
=

2k+1∏
j=1

1 − q j+N

1 − q j
.

(4.30)
(case b) q = 1: The generating function accounts only for

length and type of steps. Fk (zi, 1) degenerates to

Fk (zi, 1)

=
k+1∑
N=0

(−zω)N
N∑

n=0

ω−2n

(
k + 1 − N + n

n

)(
k + 1 − n

N − n

)
.

(4.31)

(case c) zh = 0: The horizontal step is suppressed and the
process degenerates into Dyck paths. Equation (4.16) implies
ω = i and α(n) = −β(n) = −izqn. This actually eliminates
all odd N from the sum in (4.27) and (4.28) and reproduces
the Dyck path determinant, as demonstrated in the next sub-
section.

(case d) zh = z, weighting all steps equally. Equa-
tion (4.16) implies

ω = 1

2
+ i

√
3

2
= eiπ/3. (4.32)

In this case, too, the determinant assumes a special form.
Cases c and d are instances of a subset of values of z, zh for

which the grand partition function admits a special interpreta-
tion and the determinant has special properties. We treat these
special cases in the next subsection.

(case e) k = ∞ (no ceiling). In this case the formula sim-
plifies to

Fk (zi, q) =
k+1∑
N=0

(−z)N q
N (N−1)

2

N∑
n=0

n∏
j=1

ω

1 − q j

N−n∏
l=1

ω−1

1 − ql
.

(4.33)

E. A “dual” form of the determinant and cyclic cases

An alternative form for the secular determinant Fk (zi, q)
can be obtained by considering the bosonized system, in-
stead of two “vertical” towers of levels, α(n) and β(n) with
k − N + 2 levels each, as k − N + 2 “horizontal” sets of two
levels each. Calling Nj the number of particles in set j with
levels α( j), β( j) ( j = 0, 1, . . . , k − N + 1), the Nj-particle
bosonic partition function for set j is

Z (B)
j;Nj

=
Nj∑

n=0

α( j)nβ( j)Nj−n

= (−zω−1)Nj q jNj

Nj∑
n=0

ω2n

= (−zω−1)Nj q jNj
1 − ω2(Nj+1)

1 − ω2
. (4.34)

Accounting for the factor qN (N−1)/2 relating the bosonic to
the exclusion-2 partition function, the grand partition function

(secular determinant) becomes

Fk (zi, q)

=
k+1∑
N=0

(−zω−1)N q
N (N−1)

2

∑
{∑Nj=N}

k−N+1∏
j=0

q jNj
1 − ω2(Nj+1)

1 − ω2
.

(4.35)

This form may look less useful than (4.27) or (4.28), as it in-
volves multiple sums, but is better in revealing the structure of
the special systems we will study in the sequel. Enforcing the
constraint δ(

∑
j Nj − N ) in terms of an exponential integral,

and harmlessly extending the summation range of the Nj to
infinity, the above can also be rewritten as

Fk (zi, q) =
∫ 2π

0
dθ

k+1∑
N=0

(−ze−iθ )N q
N (N−1)

2

×
k−N+1∏

j=0

1

(1 − ω−1eiθ q j )(1 − ω eiθ q j )
. (4.36)

We now focus our attention to “cyclic” walks with param-
eters such that ω2 is a root of unity; that is,

ω = eiπ p/r or zh = 2z cos
π p

r
,

r = 1, 2, . . . , p, r coprime, (4.37)

where p = 1, r = 2 corresponds to case c of the previous
subsection, while p = 1, r = 3 corresponds to case d. For
such values of ω2 the ω-dependent ratio inside the product
in (4.35) is periodic in Nj with period r and vanishes for
Nj = −1(mod r).

To capitalize on this property, we put Nj = rn j + 
 j , n j =
0, 1, . . . , 
 j = 0, 1, . . . , r − 2; (4.35) becomes

Fk (zi, q) =
k+1∑
N=0

(−zω−1)N q
N (N−1)

2

N∑
{ r

∑
n j +

∑

 j =N


 j =0,1,...,r−1
}

k−N+1∏
j=0

qr jn j

×
k−N+1∏

j=0

q j
 j
1 − ω2(
 j+1)

1 − ω2
. (4.38)

We can interpret n j as counting bosons and 
 j as counting
“parafermions” of order r − 2 with the total number of bosons
n and parafermions 
 satisfying N = rn + 
. By parafermions
we mean particles with the property that up to r − 2 of them
can be placed in a single-particle level. Then the first product
in (4.38) is the partition function of n bosons in levels qr j

while the second product is the corresponding parafermionic
partition function. Reverting to (4.24) for the bosonic partition
function, and putting N = rn + 
,

Fk (zi, q) =
∑
n,


(−zω−1)rn+
q
(rn+
)(rn+
−1)

2 Z {r−2}
k−rn−
+1(
)

×
n∏

j=1

1 − qr( j+k−rn−
+1)

1 − qr j
(4.39)
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with Z {r−2}
k−rn−
+1(
) the parafermionic partition function for 


particles

Z (r−2)
k−rn−
+1(
) =

r−2∑

 j =0

{∑ 
 j =
}

k−rn−
+1∏
j=0

q j
 j
1 − ω2(
 j+1)

1 − ω2
. (4.40)

Wecan now examine some special cases.
(case c) r = 2, p = 1 ⇒ ω = i: Only 
 j = 0 survives, so

there are no parafermions. We get

Fk (z, zh = 0, q) =
∑

n

(zi)2nqn(2n−1)
n∏

j=1

1 − q2( j+k−2n+1)

1 − q2 j

=
∑

n

(−z2)n(q2)n(n−1)

×
n∏

j=1

(q2)1/2 1 − (q2) j+k−2n+1

1 − (q2) j
. (4.41)

This is precisely the secular determinant of the Dyck path
process calculated in Ref. [10] with length parameter z2 and
area parameter q2, as expected.

(case d) r = 3, p = 1 ⇒ ω = eiπ/3: Here 
 j = 0, 1, and
parafermions become ordinary fermions. The fermionic par-
tition function Z (F )

k−3n−
+1(
) can itself be bosonized. Omitting
the intermediate steps, the final result is

Fk (z, z, q) =
∑
n,


(−1)nz3n+
q
3n(3n−1)

2 +3n
+
(
−1)

×
n∏

j=1

1 − q3( j+k−3n−
+1)

1 − q3 j


∏
s=1

1 − qs+k−3n−2
+2

1 − qs

(4.42)

(the summation in n, 
 is over the values for which the sum-
mand does not vanish). This expression is preferable to the
general expression (4.27) or (4.28) only in that it is manifestly
real and a polynomial in z, q with integer coefficients.

V. CLUSTER EXPRESSIONS OF GENERATING
FUNCTIONS

In the previous section we obtained relatively explicit for-
mulas for Fk (zi, q) and therefore for Gk,mn(zi, q). Their form,
however, is rather complicated, and their dependence on zh

through ω is obscured. In this section we will take further
advantage of the connection to exclusion statistics to express
the logarithm of the generating function ln Gk,mn in terms of
cluster coefficients.

A. Cluster coefficients

For a grand partition function Z , cluster coefficients ba,
a = 1, 2, . . . , are defined in terms of the expansion of the
grand potential lnZ (x) in terms of the fugacity parameter
x = eβμ,

lnZ (x) = ln

( ∞∑
N=0

xN ZN

)
=

∞∑
a=1

xa ba. (5.1)

In our case, extracting the factor xN = (−z)N out of the N-
body partition function, Zk,N = (−z)N Z̃k,N [see Eqs. (4.27)
and (4.28)] as a fugacity parameter, we have the cluster ex-
pansion

ln Fk (zi, q) = ln

[
k+1∑
N=0

(−z)N Z̃k,N (ω, q)

]

=
∞∑

a=1

(−z)a bk,a(ω, q). (5.2)

The expression of the cluster coefficients for general exclusion
statistics g was derived in [2,4]. For exclusion g = 2, relevant
to our case, with spectral parameter s(r), they are expressed
as a sum over all compositions of the integer a and read

(−z)abk,a = (−1)a−1
∑

l1 ,l2 ,...,l j ; j�2k+2
compositions of a

c2(l1, l2, . . . , l j )

×
2k+2− j∑

r=0

j∏
i=1

sli (r + i − 1). (5.3)

(Compositions are partitions where the order of terms also
matters.) In our case, since the spectrum has 2k + 2 states,
only compositions with at most 2k + 2 components are pos-
sible. The combinatorial coefficients c2(l1, l2, . . . , l j ) depend
only on the composition and the statistics, and for g = 2 they
are

c2(l1, l2, . . . , l j ) = 1

l1

j−1∏
i=1

(
li + li+1 − 1

li+1

)

=
∏ j−1

i=1 (li + li+1 − 1)!∏ j−1
i=2 (li − 1)!

∏ j
i=1 li!

. (5.4)

The dependence of bk,a on zi and q is entirely through the
dependence of s(r) on these parameters.

B. Cluster expansion of the generating function

The logarithm of the generating function ln Gk,mn(zi, q)
follows from (3.8) as

ln Gk,mn(zi, q) = (n − m) ln z + n2 − m2

2
ln q

+ ln Fm−1(zi, q) + ln Fk−n−1(ziq
n+1, q)

− ln Fk (zi, q) (5.5)

for m � n and similarly for m � n. The terms in the sec-
ond line are all given by (5.2) and (5.3), with a common
c2(l1, l2, . . . , l j ), differing only in the last sums over r in (5.3).
These sums for the three terms can be brought to a common
form by noticing that the dependence of the spectral factors
s(r) on zi and q implies

s(qmzi; r) = s(zi; r + 2m) (5.6)
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as is clear from (4.15) or (4.16). The three sums combine as

ln Gk,mn(zi, q) = (n − m) ln z + n2 − m2

2
ln q

+
∞∑

a=1

(−1)a−1
∑

l1 ,l2 ,...,l j
compositions of a

c2(l1, l2, . . . , l j )

×
(

2m− j∑
r=0

+
2k+2− j∑
r=2n+2

−
2k+2− j∑

r=0

)

×
j∏

i=1

sli (r + i − 1) (5.7)

and telescoping the sums we finally obtain

ln Gk,mn(zi, q) = (n − m) ln z + n2 − m2

2
ln q

+
∞∑

a=1

(−1)a
∑

l1 ,l2 ,...,l j
compositions of a

c2(l1, l2, . . . , l j )

×
min (2k+2− j,2n+1)∑
r=max (2m+1− j,0)

j∏
i=1

sli (r + i − 1) (5.8)

with the understanding that sums vanish when their lower
limit exceeds their upper limit. It is clear that only composi-
tions with length j up to 2k + 2 will contribute. Since s(r) is
proportional to z, it is clear that the above sum is an expansion
in terms of za.

To derive an explicit expression, we separate the sums over
r in (5.8) into even (r = 2s) and odd (r = 2s + 1) terms. After
some manipulations we obtain the form

ln Gk,mn(zi, q) = (n − m) ln z + n2 − m2

2
ln q

+
∞∑

a=1

zaPk,mn;a(q; ω) (5.9)

with

Pk,mn;a(q; ω)

=
∑

l1 ,l2 ,...,l j
compositions of a

c2(l1, l2, . . . , l j ) q
1
2
∑ j

i=1 (i−1)li − 1
2 S(l2,l4,... )

×
⎧⎨
⎩ωa−2S(l2,l4,... )

min(�k+1− j
2 �,n)∑

s=max(�m+1− j
2 �,0)

qsa

+ω−a+2S(l2,l4,... ) qS(l2,l4,... )

min(�k+ 1− j
2 �,n)∑

s=max(�m+ 1− j
2 �,0)

qsa

⎫⎬
⎭, (5.10)

where �·� is the “floor” (integer part) function and
S(l2, l4, . . . ) is the sum of even-order li

S(l2, l4, . . . ) =
� j

2 �∑
i=1

l2i. (5.11)

Pk,mn;a(q; ω) is necessarily real, although this is rather ob-
scured in the expression (5.10): For ω complex, each term

in (5.10) is complex, and terms from different compositions
l1, . . . , l j combine to a real. The actual form of c2(l1, . . . , l j )
is needed to achieve reality.

Pk,mn;a(q; ω) is a polynomial in q since the fractional pow-
ers of q combine to an integer:

1
2

j∑
i=1

(i − 1)li − 1
2 S(l2, l4, . . . ) = l3 + l4 + 2l5 + 2l6 + . . . .

(5.12)
An examination of the terms in (5.10) determines its maximal
power in q (degree) as

max power in q ofPk,mn;a(q)

=
{

an + ⌊
a2

4

⌋
, a � 2k − 2n

ak − (k − n)2, a > 2k − 2n
. (5.13)

The minimal power in q (with nonzero coefficient) can also be
extracted:

min power in q ofPk,mn;a(q) =
{

am − ⌊
a2

4

⌋
, a � 2m

m2, a > 2m
.

(5.14)

The above results have clear geometric interpretations
(see Fig. 5): The prefactors in the expression (3.8) for
Gk,mn(z, ω, q), leading to the log terms in (5.9), correspond
to the minimal length n − m that a path connecting points at
heights m and n can have, and the minimal area n2/2 − m2/2
that such a straight path will have. Terms za correspond to an
additional length a over the minimal one, and the exponen-
tial exp Pk,mn;a(q; ω) accounts for the additional area of such
nonminimal paths.

Since the degree of Pk,mn;a(q; ω) (5.13) is a convex function
of a, the degree of the corresponding terms of order za in
exp Pk,mn;a(q; ω) is the same as that of Pk,mn;a(q; ω). There-
fore, (5.13) gives the maximal excess area of a path of length
n − m + a: The upper expression corresponds to a “roof” path
that cannot touch the ceiling, for which the height restriction
is irrelevant, while the lower expression corresponds to a
“flattened roof” path that grazes the ceiling.

Similarly, since the lowest power of Pk,mn;a(q; ω) in (5.14)
is a concave function of a, the minimal power in q of the
term of order za in exp Pk,mn;a(q; ω) is the same as that of
Pk,mn;a(q; ω). Therefore, Eq. (5.14) gives the minimal excess
area of a path of length n − m + a: The upper expression
corresponds to a “gorge” path that cannot touch the floor,
while the lower expression corresponds to a “valley” path that
creeps on the floor (see Fig. 5).

The above expressions depend only on n (for maximal
area) or m (for minimal area). However, the expressions of
the total maximal or minimal area in terms of the total length
l = n − m + a become symmetric in n, m:

Amax =
⎧⎨
⎩
⌊(

m+n+l
2

)2⌋ − m2+n2

2 , l + m + n � 2k

k(m + n + l − k) − m2+n2

2 , l + m + n > 2k
,

(5.15)

Amin =
⎧⎨
⎩

m2+n2

2 − ⌊(
m+n−l

2

)2⌋
, l � m + n

m2+n2

2 , l > m + n
. (5.16)
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k =5

i

j

FIG. 5. Minimal area Motzkin meanders of various lengths from m = 3 to n = 4: The first one (black) of length l = 5 is an unrestricted
“gorge,” while the second one (blue) of length l = 6 necessitates a horizontal step at the bottom. Their area of 11.5 and 12.5 is given by the top
expression in (5.16). The third one (red) of length l = 11 is a “valley” restricted by the floor. Its area of 12.5 is given by the bottom expression
in (5.16). Paths of maximal area restricted by the ceiling have similar but inverted shapes.

It can be checked that the above reproduce the actual areas of
the maximal and minimal area paths. When m + n + l is odd,
in which case the top or bottom of unrestricted paths acquires
a single horizontal link, the floor function adds a correction of
± 1

4 corresponding to the truncated triangular part.

VI. CONCLUSIONS AND DISCUSSION

The use of a Hamiltonian framework in combination with
the two-step construction, exclusion statistics, and bosoniza-
tion allowed for the derivation of generating functions for
Motzkin paths including dual variables for length, area, as
well as various top and bottom “events.” The relation to quan-
tum statistics of exclusion g = 2 identified in Ref. [10] for
Dyck paths persists in the case of Motzkin paths, allowing the
calculation of these functions and providing cluster decom-
position techniques used to derive alternative expressions for
the logarithm of the generating functions in terms of sums of
compositions.

It is interesting to compare our results with other work
done in the literature and put them in the proper context.
The generating functions studied in this paper are essen-
tially embedded in the general class of Motzkin polynomials,
defined as sums over paths with height- and step-specific
weights [21,23]. Specifically, if each up, horizontal, or down
step ending at height j is assigned a variable u j , h j , and
d j = 1, respectively, and walks are weighted by the product
of such variables, then (using a notation consistent with our
conventions) P(m,n)

l|k ({u j}, {h j}) is a polynomial in the variables
h0, h j, u j , j = 1, 2, 3, . . . , arising from summing the weights
of all meanders of length l starting at m and ending at n with
a ceiling k, while Pl ({u j}, {h j}) is the corresponding sum over
unrestricted excursions. It should be clear that G∞,00 = G is
related to Pl as

G(zi, q) =
∞∑

l=0

Pl ({u j}, {h j}),

with u j = z2q2 j−1, h j = zhq j+1/2. (6.1)

[An analogous relation between Gk,mn and P(m,n)
l|k fails, since

the convention d j = 1 only considers the area of up-links,
which is not related to that of down-links if m �= n.] In fact,
an explicit combinatorial expression for the polynomial Pl

involving multiple sums was given in Refs. [21,23]. Adapting
it to our case and notation it implies

G(zi, q) =
∑

{mj ,n j�0}

1

(1 − zh)n1+1

∞∏
i=1

(
mi + ni+1 + ni − 1

mi, ni+1

)

× (z2q2i−1)ni (zhqi )mi (6.2)

with the usual definition of the choose-symbol(
M

N, K

)
= M!

N! K! (M − N − K )!
. (6.3)

(The restriction
∑

i 2ni + ∑
j m j = l in Ref. [21] is relaxed

since we sum over all l . We also rearranged the factors and
performed the sum over m0.) This is a compact-looking ex-
pression, but in fact it involves infinitely many sums. (We
also have no expression for the more general Gk,mn.) Our
formulas (4.27) and (4.28), on the other hand, involve only
double sums. We can, actually, evaluate the sums in (6.2)
sequentially, in the order m1, n1, m2, n2 . . . , but at the end we
obtain an infinitely nested expression, essentially the Rogers-
Ramanujan-like continued fraction that will be given in the
sequel.

Generating functions counting the number of horizontal
steps lh were considered in Ref. [24] by including a weight
t l j but not the remaining steps nor the area. Interestingly,
in the same paper the first and second moments of the area
under the paths were considered and shown to satisfy specific
recursion relations. These would correspond to the O(ε) and
O(ε2) terms in an ε expansion of our G(z = 1, zh = 1, q =
eε ). Quantities related to path area were also considered in
Ref. [28].

The work whose results come closest to ours is Ref. [26],
which studied Motzkin excursions (floor-to-floor paths), also
counting touch-ups and touch-downs (although nor creep-ups
and creep-downs), and calculated the length-area generating
function. The results were obtained by combinatorially de-
riving recursion relations analogous to (3.18) and solving
them using various ingenious mathematical techniques. The
resulting generating function is then a ratio of quantities
expressed in terms of generalized hypergeometric functions.
These results should match our results (3.10), (3.30) (with
m = n = 0 and thus Gm−1 = 0, and s = s̄ = 1), and, in
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particular, (4.27) and (4.28). However, the expressions
in (4.27) and (4.28) look quite different than the ones in
Ref. [26], involving sums of Chebyshev polynomials rather
than generalized hypergeometric functions. Such differences
of form are expected, given the nontrivial nature of the results
and the various identities that could be used in reshaping them,
and already [26] noted that their results for the half-plane
(k = ∞, no ceiling) and the slit (k finite) looked “dramatically
different.” The reconciliation between our results and those of
Ref. [26] is an open interesting mathematical task.

The generating functions derived in the present work
satisfy several recursion relations, as stated in Sec. III C.
Such relations for Motzkin polynomials were derived in sev-
eral papers and invariably lead to expressions related to the
Rogers-Ramanujan continued fraction. Specifically, the recur-
sion relation (3.18) for Gk (z, q) can be iterated leading to a
continued fraction. To put it in a clean form, we define

λ = ω + ω−1 = zh

z
, w = z−1, u = q−1,

gk (w) = zGk (z, ω, q). (6.4)

In this parametrization, the recursion relation becomes

gk (w) = 1

w − λ − gk−1(uw)
. (6.5)

Iterating this relation with the final condition G−1(z, q) = 0
we obtain

gk (w) = 1

w − λ − 1
wu−λ− 1

··· 1
wuk−λ

. (6.6)

This is a truncated version of a continued fraction related
to the Rogers-Ramanujan’s identity. Other forms, involving
directly Gk , are readily obtainable.

We conclude with some possible directions for future re-
search. The most interesting and relevant next task would be to
use the results in this work to derive physical properties of sta-
tistical systems described in terms of Motzkin paths. Several
systems can be mapped to such paths, the canonical one being
linear polymers on the plane in a slit (represented by the space
between the floor and ceiling of the paths), with potential
adsorbing interactions whenever the polymer bounces off or
sticks to the two boundaries (our t, s, t̄ , s̄ terms in Sec. III D).
As a physical model, weighting by the area underneath the
path accounts for polymers with a different solvent from the
area above the path by assigning an energy depending on
the area, q playing the role of the corresponding Boltzmann
factor. The area-length generating function then reproduces
the partition function of the polymer, and the free energy of
the model can be determined from that generating function
and would determine critical transition properties of the model
(as in Ref. [13] for q = 1). Such critical properties for q �= 1
have not been explored, to the best of our knowledge, and
constitute an important open problem and obvious next step.

On the mathematical side, the results in this work most
likely admit further refinement and elaboration. For instance,
the explicit expressions for Fk , Gk,mn, and Ĝk,mn presented in
this paper are not unique, as they satisfy several identities and
recursion relations, and alternative forms are possible, as we
already noted in the comparison with the results in [26]. In

addition, it would be desirable to have expressions for the
cluster coefficients involving directly z, zh as opposed to z, ω,
as in (4.28) for the partition function, making the dependence
on zh clearer. Such a rewriting remains to be achieved.

The enumeration of Motzkin paths according to their
length can be expressed in terms of trinomial coefficients in
the expansion of (x + 1 + x−1)l , the term xn identifying the
(unrestricted from floor or ceiling) Motzkin paths of total
climb n (or descent, if n < 0). This method was used in
Ref. [13] to find the length generating function (q = 1) of
unrestricted Motzkin paths (k = ∞) and derive critical prop-
erties of the corresponding statistical mechanical model. The
use of this technique, however, becomes cumbersome when
dealing with restricted paths (k < ∞) and fails to address the
more interesting case of length and area generating functions
(q �= 1). In a related development, the expressions of length
generating functions (q = 1) for restricted Dyck, Motzkin,
and more general paths with a number of possible up and
down steps, and arbitrary weights associated to each kind
of step, have been related to skew-Schur functions [19]. In-
cluding the area counting variable q would generalize these
generating functions to q-deformed versions of skew-Schur
functions, both in the case of Dyck paths and for Motzkin
paths. This points to a possible generalization of the trinomial
method involving q-deformed polynomial expressions. Such a
generalization and the related skew-Schur functions and their
properties remain an interesting topic for further mathematical
study.

The q = 1 limit of Dyck or Motzkin paths is intimately
related to compositions of a large number of SU(2) spins:
Spin- 1

2 individual spins are related to Dyck paths, while
Motzkin paths correspond to spin-1. In Ref. [29], the combi-
natorics and statistics of such compositions of general spin-s
components were studied using generating function and par-
tition function techniques, and a corresponding large-N phase
transition was identified. Symmetric (bosonic) and antisym-
metric (fermionic) spin compositions were also studied in
Ref. [29] and led to novel statistical properties. The exis-
tence of a ceiling at n = k for paths would correspond to
deforming the spin group to the “quantum group” SU(2)Q with
Q = exp[2π i/(k + 1)], which has irreducible representations
of dimension up to k + 1. It would be interesting to further
explore the connection between the two systems (spins and
paths). Investigating the physical meaning of weighting the
spin compositions with an exponential factor proportional to
the “area” of the specific composition channel, as for paths,
and, conversely, the concept of symmetric or antisymmetric
weighing of paths, as for fermionic or bosonic spins, and the
possibility of a phase transition in the statistics of paths, are
fascinating topics that deserve further exploration.

Finally, there are other generalizations of paths that have
been studied in the literature. For instance, “colored” Motzkin
paths in which each link can come in one of several “colors,”
and k-Motzkin paths in which horizontal steps are of length
k have been considered. Further, paths with more general
increments, such as Lukasiewicz paths, have been studied, and
there are other possible generalizations that have not. All such
paths can be treated in the Hamiltonian framework, and their
generating functions can be related to the secular Hamiltonian
of the process, as in Secs. II and III of this paper. However,
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explicit expressions for the generating function of such sys-
tems would require the evaluation of secular determinants as
in Sec. IV of this paper, which may not be tractable. It appears
that at least a class of such walks can be related to quantum
exclusion statistics, but for exclusion higher than 2 and for
more general one-body spectra. The statistical mechanics of
general-g exclusion systems with an arbitrary discrete energy
spectrum have recently been derived using techniques closely
related to the ones in the present work [30]. Using these tech-
niques, the generating functions and statistics of generalized

paths could be derived. We defer a full treatment of these cases
to a future publication.
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