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Improved phase-field-based lattice Boltzmann method for thermocapillary flow
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In this paper, we present an improved phase-field-based lattice Boltzmann (LB) method for thermocapillary
flows with large density, viscosity, and thermal conductivity ratios. The present method uses three LB models
to solve the conservative Allen-Cahn equation, the incompressible Navier-Stokes equations, and the temperature
equation. To overcome the difficulty caused by the convection term in solving the convection-diffusion equa-
tion for the temperature field, we first rewrite the temperature equation as a diffuse equation where the convection
term is regarded as the source term and then construct an improved LB model for the diffusion equation. The
macroscopic governing equations can be recovered correctly from the present LB method; moreover, the present
LB method is much simpler and more efficient. In order to test the accuracy of this LB method, several numerical
examples are considered, including the planar thermal Poiseuille flow of two immiscible fluids, the two-phase
thermocapillary flow in a nonuniformly heated channel, and the thermocapillary Marangoni flow of a deformable
bubble. It is found that the numerical results obtained from the present LB method are consistent with the
theoretical prediction and available numerical data, which indicates that the present LB method is an effective
approach for the thermocapillary flows.
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I. INTRODUCTION

Thermocapillary convection is the phenomenon of fluid
movement induced by the difference in surface tension at a
two-phase interface which is caused by a temperature gra-
dient. For most cases, the surface tension is a decreasing
function of the temperature, and bubbles or droplets in the
low-temperature region with the large surface tension gradu-
ally move to the high-temperature region with the low surface
tension due to induced thermocapillary stresses (also called
Marangoni stresses [1]). Thermocapillary convection not only
has a wide range of industrial applications [2–9], for ex-
ample, crystal growth, coating, and thermocapillary-induced
patterning of thin liquid films, but also plays an important role
in many physical processes [10,11]. To explore the physical
mechanism of thermocapillary flows, theoretical and experi-
mental methods have been developed [12–17].

In addition to the two above types of research methods,
numerical simulation has also been an important approach
in the study of thermocapillary flows which involves mul-
tiple physical fields. For this complex multiphase problem,
some numerical approaches have been developed, includ-
ing the volume-of-fluid method [18,19], the front-tracking
method [20,21], and the level-set method [22,23]. Ma and
Bothe [24] used the volume-of-fluid method to study the
thermocapillary Marangoni effect on the deformable droplet.
Nas and Tryggvason [25] adopted the front-tracking method
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to investigate the thermocapillary interaction of two bub-
bles or drops and then Lu et al. [26] also applied the same
method to simulate the thermocapillary interaction of a bub-
ble with an obstruction. Balcázar et al. [27] introduced a
novel multiple-marker level-set method for deformable bub-
bles and droplets, in which all physical properties are assumed
to vary smoothly in a narrow band around the interface to
avoid numerical instability; additionally, a new reinitialization
equation was also considered in their work. We note that
although all of these numerical methods are successful in the
study of thermocapillary flows, they also have some defects.
The volume-of-fluid method needs an extra reconstruction
of the phase interface, while for the front-tracking method,
the moving interface must be restructured and the transfer
of information between the moving front and the fixed grid
must be considered. Therefore, the volume-of-fluid method
and the front-tracking method do not avoid explicit tracking of
the dynamic interface in both mathematical formulation and
numerical computation [28]. As for the level-set method, a
reinitialization equation needs to be solved [27]. In addition,
the three above methods also suffer from numerical instability
at the interface region when the interfacial tension becomes
a dominant factor [29]. In recent years, as an alternative, the
phase-field method, which has a clear physical background
and simple structure and is easy to implement numerically,
has become a powerful and popular tool for thermocapillary
flows without tracking the evolution of the phase interface
[30]. In this method, an order parameter is introduced to
characterize the different phases, and the range over which
it changes is the thickness of the interface. Actually, there
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are two popular kinds of mathematical models used to de-
scribe the interface: One is the fourth-order Cahn-Hilliard
(CH) equation [31,32] and the other is the second-order
Allen-Cahn (AC) equation [33–35]. Some researchers have
used this method to investigate the interfacial dynamics with
thermocapillary effects. For instance, Guo and Lin [36] first
proposed a phase-field model for two-phase flows with the
thermocapillary effect and then adopted a finite-difference
scheme in time and a conformal finite-element method in
space for the Navier-Stokes equations and the CH equation.
Verschueren et al. [37] considered a phase-field model for
the thermocapillary flow instability in the Hele-Shaw cell and
applied the Galerkin-type spectral-element method to solve
the governing equations.

In this work, we consider the mesoscopic lattice Boltzmann
(LB) method for thermocapillary flows. The LB method, as
a kinetic-based approach, has gained great success in the
study of complex multiphase flows for its distinct features
[38–44]. In this method, there are several multiphase LB
models, including the pseudopotential LB model [45,46], the
color gradient LB model [47], and the phase-field-based LB
model [48,49]. These LB models also have been extended to
simulate thermocapillary flows. Gupta et al. [50] adopted the
pseudopotential LB model to study the influence of thermo-
capillarity on the breakup of fluid threads in a microfluidic T
junction, but the pseudopotential LB method usually suffers
from large spurious currents [51]. Liu et al. [52–56] used the
LB method to conduct a series of studies on thermocapillarity
flows, and these works can be divided into two categories: The
first is one in which the governing equations of all physical
fields are solved by the LB models [52–55] and the second
is where the governing equations are solved by a hybrid ap-
proach in which the temperature equation is solved by the
finite-difference method [56]. However, these works may also
have some limitations. For the former, the LB models can
only study thermocapillary flows with the same specific-heat
capacities and densities of two fluids; in other words, the ratios
of the specific-heat capacities and densities are assumed to be
1. For the latter, the CH-equation-based LB model proposed
by Lee and Liu [57] is used to describe the interface, while
this LB model may not preserve the total mass of a system
and is non-Galilean invariant due to the discretization errors
[56]. Also, the hybrid method may lead to inconsistency of
computation, which makes it difficult to solve the problem
with a complex boundary [56]. Similarly, Mitchell et al. [58]
also used the hybrid method to investigate thermocapillary
flows. In their work, the temperature equation was solved by a
fourth-order Runge-Kutta algorithm; however, the phase-field
equation could not be recovered correctly from the LB method
through the Chapman-Enskog analysis [49]. Zheng et al.
[59] constructed another LB method with continuous surface
force to simulate the thermocapillary migration of a two-
dimensional deformable droplet, but the CH equation could
not be correctly recovered due to the existence of the fourth-
order spatial derivative; additionally, the density ratio of the
droplet and the ambient fluid was assumed to be unity [59].
Recently, Hu et al. [60] also established a new LB method
for thermocapillary flow with a large density ratio, but the
continuity equation and temperature equation could not be
recovered correctly through the Chapman-Enskog analysis,

which may have some influence on the accuracy of the LB
model.

To overcome the drawbacks of some previous works, and
based on the above-mentioned works [58,60,61], we present
an improved LB method for thermocapillary flows with large
density, viscosity, and thermal conductivity ratios. In this
LB method, the second-order conservative AC equation is
adopted to capture the interface since it possesses the potential
in the volume preservation property, as well as good numerical
stability in the simulations of the multiphase flow with a
large density ratio, compared to the fourth-order CH equa-
tion [62]. In particular, an improved LB model is proposed
for the diffusion equation for the temperature field, which is
an equivalent version of the commonly used one. Through
the Chapman-Enskog analysis, the governing equations for all
physical fields can be recovered correctly from the present
LB method. We also perform some numerical experiments
to test the present LB method and find that the numerical
results are in good agreement with the analytical solutions and
some available numerical data. In addition, compared to some
previous LB methods [59,60], the proposed LB method also
works well for the Marangoni migration of the deformable
bubble with large density, viscosity, and thermal conductivity
ratios.

The rest of the paper is organized as follows. In Sec. II the
LB method for thermocapillary flows is presented. In Sec. III
we conduct some simulations to test the improved LB method.
A summary and some conclusions are given in Sec. IV.

II. LATTICE BOLTZMANN METHOD FOR
THERMOCAPILLARY FLOWS

A. LB model for the interface capturing equation

In the phase-field method, the kinetics and morphology
evolution of phase separation is characterized by a phase-field
equation for the order parameter φ. Compared to the fourth-
order CH equation, the second-order conservative AC (CAC)
equation is more efficient and less dispersive [49,63,64]. For
this reason, the CAC equation is used to depict interface
evolution [63]

∂tφ + ∇ · (φu) = ∇ · (Mφ∇φ) − ∇ ·
(

Mφ

∇φ

|∇φ|
1 − φ2

√
2D

)
,

(1)

where the order parameter φ changes from −1 to 1. Here
φ1 = 1 and φ2 = −1 represent the different phases; the in-
terface between two phases is marked by the contour level of
φ = 0. In addition, u = (ux, uy) is the fluid velocity, Mφ is the
mobility, and D is the thickness of diffuse interface. At the
equilibrium state, the distribution of the order parameter can
be given by

φ(x) = tanh

(
x√
2D

)
, (2)

where x is the distance to the interface.
In the present LB model for the CAC equation, the

evolution equation with the single-relaxation-time collision
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operator reads [49,65]

fk (x + ck�t, t + �t ) = fk (x, t ) − 1

τ f
[ fk (x, t ) − f eq

k (x, t )]

+ �t

(
1 − 1

2τ f

)
Fk (x, t ),

k = 0, . . . , q − 1, (3)

where fk (x, t ) is the distribution function with velocity ck at
position x and time t , τ f is the dimensionless relaxation time,
�t is the time step, and Fk (x, t ) is the discrete source term.
In addition, f eq

k is the equilibrium distribution function and is
given by [49]

f eq
k = ωkφ

(
1 + ck · u

c2
s

)
, (4)

where {ωk, k = 0, . . . , q − 1} are the weight coefficients
which are dependent on the specified lattice model, ck = cek

is the discrete velocity with the lattice speed c = �x/�t (�x
is the lattice spacing) and the direction vector ek , and cs is
the lattice sound speed that is related to lattice speed c. In
our simulations, the lattice speed c, �x, and �t are set to 1.
For the two-dimensional problems considered here, the two-
dimensional nine-velocity (D2Q9) lattice model is adopted for
the CAC equation, and in this model, the discrete velocity,
weighting coefficient, and sound speed are given, respectively,
by

ck = cek

= c

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
,

(5a)

ωk =
⎧⎨
⎩

ω0 = 4
9 ,

ω1–4 = 1
9 ,

ω5–8 = 1
36 ,

(5b)

c2
s = c2

3
. (5c)

To recover the CAC equation correctly, the source term Fk

in Eq. (3) should be defined as [49]

Fk =
ωkck · [

∂t (φu) + c2
s

(
Mφ

∇φ

|∇φ|
1−φ2√

2D

)]
c2

s

, (6)

where the time derivative term ∂t (φu) is included in order
to eliminate some additional terms in the recovered equa-
tion [49,64,66]. The order parameter in the present LB model
can be calculated as

φ =
∑

k

fk . (7)

Physically, the distribution of the fluid density ρ for the two
phases is consistent with that of the order parameter φ. To
satisfy this condition, the expression of density should be a
function of the order parameter and is given as

ρ = ρ1 − ρ2

φ1 − φ2
(φ − φ2) + ρ2. (8)

Through the Chapman-Enskog analysis, the CAC equa-
tion can be recovered correctly from the LB equation (3) with

the following mobility [49]:

Mφ = c2
s (τ f − 0.5)�t . (9)

In addition, the derivative terms in the LB model must be
discretized with some suitable difference schemes. For sim-
plicity, the explicit Euler scheme is used to compute the
temporal derivative in Eq. (6). In contrast, to keep the col-
lision process implemented locally, the gradient term ∇φ

can be calculated by the nonequilibrium distribution function
[49,64,67], and after some algebraic manipulations, the local
scheme for the gradient term ∇φ can be given by [49]

|∇φ| = −|C| − B

A
, (10)

∇φ = C

A + B
|∇φ|

, (11)

where

A = −c2
s τ f �t, (12a)

B = Mφ

1 − φ2

√
2D

, (12b)

C =
∑

k

ck
(

fk − f eq
k

) + �t

2
∂t (φu). (12c)

B. LB model for the Navier-Stokes equations

In this work, we consider the incompressible Navier-
Stokes equations for the fluid flows [64,68]

∇ · u = 0, (13a)
∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · μ

(∇u + ∇uT ) + G + Fs, (13b)

where p is the hydrodynamic pressure, μ is dynamic viscosity
(μ = ρν, with ν the kinematic viscosity), Fs is the interface
force, and G is the body force. For the thermocapillary flows,
the interface force can be expressed as [56]

Fs = (−σλn + ∇sσ )δ, (14)

where σ is the surface tension, λ = ∇ · n is the interface
curvature, n = ∇φ

|∇φ| is the unit normal vector, ∇s = (I − n ⊗
n) · ∇ is the surface gradient operator, and δ = γ |∇φ|2 is the
Dirac delta function and satisfies the condition

γ

∫ ∞

−∞
δ dx = 1. (15)

Based on previous work [48], we can obtain the expression of
the parameter γ ,

γ = 6
√

λ√
2β

(
φ3

1 − φ3
2

) , (16)

where β is a parameter. With the aid of Eq. (16), we can
further derive the interface force Fs,

Fs = 3
√

2

4
D

(
|∇φ|2∇σ − (∇σ · ∇φ)∇φ + σ

D2
μ∇φ

)
,

(17)
where μ = (φ − φ1)(φ − φ2)(φ − φ1+φ2

2 ) − D2∇2φ is the
chemical potential, in which the Laplace operator can be
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calculated as

∇2φ =
∑
k �=0

2ωk[φ(x + ck�t ) − φ(x)]

cs
2�t2 . (18)

For the thermocapillary flows, the equation of state is used
to describe the relation between the surface tension σ and
temperature T ,

σ (T ) = σref − σT (T − Tref ), (19)

where Tref is the reference temperature and σT = ∂σ
∂T is the rate

of surface tension with the temperature.
Similarly, the evolution equation of the LB model for the

Navier-Stokes equations can be written as [68,69]

gk (x + ck�t, t + �t ) = gk (x, t ) − 1

τg

[
gk (x, t ) − geq

k (x, t )
]

+ �t

(
1 − 1

2τg

)
Gk (x, t ),

k = 0, . . . , q − 1, (20)

where gk (x, t ) is the distribution function of the LB model
for the flow field, geq

k is the equilibrium distribution function,
τg is the relaxation time related to the kinematic viscosity
ν, and Gk (x, t ) is the discrete force term. To recover the
incompressible Navier-Stokes equations correctly, geq

k should
be designed as [68]

geq
k =

{ p
c2

s
(ωk − 1) + ρsk (u), k = 0

p
c2

s
ωk + ρsk (u), k �= 0,

(21)

with

sk (u) = ωk

[
ck · u

c2
s

+ (ck · u)2

2c4
s

− u · u
2c2

s

]
. (22)

The discrete force term is given by [68]

Gk = ωk

[
u · ∇ρ

+ ck · Fs

c2
s

+
(
ckck − c2

s I
)

: (uF̃ + F̃u) :
(
ckck − c2

s I
)

2c4
s

]
,

(23)

where F̃ = Fs + ∇(ρc2
s ) and the gradient term ∇φ in Fs in the

collision step can be calculated locally by Eq. (11). For the
Navier-Stokes equations, the D2Q9 lattice model described
previously is also adopted. Through the Chapman-Enskog
analysis, the present LB model can correctly recover Eq. (13)
with the kinematic viscosity

ν = c2
s (τg − 0.5)�t . (24)

Additionally, the macroscopic velocity and pressure are cal-
culated as

u = 1

ρ

(∑
k

ckgk + �t

2
Fs

)
, (25)

p = c2
s

1 − ω0

[∑
k �=0

gk + �t

2
u · ∇ρ + ρs0(u)

]
. (26)

It should be noted that in Eq. (25), the gradient term ∇φ in
Fs must be calculated. Although the local scheme [Eq. (11)]
can be adopted, we need to solve the nonlinear equation (25)
to obtain the velocity. To overcome the problem, as in
previous works [70,71], the gradient term in Eq. (25) is
computed by the second-order isotropic central-difference
scheme

∇φ =
∑
k �=0

ωkckφ(x + ck�t )

c2
s �t

. (27)

C. LB model for the temperature equation

The following convection-diffusion equation is applied to
describe the temperature field:

ρCp(∂t T + u · ∇T ) = ∇ · (κ∇T ). (28)

Here T is the temperature, Cp is the specific-heat capacity, and
κ is the thermal conductivity. As stated previously, in some
available LB methods for thermocapillary flows, the density ρ

and specific-heat capacity Cp of the two fluids are assumed to
be the same as each other; however, this is not consistent with
most of the problems in practice. On the other hand, when the
traditional numerical method is applied to solve Eq. (28), the
mass conservation of system may not be ensured [56,72]. In
the following, we will develop an alternative LB model for the
temperature equation. To this end, we first rewrite Eq. (28) in
another form where the convection term is regarded as part of
the source term [58,61],

∂t T = ∇ · (α∇T ) + R1, (29)

where

R1 = −u · ∇T − κ∇T · ∇
(

1

ρCp

)
(30)

is the source term and α = κ/ρCp is the thermal diffusivity.
It should be noted that in the phase-field theory, the physical
parameter ψ (e.g., the thermal conductivity) can be expressed
as a linear function of the order parameter [60,73],

ψ = ψ1 − ψ2

φ1 − φ2
(φ − φ2) + ψ2. (31)

According to Eq. (31), the specific-heat capacity and ther-
mal conductivity can be given by [60].

Cp = Cp1 − Cp2

φ1 − φ2
(φ − φ2) + Cp2 , (32)

κ = κ1 − κ2

φ1 − φ2
(φ − φ2) + κ2, (33)

which change continuously in the whole domain. Substituting
Eqs. (8) and (32) in Eq. (30) yields another form of the source
term

R1 = − u · ∇T − κ∇T

·
(

− ρ(Cp1 − Cp2 ) + Cp(ρ1 − ρ2)

(ρCp)2(φ1 − φ2)

)
∇φ. (34)

We now present a simple LB model for the tempera-
ture equation (29). In this model, the evolution equation
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FIG. 1. Schematic of the thermocapillary flows with two immis-
cible fluids in a two-dimensional channel.

reads

hk (x + ck�t, t + �t ) = hk (x, t ) − 1

τh

[
hk (x, t ) − heq

k (x, t )
]

+ �t

(
1 − 1

2τh

)
Hk (x, t ),

k = 0, . . . , q − 1, (35)

where hk (x, t ) is the distribution function for the temperature
field, τh is the relaxation time corresponding to the thermal
diffusivity, Hk (x, t ) = ωkR1 is the discrete source term related
to R1 in Eq. (34), and heq

k is the equilibrium distribution func-
tion and is defined as

heq
k = ωkT . (36)

The temperature T is computed as

T =
∑

k

hk + �t

2
R1. (37)

In Eq. (37) the gradient term ∇φ in the source term R1 is
calculated by Eq. (27).

Based on the expressions of the equilibrium distribution
function heq

k and discrete source term Hk , we can obtain the
relations∑

k

heq
k = T,

∑
k

ckheq
k = 0,

∑
k

ckckheq
k = c2

s T I,

(38a)∑
k

Hk = R1,
∑

k

ckHk = 0,
∑

k

ckckHk = c2
s R1I.

(38b)

Through the Chapman-Enskog analysis (see the Ap-
pendix for details), the temperature equation (29) can be
recovered correctly from the present LB model with the ther-
mal diffusivity α = κ/ρCp = c2

s (τh − 1
2 )�t . We also note that

in the present LB model for the temperature equation, the
gradient term ∇T can be calculated locally,

∇T = − 1

τhc2
s �t

∑
k

ck
(
hk − heq

k

)
. (39)

With the help of Eqs. (11) and (39), the collision process of
Eq. (35) can be implemented locally.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we consider three problems to test the
present LB method and conduct a comparison of the present
numerical results with analytical solutions and available data.
The first one is the planar thermal Poiseuille flow of two
immiscible fluids, the second one is two-phase thermocap-
illary flow in a nonuniformly heated channel, and the last
one is the thermocapillary migration of a deformable bubble.
For these problems, several important dimensionless parame-
ters are first defined, including the Reynolds number Re, the
Marangoni number Ma, the capillary number Ca, the fluid
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FIG. 2. Profiles of velocity (a) and temperature (b) along the vertical central line for ν1 = ν2 = 0.2, ρ1 = ρ2 = 1.0, Cp1 = Cp2 = 1, and
κr = 1, 10, 100, and 1000.
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FIG. 3. Profiles of velocity (a) and temperature (b) along the vertical central line for νr = 0.1, ρ1 = ρ2 = 1.0, Cp1 = Cp2 = 1, and κr = 1,
10, 100, and 1000.

density ratio ρr , the viscosity ratio μr , the thermal conduc-
tivity ratio κr , and the specific-heat capacity ratio Cpr , as [56]

Re = LU

ν2
, Ma = ρ2Cp2 LU

κ2
, Ca = Uμ2

σref
, (40)

ρr = ρ2

ρ1
, μr = μ2

μ1
, κr = κ2

κ1
, Cpr = Cp2

Cp1

, (41)

where the subscripts represent different phases.
For convenience, the mobility Mφ is set equal to 0.01. For

the gradient term of the order parameter in the collision step,
the local scheme is applied to ensure that the collision process
is implement locally [Eq. (10)], while a second-order isotropic
difference scheme [Eq. (27)] is employed in the computation

of macroscopic variables [Eqs. (25) and (37)]. In addition, the
gravity effect is neglected.

A. Planar thermal Poiseuille flow in a two-dimensional channel

We first consider the simple problem in Fig. 1, where the
surface tension coefficient σ is fixed as a constant, the planar
thermal flow is driven by an external force G, and H + h and L
are the height and length of the channel. For this problem, we
can obtain the analytical solutions of temperature and velocity
[59],

T (y) =
{

κ2(Th−Tc )
κ1H+κ2h y + κ1HTc+κ2hTh

κ1H+κ2h , −h � y � 0
κ1(Th−Tc )
κ1H+κ2h y + κ1HTc+κ2hTh

κ1H+κ2h , 0 � y � H,
(42)

u(y) =
{

ρGxh2

2μ1

[−( y
h

)2 + (H2/h2μ1−μ2

H/hμ1+μ2

) y
h + (1+H/h)Hμ1

μ1H+μ2h

]
, −h � y � 0

ρGxH2

2μ2

[−( y
H

)2 + (
μ1−h2/H2μ2

h/Hμ2+μ1

) y
H + (1+h/H )hμ2

μ1H+μ2h

]
, 0 � y � H.

(43)

The fluids in the different regions have different physical
properties and they interact with each other only through the
interface at y = 0. The top and bottom walls are stationary
and kept at the constant temperatures Th and Tc and the pe-
riodic boundary condition is adopted for the left and right
boundaries for all physical fields. Here μi (i = 1, 2) is the
dynamic viscosity of the fluid. In order to test the accuracy
of the present LB method, we conduct some numerical simu-
lations at different ratios of thermal conductivity κr and set
the other parameters as ρ1 = ρ2 = 1, Cp1 = Cp2 = 1, ν1 =
ν2 = 0.2, H = h = 50�x, L = 10�x, Th = 20, Tc = 10,
G = (5 × 10−7, 0), and D = 2. In our simulations, the an-
tibounceback scheme [74–76] is used for the Dirichlet
boundary conditions of the temperature field, while the
halfway bounceback scheme is adopted for the nonslip bound-

ary condition of the flow field and the no-flux boundary
condition of the phase field [77,78]. Based on the results
shown in Fig. 2, it is found that the numerical results of
velocity and temperature at different values of the thermal
conductivity ratio (κr = 1, 10, 100, and 1000) are in good
agreement with the analytical solutions. We further perform
some numerical tests at different ratios of viscosity coefficient
νr and plot the results in Figs. 3–5. From these figures we
can observe that although the viscosity ratio has a great
influence on the velocity field, it does not affect the tem-
perature field, which is consistent with the analytic solution
(42). Additionally, we also find that the present LB method
works well for the thermal flows in the two-dimensional chan-
nel, even with the large ratios of thermal conductivity and
viscosity.
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FIG. 4. Profiles of velocity (a) and temperature (b) along the vertical central line for νr = 0.01, ρ1 = ρ2 = 1.0, Cp1 = Cp2 = 1, and κr = 1,
10, 100, and 1000.

B. Two-phase thermocapillary flow in a
nonuniformly heated channel

In the second example, we consider the thermocapillary
flow driven by the temperature gradient instead of the external
force considered in the first problem, which is more compli-
cated since the surface tension changes with temperature [see
Eq. (19)]. For this problem, shown in Fig. 6, we impose a uni-
form temperature on the top wall and a sinusoidal temperature
profile on the bottom wall,

T (x, H ) = Tc, (44)

T (x,−h) = Th + T0 cos(ωx), (45)

where T0 < Tc < Th and ω = 2π/L is a wave number, with
L the length of the channel. Under the condition of Re � 1,

Ma � 1, and Ca � 1, we can obtain the analytic solutions of
this problem [15]. For fluid 1,

TA(x, y) = (Th − Tc)y + κrTch + ThH

H + κrh

+ T0t (Ĥ , ĥ, κr ) sinh(Ĥ − ωy) cos(ωx), (46)

U A
x (x, y) = Umax

{[
AH

1 + ω
(
AH

2 + AH
3 y

)]
cosh(ωy)

+ (
AH

3 + ωAH
1 y

)
sinh(ωy)

}
sin(ωx), (47)

U A
y (x, y) = −ωUmax

[
AH

1 cosh(ωy) + (
AH

2 + AH
3 y

)]
sinh(ωx),

(48)
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FIG. 5. Profiles of velocity (a) and temperature (b) along the vertical central line for νr = 0.001, ρ1 = ρ2 = 1.0, Cp1 = Cp2 = 1, and
κr = 1, 10, 100, and 1000.
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and for fluid 2,

TA(x, y) = κ (Th − Tc)y + κrTch + ThH

H + κrh
+ T0t (Ĥ , ĥ, κr )[sinh(Ĥ ) cos(ωx) − κr sinh(ωy) cosh(Ĥ )] cos(ωx), (49)

U A
x (x, y) =Umax

[
Ah

1 + ω
(
Ah

2 + Ah
3y

)]
cosh(ωy) + (

Ah
3 + ωAh

1y
)

sinh(ωy) sin(ωx), (50)

U A
y (x, y) = −ωUmax

[
Ah

1 cosh(ωy) + (
Ah

2 + Ah
3y

)]
sinh(ωx). (51)

The parameters appearing in these equations are defined as

Ĥ = Hω, ĥ = hω, (52)

t (Ĥ , ĥ, κr ) = [κr sinh(ĥ) cosh(Ĥ ) + sinh(Ĥ ) cosh(ĥ)]−1, (53)

AH
1 = sinh2(Ĥ )

sinh2(Ĥ ) − Ĥ2
, AH

2 = −HĤ

sinh2(Ĥ ) − Ĥ2
, AH

3 = 2Ĥ − sinh(2Ĥ )

2[sinh2(Ĥ ) − Ĥ2]
, (54)

Ah
1 = sinh2(ĥ)

sinh2(ĥ) − ĥ2
, Ah

2 = −hĥ

sinh2(ĥ) − ĥ2
, Ah

3 = sinh(2ĥ) − 2ĥ

2[sinh2(ĥ) − ĥ2]
, (55)

Umax = −T0σT

η2
a(Ĥ , ĥ, κr )s(Ĥ, ĥ, κr ), (56)

where

a(Ĥ , ĥ, κr ) = sinh(Ĥ )t (Ĥ , ĥ, κr ), (57)

s(Ĥ, ĥ, κr ) = [sinh2(Ĥ ) − Ĥ2][sinh2(ĥ) − ĥ2]

νr[sinh2(ĥ) − ĥ2][sinh(2Ĥ ) − 2Ĥ] + [sinh2(Ĥ ) − Ĥ2][sinh(2ĥ) − 2ĥ]
. (58)

In our simulations, the channel length is L = 160�x, H =
h = 40�x, Tc = 10, Th = 20, T0 = 4, σT = 5 × 10−4, σref =
2.5 × 10−2, ν1 = ν2 = 0.2, ρ1 = ρ2 = 1, and Cp1 = Cp2 = 1.
These values can result in the typical values of Re, Ma, and
Ca at O(0.01) or at most O(0.1). To study the influence of the
thermal conductivity ratio κr on the distributions of velocity
and temperature, we conduct some simulations with κr = 0.1,
0.2, and 1 and present the contours of the temperature in
Fig. 7. As seen from this figure, the numerical results (solid
line) are consistent with the analytical solutions (dashed line)
given by Eqs. (46) and (49). However, it should be noted
that the numerical results slightly deviate from the analytical
solutions near the interface for the cases of κr = 0.1 and
0.2, which is mainly caused by the finite thickness of the
interface in the phase-field LB method. To quantitatively
evaluate the accuracy of the present LB method and com-
pare with some previous LB models, the relative error is

FIG. 6. Schematic of two-phase thermocapillary flow in a
nonuniform heated channel.

considered,

Errψ =
∑

j |ψ (x j, t ) − ψ∗(x j, t )|∑
j |ψ∗(x j, t )| , (59)

where ψ and ψ∗ are the numerical and analytical solutions of
temperature (ψ = T ) or velocity (ψ = u). We carry out some
simulations at different values of κr and present the results in
Table I, where a comparison between the present LB method
and those in Refs. [56,58] is provided. As seen from this
table, all methods can work well for this problem with a large
κr , but the present LB method is more accurate than that in
Ref. [58] and comparable to the one in Ref. [56]. In addition,
to see the difference between the analytical and numerical
solutions more clearly, we plot the velocity and temperature

TABLE I. Relative errors of different LB methods at different
ratios of the thermal conductivity (blank entries mean that no result
was reported).

κr Err Present work Ref. [56] Ref. [58]

0.1 Ux 5.09 × 10−2

0.1 Uy 5.84 × 10−2

0.1 T 1.20 × 10−3

0.2 Ux 4.91 × 10−2

0.2 Uy 5.90 × 10−2 8.41 × 10−2 14.18 × 10−2

0.2 T 6.73 × 10−4 5.23 × 10−3 7.65 × 10−3

1 Ux 4.35 × 10−2

1 Uy 5.80 × 10−2 5.71 × 10−2 11.83 ×10−2

1 T 3.06 × 10−4 2.25 × 10−4 8.27 × 10−4
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FIG. 7. Contours of temperature at different thermal conductivity
ratios (a) κr = 0.1, (b) κr = 0.2, and (c) κr = 1.

profiles along the central lines in Figs. 8 and 9. From these two
figures, one can see that the numerical results are very close
to the analytical solutions, while the deviation between the
numerical and analytical solutions of velocity becomes large
with the decrease of κr , which may be caused by the finite
thickness of the diffusion interface of the phase-field method.
Although the thermal conductivity changes with the diffusion
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FIG. 8. Profiles of velocity and temperature along the central line
of the domain in the x direction at (a) κr = 0.1, (b) κr = 0.2, and (c)
κr = 1.

interface, a small κr will result in the temperature deviation
in the diffusion interface. The difference in the temperature
gradient will inevitably affect the surface tension of the in-
terface, which in turn affects the velocity distribution. On the
other hand, the analytical solutions of this problem are derived
without considering the diffusion interface, which may lead
to some differences between the numerical and analytical
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FIG. 9. Profiles of velocity and temperature along the central line
of the domain in the y direction at (a) κr = 0.1, (b) κr = 0.2, and (c)
κr = 1.

solutions of velocity. This phenomenon is also observed in
some available works [56,59]. Moreover, we also present the
contour lines of the y -component of velocity in Fig. 10, where
κr = 1, and clearly observe the asymmetry and fluctuations
at the interface, but they are not obvious far away from the
interface.
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FIG. 10. Contour lines of the y component of velocity.

C. Thermocapillary migration of a deformable bubble

In this section we further consider the thermocapillary
migration of a deformable bubble, which is caused by the
nonuniform surface tension induced by the temperature gradi-
ent imposed at the phase interface. We note that the problem
of the thermocapillary migration of a bubble was first studied
theoretically by Young et al. in [12], in which an expression of
the migration velocity known as UYGB velocity was obtained
under the condition of small Ma and Re,

UYGB = 2U

(2 + 3μr )(2 + κr )
. (60)

The characteristic velocity U is defined as

U = σT ∇T R

μ2
, (61)

where ∇T is a constant temperature gradient and R is the
radius of the bubble. As shown in Fig. 11, a bubble with R =

FIG. 11. Schematic of the thermocapillary migration of a
deformable bubble in the nonuniform temperature field.

015314-10



IMPROVED PHASE-FIELD-BASED LATTICE BOLTZMANN … PHYSICAL REVIEW E 105, 015314 (2022)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

FIG. 12. Time evolution of the normalized migration velocity at
Re = 0.1 and Ma = 0.1. The numerical results are denoted by circles
and the theoretical results by the dashed line.

20�x is initially located at the center of the computational
region with a length of 320�x and width of 160�x. On the
top and bottom walls, the no-flux boundary condition is used
for the phase field, the nonslip condition is applied for the flow
field, and the Dirichlet boundary conditions with Th = 32 and
Tc = 16 are adopted for the temperature field. For the left and
right boundaries, the periodic boundary condition is imposed
for all fields. During the initialization, the flow field is kept
stationary and the temperature field has a linear distribution in
the y direction.

The thermocapillary migration of the deformable bubble or
droplet has been numerically studied in some previous works
[24,25,56,60]. Like the one in Ref. [56], we first consider
the simple case with the density ratio ρr = 1 (ρ1 = ρ2 = 1),
Cp1 = Cp2 = 1, ν1 = ν2 = 0.2, Tref = 16, σref = 2.5 × 10−3,
∇T = 0.1, and σT = 10−4 (see Fig. 11). Substituting these
values into Eqs. (40), (41), (60), and (61), we can obtain the
theoretical value of the migration velocity UYGB = 1.333̂ ×
10−4, Re = Ma = 0.1, and Ca = 0.08. In our simulations,
the numerical migration velocity of the droplet or bubble is
calculated as

Ur (t ) =
∫

V φud dV∫
V φdV

=
∑

x φ(x, t )ud (x, t )∑
x φ(x, t )

, φ < 0, (62)

where ud is the numerical velocity. Figure 12 shows the
temporal evolution of the numerical migration velocity nor-
malized by UYGB. From this figure, one can observe that
the numerical velocity is in agreement with the analytical
prediction [12] and the relative error Er = |Ur − UYGB|/UYGB

is about 1.65%, which is much smaller than that reported in
Ref. [59].

We continue to investigate thermocapillary migration of
a bubble at large Ma where the theoretical expression of
the migration velocity would be inaccurate and compare the
present results with those in Ref. [56]. In Fig. 13, where
Re = 1, Ca = 0.1, σT = 2.5 × 10−4, σref = 5 × 10−3, and
ν1 = ν2 = 0.1, we present the evolution of the normalized
migration velocity at five different values of Ma (Ma = 1, 10,
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FIG. 13. Time evolution of the normalized migration velocity at
different values of Ma. The numerical results are denoted by symbols
and the theoretical results by the dashed line.

100, 500, and 1000), which can be realized through adjusting
κ1 and κ2. As shown in this figure, the velocity of the bubble
first increases to the maximum and finally reaches a constant
for all cases under consideration. Also, the migration velocity
decreases gradually with the increase of Ma, which agrees
with the previous theoretical and numerical studies [56,79–
81]. Actually, for the cases with relatively small values of
Ma, this phenomenon can be explained by the temperature
distribution inside the bubble. From Fig. 14 we can observe
that the temperature gradient inside the bubble decreases grad-
ually with the increase of Ma, and a small average temperature
gradient will reduce the driving force for the bubble migration.
To see this more clearly, we also present the velocity of the
bubble in Fig. 14 where the recirculation flow is observed, and
the vortex intensity decreases as the Ma increases. However,
when Ma is large enough, one can see in Fig. 15 that there are
some differences between the present results of the temper-
ature and velocity and some available works [53,81]; this is
because the two-dimensional problem considered in this work
is not consistent with the three-dimensional one investigated
in the previous works [53,81]. Next we focus on the impact of
Re on the thermocapillary migration of a droplet. To this end,
the values of Re are set as 1, 10, 20, 40, 100, and 200, which
are determined by the values of viscosity ν = 0.1 0.0316,
0.02, 0.0157, 0.01, and 0.0071; the other parameters are the
same as those of the case with small Re. Figure 16 shows
the normalized migration velocity of the droplet at different
values of Re. It is found that as the value of Re increases, the
terminal velocity decreases and more time is needed to reach
the steady state, which is similar to the previous work [81] at
small Re. Also, the present LB method is still effective for the
case with large Re.

In addition, to show the capacity of the present LB method
in the study of the thermocapillary flows with the high density
ratios, we perform some simulations at five different den-
sity ratios (ρr = 10:1, 50:1, 100:1, 200:1, and 1000:1). In
our simulations, ρ2 = 1.0, ν1 = ν2 = 0.2, σref = 2.5 × 10−4,
σT = 10−5, κ2 = 0.2, Cp1 = 2, and Cp1 = 5, which can lead to
Re = 0.01, Ma = 0.05, and Ca = 20. The interface thickness
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FIG. 14. Distributions of temperature [(a), (c), (e)] and velocity [(b), (d), (f)] around the rising bubble at Ma = 1 [(a), (b)], Ma = 10
[(c), (d)], and Ma = 100 [(e), (f)].
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FIG. 15. Distributions of temperature [(a), (c)] and velocity [(b), (d)] around the rising bubble at Ma = 500 [(a), (b)] and Ma = 1000
[(c), (d)].
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FIG. 16. Time evolution of the normalized migration velocity at
Ma = 1 and Re = 1, 10, 20, 40, 100, and 200. The numerical results
are denoted by symbols and the theoretical results by the dashed line.

is taken as D = 3 and the thermal conductivity of the gas
phase can be calculated as Pr1 = ρ1Cp1ν1/κ1 = 1. We present
the evolution of the bubble velocity normalized by UYGB in
Fig. 17; we also calculated the terminal bubble velocity and
list the relative errors in Table II. From Fig. 17 and Table II
one can find that the velocity increases with the increase of the
density ratio and the present LB method is also accurate for
the thermocapillary migration of the bubble, even with a large

TABLE II. Relative errors of migration velocity at different den-
sity ratios.

ρr UYGB Present work Er (%)

10 3.9526 × 10−5 3.8195 × 10−5 3.37
50 4.7592 × 10−5 4.8253 × 10−5 1.39
100 4.8773 × 10−5 4.9773 × 10−5 2.05
200 4.9381 × 10−5 5.0432 × 10−5 2.13
1000 4.9875 × 10−5 5.0587 × 10−5 1.43
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FIG. 17. Time evolution of normalized migration velocity at dif-
ferent density ratios. The numerical results are denoted by symbols
and the theoretical results by the dashed line.

density ratio. Further, we plot the velocity and temperature
distributions in Fig. 18 and find that the temperature and flow
fields at different density ratios are similar, which is also
consistent with the previous results [56].

Finally, we also test the present LB method for thermo-
capillary flows with high viscosity ratios. To this end, we
carry out some simulations of the thermocapillary migration
of the bubble under four different viscosity ratios (νr = 10:1,
20:1, 50:1, and 100:1) and set the other parameters as ν1 =
0.2, ρ1 = ρ2 = 1, σref = 2.5 × 10−4, σT = 10−5, Cp1,2 = 2,
κ1 = 0.2, and κ2 = 0.02. Through these parameters, we can
obtain Re = 0.01, Ma = 0.001, and Ca = 0.08. From the re-
sults shown in Fig. 19, one can observe that the velocity
of thermocapillary migration first increases rapidly and then
gradually tends to be stable with the evolution of time. We
also show a comparison of the numerical migration velocity
and the theoretical one (UYGB) in Table III. As seen from this
table, the present LB method can also give accurate results,
even for the case with a large viscosity ratio.

IV. CONCLUSION

In this paper, we proposed an improved lattice Boltz-
mann method for thermocapillary flows where an effective
LB model was developed for the governing equation of the
temperature field. To solve the temperature equation more ac-
curately and more efficiently, we first rewrote the convection-

TABLE III. Relative errors of migration velocity at different
ratios of the viscosity.

νr UYGB Present work Er (%)

10 4.1408 × 10−5 4.1799 × 10−5 0.94
20 4.4297 × 10−5 4.4363 × 10−5 0.15
50 4.6232 × 10−5 4.6186 × 10−5 0.10
100 4.6915 × 10−5 4.6899 × 10−5 0.03

diffusion equation of temperature as a diffusion equation in
which the convection term is considered as a source term and
then developed a simple LB model for the temperature equa-
tion. Through the Chapman-Enskog analysis, the macroscopic
governing equations of the thermocapillary flows could be
recovered correctly from the present LB method. In addition,
we also conducted some simulations to test the accuracy of
the present LB method and found that the numerical results
agree well with analytical solutions and available numerical
data. Compared to previous works [59,60], the present LB
method is much simpler and more accurate. Furthermore, the
present LB method also has the potential in the study of ther-
mocapillary flows with large density, viscosity, and thermal
conductivity ratios.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS OF THE
PRESENT LB MODEL FOR THE

TEMPERATURE EQUATION

In the Appendix we carry out a detailed Chapman-Enskog
analysis to derive the temperature equation from the present
LB model. For this purpose, we first expand the distribution
function hk , the source term Hk , and the derivatives of time
and space as [38,82]

hk = h(0)
k + εh(1)

k + ε2h(2)
k + · · · , (A1a)

Hk = εH (1)
k , H (1)

k = ωkR(1)
1 , (A1b)

∂t = ε∂
(1)
t + ε2∂

(2)
t + · · · , (A1c)

∇ = ε∇1 + · · · , (A1d)

where ε is a small parameter and R(1)
1 is given by

R(1)
1 = −u · ∇1T

− κ∇1T ·
[

− ρ(cpl − cpg ) + cp(ρl − ρg)

(ρcp)2(φl − φg)

]
∇1φ.

(A2)

Applying the Taylor expansion to Eq. (35), we can obtain

Dkhk + �t

2
D2

khk = − 1

�tτh

(
hk − heq

k

) +
(

1 − 1

2τh

)
Hk,

(A3)

where Dk = ∂t + ck · ∇. Substituting Eq. (A1) into Eq. (A3)
yields(

εD1k + ε2∂t2

)[
h(0)

k + εh(1)
k + ε2h(2)

k

]
+ �t

2

(
εD1k + ε2∂t2

)2(
h(0)

k + εh(1)
k + ε2h(2)

k

)
= − 1

τh�t

(
h(0)

k + εh(1)
k
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FIG. 18. Distributions of temperature [(a), (c), (e), (g), (i)] and velocity [(b), (d), (f), (h), (j)] at ρr = 10 [(a), (b)], ρr = 50 [(c), (d)],
ρr = 100 [(e), (f)].
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FIG. 18. (Continued.) ρr = 200 [(g), (h)], and ρr = 1000 [(i), (j)].

+ ε2h(2)
k − heq

k

) +
(

1 − 1

2τh

)
εH (1)

k , (A4)

where D1k = ∂t1 + ck · ∇1. Based on Eq. (35), we can derive
the equations at the orders of ε0, ε1, and ε2, respectively:

h(0)
k = heq

k , (A5a)

D1kh(0)
k = − 1

τh�t
h(1)

k +
(

1 − 1

2τh

)
H (1)

k , (A5b)

∂t2 h(0)
k + D1kh(1)

k + �t

2
D2

1kh(0)
k = − 1

τh�t
h(2)

k .

(A5c)

Substituting Eq. (A5b) into Eq. (A5c), we obtain

∂t2 h(0)
k + D1k

(
1 − 1

2τh

)
h(1)

k

+ �t

2
D1k

(
1 − 1

2τh

)
H (1)

k = − 1

τh�t
h(2)

k . (A6)

According to Eqs. (37) and (38b), we have

∑
k

h(1)
k = −�t

2
R(1)

1 , (A7)

∑
k=0

h(i)
k = 0, i � 2. (A8)
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FIG. 19. Time evolution of the migration velocity at different
viscosity ratios. The numerical results are denoted by symbols and
the theoretical results by the dashed line.

Summing Eqs. (A5c) and (A6) and applying Eqs. (37), (38a),
and (38b) gives

∂t1 T = R(1)
1 , (A9)

∂t2 T + ∇1

(
1 − 1

2τh

) ∑
k

ckh(1)
k = 0. (A10)

In addition, from Eqs. (A5b) and (38) we can obtain

∑
k

ckh(1)
k = −τh�t

[∑
k

ckD1kh(0)
k −

∑
k

(
1 − 1

2τh

)
ckH (1)

k

]

= −τh�t

(
0 + ∇1 ·

∑
k

ckckh(0)
k − 0

)

= −τh�tc2
s ∇1T . (A11)

Substituting Eq. (A11) into Eq. (A10), we have

∂t2 T = ∇1 · (α∇1T ), (A12)

where α = c2
s (τh − 0.5)�t . Combining the equations at t1

and t2 scales, i.e., Eqs. (A9) and (A12), we can re-
cover Eq. (29) correctly. In addition, from Eq. (A11)
we can also obtain a local scheme for the temperature
gradient,

∇T = −
∑

k ck
(
hk − heq

k

)
τh�tc2

s

. (A13)
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