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Quality of uncertainty estimates from neural network potential ensembles
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Neural network potentials (NNPs) combine the computational efficiency of classical interatomic potentials
with the high accuracy and flexibility of the ab initio methods used to create the training set, but can also
result in unphysical predictions when employed outside their training set distribution. Estimating the epistemic
uncertainty of a NNP is required in active learning or on-the-fly generation of potentials. Inspired from their
use in other machine-learning applications, NNP ensembles have been used for uncertainty prediction in several
studies, with the caveat that ensembles do not provide a rigorous Bayesian estimate of the uncertainty. To test
whether NNP ensembles provide accurate uncertainty estimates, we train such ensembles in four different case
studies and compare the predicted uncertainty with the errors on out-of-distribution validation sets. Our results
indicate that NNP ensembles are often overconfident, underestimating the uncertainty of the model, and require
to be calibrated for each system and architecture. We also provide evidence that Bayesian NNPs, obtained by
sampling the posterior distribution of the model parameters using Monte Carlo techniques, can provide better
uncertainty estimates.
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I. INTRODUCTION

Interatomic potentials (IPs) are a long-established method
to describe the potential energy and forces in atomic sys-
tems and have provided important insights into the physics
of atomic structures in the past seven decades [1–4]. A no-
table advantage of IPs over first-principles approaches such
as density functional theory (DFT) [5,6] and first-principles
molecular dynamics [7] is their higher computational effi-
ciency, allowing the simulation of larger systems over longer
timescales. In recent years, machine-learning techniques have
been successfully applied to develop force fields for atomistic
simulations [8–10]. Among other machine-learning tech-
niques, (deep) neural networks (NN) can be used as force
and energy predictors, resulting in neural network potentials
(NNPs), which have led to significant advances in atomistic
simulation, combining high computational efficiency with
great flexibility and accuracy [11–13]. One assumption behind
IPs is that the energy of the system can be described as a sum
over atomic energies: E = ∑

i Ei. Another assumption behind
most NNPs is that the atomic energy is a function of the local
neighborhood of that specific atom, that is, all atoms within a
radial cutoff distance, rc. Any IP, and therefore also any NNP,
should be invariant to translation, rotation, and permutation
of atoms in the system. This is most commonly achieved
by constructing a descriptor of the atomic environment that
displays those symmetries.

One approach to generate NNPs is to use NNs to learn
parameters of a physics-inspired functional form, for exam-
ple, to tackle long-range electrostatic contributions to energy
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and forces [14–17], which should be relevant in ionic sys-
tems. However, recent work has shown that NNPs are capable
of accurate predictions in ionic systems without explicitly
including long-range interactions [18,19]. NNPs can also
be used directly for the prediction of energies, forces, and
stresses, without enforcing a particular functional form. As
a first example, Behler and Parrinello implemented a NNP
[20] using atomic symmetry functions as an SO(3) invariant
descriptor. Another example is DEEPMD developed by Zhang
et al., where the relevant descriptors are learned during the
training and SO(3) invariance is encoded in the mathematical
form of the first layers [21].

Convolutional neural networks and graph convolutional
neural networks achieve invariance via the application of
tailored convolution filters [22–26], one prominent example
being Schnet [27,28]. A recent addition to the plethora of
neural network potentials is tensor-field NNPs, which encode
SO(3) equivariance in the convolutional operations [29,30].
Batzner et al. released NEQUIP [31], an efficient implementa-
tion of a NNP using equivariant convolutions.

While the architecture of the network and the type and
size of the input descriptor are of great importance to build
an accurate NNP, training the model with an extensive data
set of high quality is just as relevant. One common ap-
proach is to sample configurations with ab initio methods,
such as Born-Oppenheimer molecular dynamics at different
thermodynamic conditions [11,32]. Another possibility is an
active-learning approach, a repeated cycle of exploration, la-
beling, and (re)training of a model as follows:

(i) exploring configurations space, e.g., via molecular dy-
namics, using a NNP obtained in the previous iteration or from
an initial training,

(ii) labeling a subset of configurations using an ab initio
method,

(iii) training a new NNP with the labeled configurations.
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As a first example, Marcolongo et al. [18] trained a NNP
in this iterative fashion to model Li-ion diffusion in solid-state
electrolytes, where the configurations in the second step were
selected randomly from the molecular-dynamics trajectory
of the first step and were therefore sampled according to
the Boltzmann distribution. A possible disadvantage of this
method is that data selected randomly could be redundant,
adding no new information to the training set. Several works
in the past have concentrated on detecting configurations that
provide additional data that are not already covered by the
training set [33,34]. This can either enable active exploration
of configuration space to obtain better coverage, or so-called
on-the-fly training during a molecular dynamics or Monte
Carlo trajectory, proposed as early as 1997 by Vita and Car
[35] and used or developed further in subsequent work [36].
Using NNPs in such a scenario can be challenging, as it is
very hard to predict when a model is outside the training set
distribution [37–39]. Neural networks are often described as
“universal function approximators.” That flexibility directly
results in the difficulty to control prediction trends when de-
parting from the training set distribution.

Detecting configurations that provide additional data trans-
lates to detecting atomic environments of high epistemic
uncertainty. While aleatoric uncertainty is due to noise in-
herent in the labels, epistemic uncertainty is due to lack of
data and is the subject of this work [40–42]. In the remainder,
we simply refer to uncertainty, meaning epistemic uncertainty
originating from data scarcity. One approach to estimate the
uncertainty of the prediction of neural networks relies on the
prediction of several instances, so-called neural-network en-
sembles, where the uncertainty is estimated from the deviation
of the output of different models that were trained on the
same data. The members of the ensemble ideally have dif-
ferent architectures or, as a minimal criterion, have the same
architecture but are initialized independently. Ensemble net-
works have led to promising results in many machine-learning
applications [43–45]. Ensemble NNPs were, for example,
used by Zhang et al. [37], but also other work has relied
on similar approaches to select configurations of high model
uncertainty [34,46,47]. However, the uncertainty derived from
ensembles is not, strictly speaking, a Bayesian uncertainty
estimate [44,48,49]. The same applies to dropout techniques,
which have also been used to estimate uncertainty in NNPs
[38]. The method relying on the least approximations to obtain
uncertainty estimates are Bayesian NNs [50–52], obtained
by sampling the posterior distribution of NN parameters.
Bayesian NNPs, which do not rely on ensembles or dropout,
have not yet been developed to the best of our knowledge,
most likely due to the increased complexity and high com-
putational cost of exploring the posterior distribution of the
NNP parameters using expensive sampling techniques such
as Hamiltonian Monte Carlo [45,53–55].

In this work, we explore the relationship between the un-
certainty predicted by NNP ensembles and the true error of
the prediction, showing that ensembles are prone to com-
mon bias and overconfident predictions, depending on model
architecture and the system, requiring careful calibration of
the uncertainty. Furthermore, we compare choosing config-
urations based on the predicted uncertainty, as proposed by
Zhang et al. [37], to random sampling during exploration,

as done by Marcolongo et al. [18]. In Sec. II we explain
the methods used in this work. The results are shown and
discussed in Sec. III and we present our conclusion in Sec. IV.

II. METHODS

A. Systems and NNPs

In order to allow for general conclusions, we used training
and validation data from four very different atomic systems:
an atomic dimer, an aluminum surface slab, bulk liquid water,
and a benzene molecule in vacuum. The training and vali-
dation data were produced with a Lennard-Jones potential,
density functional theory, or the highly accurate coupled-
cluster single-, double-, and perturbative triple-excitations
method CCSD(T). The neural-network architectures we tested
were a custom-built neural network, the DEEPMD [21] frame-
work, and the NEQUIP [31] potential.

As a first case study, we trained a NNP on the potential
energy surface (PES) of an atomic dimer, i.e., two atoms of
the same species in vacuum. For this purpose, we chose a
parametrized model as the ground truth, namely, the Lennard-
Jones IP, where the energy is a function of the interatomic
distance r:

E (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (1)

where we set ε = 10.34 meV = 120 K · k−1
B and σ = 0.34 nm

(which are the parameters used by Rahman [2] to study atomic
correlation in liquid argon). In the range of interest (0.3 to
0.7 nm) we chose randomly ten training points according the

Boltzmann weight p(E ) ∝ e
E

kBT with T = 20 K. Such a simple
system allows for a significant reduction of the dimensionality
of the problem and for a custom-built NNP, leading to better
interpretability of the results.

We implemented a custom NNP using the pytorch frame-
work, with an input size of 1 (the interatomic distance), a
hidden layer of 64 neurons, and an output layer of 1 (the
energy). A neural network requires a nonlinear activation
function, and common choices of such activation functions
are the hyperbolic tangent tanh, the sigmoid function, rectified
linear units (ReLU), continuously differentiable exponential
linear units (CELU) [56], and Gaussian error linear units
(GELU). These activation functions are shown in Fig. S1 of
the Supplemental Material [57]. We implemented NNPs with
each type of activation function, as well as one NNP where
the activation function of each neuron was randomly chosen
among aforementioned functions. We trained each NNP with
the Adam optimizer for 50 000 steps with a learning rate of
10−3.

We used the smooth edition of DEEPMD [21], as imple-
mented in the DEEPMD-KIT package (version 1.3.3), to build
a potential for bulk and surface aluminum (Al) and for
liquid water. The DEEPMD NNPs had three layers for the
local-embedding network, their sizes being 32, 64, and 128,
respectively, and three layers for the fitting network, each
consisting of 256 neurons. The training was performed using
stochastic-gradient descent with an exponentially declining
learning rate.
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To have a more realistic and complex scenario than the
atomic dimer, we trained the DEEPMD potential on forces
and energies from an Al(100) surface with an adatom of
the same species. The bulk portion of the system is repre-
sentative of metals, while the presence of the surface leads
to additional complexity. Extensive FPMD simulations of this
system were performed by Nguyen et al. of a system of
295 atoms [58], consisting of six layers of Al (49 atoms per
layer) with an additional atom on the surface. The calculations
were performed with Born-Oppenheimer molecular dynamics
as implemented in the QUANTUM ESPRESSO (QE) distribution
[59] using the Perdew-Burke-Ernzerhof exchange-correlation
functional [60] in the canonical (NVT) ensemble. The tem-
peratures investigated were 300–600 K in steps of 100 K,
and additionally 800 and 1000 K, with ≈30 ps of dynamics
collected for every simulation. We selected evenly distributed
snapshots from each trajectory: 144 snapshots from the tra-
jectory at 1000 K, 72 snapshots at 800 K, and 36 snapshots
from the simulations at 300–600 K. For each temperature,
12 snapshots were retained for validation in order to obtain a
temperature-dependant validation error. We used the remain-
ing snapshots (training set) to train a NNP using DEEPMD [21],
with the parameters given in Fig. S2 of the Supplemental Ma-
terial [57]. An additional 91 snapshots were created from an
exploration with the NNP at 1000 K and added to the training
set. Training the DEEPMD NNP with this data set, we obtained
a trained model, MAl. One hundred additional snapshots were
sampled by exploring with MAl the same system at 1500 K in
order to obtain an additional validation set, DAl

1500.
We also trained a NNP with DEEPMD for the commonly

studied system of bulk water, representative of highly ergodic
liquid systems with high directionality of bonds, resulting in
the complex chemistry of water. We used the data set created
by Cheng et al. [61,62] of 64 water molecules in a cubic peri-
odic cell. We split the data set into four equally large data sets
DH2O

0...3 of 300 configurations each according to the potential
energy of the configuration, where the potential energy Ei of a
configuration in set k is smaller than (or equal to) the energies
of a configuration in set k + 1:

Ei � Ej∀i ∈ DH2O
k ∧ ∀ j ∈ DH2O

k+1 . (2)

The energy distribution of the four sets of configurations is
shown in Fig. S8 of the Supplemental Material [57]. The
model was trained with DH2O

0 and DH2O
1...3 were kept as val-

idation sets. The parameters employed for DEEPMD (Al and
water) are given in Fig. S2 of the Supplemental Material [57].

Last, we employed NEQUIP, developed by Batzner et al.
[31], to fit a potential for the benzene molecule in vacuum,
which is a good representative of covalently bonded systems.
Our NEQUIP NNP had three convolution layers, and eight
was the dimension of the hidden layer and the number of
features. We used a data set of 1500 configurations of C6H6,
produced by Chmiela et al. [63], who sampled configurations
using MD in the canonical (NVT) ensemble at 500 K, and
recalculated forces and energies using CCSD(T) for this data
set. We ordered the set of 1500 configurations by potential
energy and split the data into six batches of equal size, obtain-
ing independent sets DC6H6

0..5 of 250 configurations each. The
energy distribution of the six sets of configurations is shown in
Fig. S9 of the Supplemental Material [57]. Also in this case,

the potential energy Ei of a configuration in set k is smaller
than (or equal to) the energies of a configuration in set k + 1:

Ei � Ej∀i ∈ DC6H6
k ∧ ∀ j ∈ DC6H6

k+1 . (3)

As in the case study of liquid water, we trained the NNP on the
set of lowest-energy configurations (DC6H6

0 ) and used DC6H6
1...5 as

validation sets. The Adam optimizer was used for the training,
with a learning rate of 0.01, and the training was stopped
after 500 epochs (complete passes over the training data).
All parameters are reported in Fig. S3 of the Supplemental
Material [57].

B. NNP ensembles

Unless stated differently, we trained M = 8 NNPs with the
same data to estimate the ensemble uncertainty, which we
found to be converged at that ensemble size. These models
were initialized independently via the input of different seeds,
which affected both the parameter initialization and the order
of sample selection during stochastic gradient descent, where
applicable. From the ensemble of NNPs, we computed the
mean prediction and the standard deviation σ for every force
component FIα:

F̄Iα = 1

M

M∑
m

F m
Iα, (4)

σIα =
√√√√ 1

M

M∑
m

(
F m

Iα − F̄Iα
)2

, (5)

where the subscripts I and α give atomic indices and spatial
dimensions, respectively, and m iterates over models of the
ensemble. σIα is the predicted model uncertainty of the force
in direction α of atom I .

The error ε of the model was calculated (on a
validation/test set) from the difference of the predicted
(mean) force F̄Iα and the ab initio F ai

Iα force (the label):

εIα = ∣∣F ai
Iα − F̄Iα

∣∣. (6)

C. Bayesian NNP

The simplicity of the NNP for the atomic dimer and the
small amount of training data (ten one-dimensional training
points) allowed for a Bayesian estimate of the posterior prob-
ability of the weights θ , given the data D = {(xi, yi )}:

p(θ |D) = p(D|θ )p(θ )

p(D)
, (7)

where p(D|θ ) is the likelihood of the data, p(θ ) is the prior,
and p(D) the marginal likelihood. The likelihood of the data
given the parameters θ of a function f , assuming Gaussian
white noise of variance σ 2 in the observations, is given by

p(D|θ ) =
n∏

i=1

1√
2πσ 2

e− [yi− f (xi |θ )]2

2σ2

=
(

1√
2πσ 2

)n

e−
∑n

i=1 [yi− f (xi |θ )]2

2σ2

∝ e−L(D|θ )
T , (8)
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where L(D|θ ) = 1
n

∑n
i [yi − f (xi|θ )]2 is the mean-squared er-

ror loss function and n is the number of samples.
The prior of the parameters, p(θ ), was set to the normal dis-

tribution N (0, σ 2
p ) with σ 2

p = 1000, which we evaluated via a
curvature criterion. We ignored p(D), the marginal likelihood,
since it is independent of θ . Inserting Eq. (8) and the Gaussian
prior into Eq. (7), we obtain an energy or cost function of the
parameters of the network that can be sampled at a fictitious
temperature T [50,54,55,64]:

p(θ |D, T ) ∝ e
− 1

T L(D|θ )− θ2

2σ2
p . (9)

We sampled this landscape using the Hamiltonian Monte
Carlo (HMC) [65], with the Hamiltonian dynamics being
integrated with the velocity Verlet integrator [66]. We set the
fictitious temperature to 0.05 (resulting in a cold posterior
[64]) and used 10 000 steps of Hamiltonian dynamics, with
a time step of 0.015, which resulted in an acceptance rate of
0.675 of Monte Carlo moves, close to the optimal acceptance
rate of 0.65 [65]. We sampled the parameter distribution by
selecting 100 models from the MC trajectory to calculate
mean and uncertainty as for the NNP ensembles.

D. Statistical analysis

We interpret the ensemble uncertainty σIα as a predictor
for the error εIα . A straightforward approach, also employed
by Zhang et al. [67], is to classify configurations based on
an uncertainty threshold, σmax. Configurations with all σIα <

σmax were classified as low error and were classified as high-
error configurations otherwise. The condition was given by
εIα < εmax. We note that σmax and εmax did not have to be
equal, in order to account for systematic underestimates. We
formulated two distinct requirements for the uncertainty.

(i) A requirement for accurate results is that configurations
that produce a high error, εIα > εmax, due to lack of training
data in that region of configuration space are detected via a
high uncertainty, σIα > σmax.

(ii) A computational requirement is to achieve high pre-
cision for high-error configurations, in order to avoid falsely
selecting many configurations that are described well by the
model.

The first requirement is given by the true positive rate
(TPR), also called recall or sensitivity, which is given by the
ratio of correctly positive prediction among all elements with
the following condition:

TPR = TP

TP + FN
, (10)

where TP and FN refer to true positives (εIα > εmax and
σIα > σmax) and false negatives (εIα > εmax and σIα < σmax),
respectively. The second requirement, stating that we want to
maximize the ratio of true high-error configuration to high-
uncertainty configurations, is described by another metric, the
precision or positive predictive value (PPV):

PPV = TP

TP + FP
, (11)

where FP refers to the false positives (εIα < εmax and σIα >

σmax).

FIG. 1. The ground truth (blue dash-dotted lines) and the training
points (blue dots and dotted vertical lines) are shown together with
predictions from eight models trained on the same data but initialized
differently. In the top panel we plot the logarithm of the standard
deviation between the models. The model uses the hyperbolic tangent
as an activation function. The top panel shows the standard deviation
of the model prediction as a function of r on a semilogarithmic scale.

III. RESULTS AND DISCUSSION

A. The atomic dimer

The custom NNP for the atomic dimer receives a scalar in-
put (the distance), predicts the energy, and has 64 hidden units.
The predictions of this model using the hyperbolic tangent
(tanh) as the nonlinear activation function are shown for the
range of r from 0.33 to 0.68 nm in Fig. 1. The NNP ensemble
mean is very accurate at predicting the PES in the region of
training data, which we call the interpolation regime. In the
extrapolation regime, where r < 0.35 nm or r > 0.45 nm, no
data are supplied and the models deviate from the ground
truth (blue dash-dotted lines). However, the members of the
ensemble deviate in a very similar fashion, most probably due
to common biases. This is not only the case when using this
particular activation function: all activation functions (ReLU,
CELU [56], GELU, and sigmoid) show the same behavior
(see Fig. S4 of the Supplemental Material [57]). However,
different activation functions result in different biases in the
region of larger distances (r > 0.45 nm). Using tanh or sig-
moid as activation functions leads to underestimates of the
energy at r > 0.45 nm, whereas other activation functions
(ReLU, CELU) lead to overestimates. We suspect that this
behavior is because the networks with the latter activation
functions are prone to extrapolate the slope from the closest
training points. Using the uncertainty of the ensemble as a
predictor for low accuracy [37] would result in this case study
in false positives in data-scarce regions due to the bias in the
model.

The NNP ensemble where every neuron within the hidden
layer is randomly assigned one out of the different activa-
tion functions we study (tanh, sigmoid, GELU, ReLU, and
CELU) produces predictions that are more diverse (see Fig. 2)
outside the training set distribution. The ensemble displays
higher variance of the output in the extrapolative region of
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FIG. 2. Similar to Fig. 1, training data (blue dots) sampled from
the ground truth (blue dash-dotted line) were used to train different
models (dotted lines). The models are initialized independently and
also have different architectures, ensured via a random assignment of
activation function to every neuron in the hidden layer. The estimate
of the uncertainty is improved due to reduced bias.

r > 0.45 nm, which we interpret as evidence that bias has
been reduced. The region of smaller distances (r < 0.35 nm)
is biased towards slopes of smaller magnitude. Compared to
the results of the ensembles with the same architecture, diver-
sifying the NNP ensemble results in lower bias, which is also
discussed by Jeong et al. [47]. The uncertainty of ensembles
with a varying model architecture is a better predictor for the
accuracy of the model when predicting unseen data and could
be useful in active learning. Current approaches employing
NNP ensembles [37,46] do not use varying architectures of the
ensemble members to reduce the collective bias. The results
of this simple case study of the atomic dimer indicate that this
could help in improving the uncertainty estimate.

As a last example, we estimated the posterior distribution
of the weights using HMC. The Bayesian model predicts (see
Fig. 3) a high uncertainty in the extrapolation regime, for both
r < 0.35 and r > 0.45, and also an increased uncertainty in
the region around r = 0.42 nm due to lower data density. The
Bayesian model compares well to ensembles with the same
and with varying architecture, as the bias is further reduced.
The uncertainty predicted by the Bayesian NNP resembles
most closely our expectation due to the sharp increase of the
uncertainty when extrapolating and a moderate increase in
uncertainty when interpolating in regions of low training data
density.

B. Al(100) surface

The ensemble of eight DEEPMD models, trained on energies
and forces of atoms in and on an Al surface, results in an
accurate NNP within and close to the training set distribu-
tion. The forces on Al atoms for the configurations of three
validation sets (DAl

300, DAl
600, and DAl

1000) are plotted in Fig. 4,
showing excellent agreement, evidence that the ensemble is
able to capture the interatomic interactions of Al in the bulk
and on the surface. We observe that the validation sets sam-

FIG. 3. Similar to Fig. 1, the training data (blue dots) are sampled
from the ground truth (blue dash-dotted line). The dotted lines show
the predictions of models sampled from the posterior parameter
distribution, and the orange area depicts one standard deviation from
the mean.

pled at higher temperatures lead to higher forces and higher
root-mean-square errors (RMSE) in the prediction, which
is expected because the system explores a larger region of
phase space at higher temperatures, which translates to a more
complex training problem. A histogram of the error for each
temperature we studied is shown in Fig. 5, confirming this
behavior. The validation set sampled at 1500 K has the highest
error. We remind the reader that no configurations sampled at
that temperature were used in training, and we mark these as
out-of-distribution (ood) samples.

One question of interest is how to detect these ood samples,
or—more generally—high-error configurations. The relation-
ship between predicted uncertainty and true error is shown
for three validation sets (DAl

1500, DAl
1000, and DAl

300) in Fig. 6.

FIG. 4. The prediction of a force component (y axis) against the
DFT-calculated force (x axis) for the validations sets DAl

300, DAl
600, and

DAl
1000 in blue, orange, and green, respectively. The RMSE of the

forces is given in brackets in the legend.
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FIG. 5. Histograms of the difference of the predicted and
calculated force components reveal an approximately Gaussian-
distributed error with increasing deviation with higher temperature.

We observe that the error εIα is generally about 1 order of
magnitude higher than the predicted uncertainty σIα .

No perfect correlation between εIα and σIα is expected, and
such a correlation is not a necessary criterion to select snap-
shots with unacceptable error. A more pragmatic criterion is
that a positive constant c can be found such that εIα < c · σIα

for all (or a significant fraction of) Iα. Such a constant or
slope, for example, is visible in Fig. 2(e) of Ref. [68], where
the error estimate is given by a Gaussian process regression
model. We draw such a line as a guide to the eye in Fig. 6,
choosing the line of smallest slope above the data points (and
going through the origin). The slope of this line is 62, which
means that in order to achieve a very high degree of certainty
that the error is below a given threshold εmax, the uncertainty
threshold σmax has to be almost 2 orders of magnitude above
εmax. We also draw the line that lies above 90% of the data
points, resulting in a slope of 14. This shows that even if one

FIG. 6. The ensemble uncertainty σIα [calculated via Eq. (5)] is
plotted against the error εIα , calculated as the squared difference
between the predicted value and the label, for three validation set
DAl

1500, DAl
1500, and DAl

1500 in blue, orange, and green, respectively. The
red solid line gives the line of smallest slope the bounds the data
points from above. In the top panel, the reliability diagram shows the
mean error for all data points with a given uncertainty, with the same
color encoding.

FIG. 7. For the validation set DAl
1500 we plot the recall or TPR as

a heat map over different true errors and predicted errors (left panel).
On the right, we plot the precision or PPV for the same dataset.

is willing to accept a significant amount of high-error config-
urations, the uncertainty threshold nevertheless lies an order
of magnitude above the error threshold. A reliability diagram
is shown in the top panel of Fig. 6, where we bin the data
points by their uncertainty and plot the mean error for every
bin. The mean error increases when the uncertainty is higher,
but there are strong signs of miscalibration. A well-calibrated
model would result in a reliability diagram close to an identity
function.

Similar to previous work [39,67], we assume that a max-
imum true error, εmax, exists above which the properties
sampled by the dynamics are no longer trustworthy, requiring
a need to recalculate this point during active exploration or
marking it for labeling. We classify force components of the
validation set DAl

1500 set according to the true error εIα > εmax

and try to predict this class using σIα > σmax. The TPR, intro-
duced in Eq. (10), is shown in the left panel of Fig. 7. For
low σmax (below 10 meV Å−1), it is possible to guarantee
that the true error is bounded by a wide range of εmax. In
general, the region of high recall or TPR is at the top left
of the heat map, towards high εmax and low σmax. The region
of high computational efficiency is given by a high precision
or PPV and is concentrated in the bottom right, towards high
σmax and low εmax. The only region of high precision or PPV
and high recall or TPR is in the bottom left; however, this
is the region where εmax and σmax are so low that almost all
data points are true positives (see Fig. S5 of the Supplemental
Material [57]). In summary, only by giving very strict criteria
on the predicted uncertainty is it guaranteed that the true error
is bound, which implies that we can only exclude a negligible
amount of the data set as low-error points. In an on-the-fly
training scenario, where the low error of force components is
important, the number of useful calculations will be very low
due to the high number of false positives and the low number
of true positives (see Fig. S5 of the Supplemental Material
[57]).

In an active-learning scenario, finding all high-error points
is not necessary as long as a sufficient number of high-error
configurations are discovered to enrich the training set with
ood data, allowing us to relax a very strict threshold σmax.
In such a scenario, it is important to find training points
for the next iteration that are more likely to be outside the
previous training set than if sampled randomly. In Fig. 8 we
plot histograms of the true error in the force components
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FIG. 8. The true error distribution of snapshots is plotted for all
configurations of the validation set DAl

1500 for configurations that have
a predicted uncertain above (top panel) or below (bottom panel)
a given threshold. The black bars display the true error histogram
for all configurations. The histograms being very similar to each
other shows that for DAl

1500 it is not possible to single out high-error
configurations via a threshold on the model uncertainty.

εIα when screening for all predictions above σmax (σmax = 0
therefore includes all force components). We observe a shift
of the histogram towards larger true errors when selecting for
components with higher uncertainties; however, this shift is
marginal. This confirms our interpretation of the right panel
of Fig. 7, that it is not possible to achieve a high PPV except
when declaring almost all data points as high-error points via
a very low threshold εmax.

To summarize, we note that ensemble uncertainties are
about 1 order of magnitude lower than the errors. This obser-
vation needs to be accounted for when relying on ensemble
uncertainties. When specifying the error threshold εmax, one
needs to investigate which uncertainty criterion σmax this re-
quires. As this case study shows, it is possible that σmax needs
to be significantly larger than εmax. Furthermore, the results of
this case study indicate that sampling based on an uncertainty
criterion [37] or sampling randomly [18] should result in very
similar distributions. Random sampling is, for obvious rea-
sons, easier to implement and computationally more efficient
and would, therefore, be preferable.

C. Water

In Fig. 9 we show the forces predicted by the DEEPMD NNP
ensemble against the labels for the three validation sets of bulk
water. We note that the training and validation configurations
do not originate solely from a molecular-dynamics trajectory,
but also from different sampling strategies that lead to signifi-
cantly higher forces [62] than in the previous case study. The
error in the forces increases slightly for snapshots of higher
potential energies, and the highest RMSE is found for DH2O

3 .
Nevertheless, the good reproduction of forces in unseen data
gives evidence of a very accurate NNP within and close to the
training set distribution, gently reducing in accuracy as one
moves away from the training examples.

FIG. 9. We plot the DFT forces against the predicted forces of
DEEPMD for the validation sets DH2O

1 , DH2O
2 , and DH2O

3 . RMSE is
given in brackets inside the legend

The predicted uncertainty against the true error for all
validation sets, plotted in Fig. 10, displays a behavior similar
to that in the case study of Al (cf. Fig. 6). The first similarity
is that the uncertainty predicted by the NNP ensemble is un-
derestimated with respect to the error by the mean prediction,
also by approximately 1 order of magnitude. A distinction,
however, is that there is no line of finite slope that bounds all
data points from above (i.e., it is not possible to bound the er-
ror rigorously), due to the presence of configurations that have
been predicted with zero uncertainty but display finite true
errors. A line that lies above 90% of the validation points has
a slope of 7.7, which is a bit lower than in the previous case
study. Nevertheless, the conclusion is the same as for Al(100):
the uncertainty threshold needs to be an order of magnitude

FIG. 10. The predicted uncertainty σIα against the true error in
liquid water for the validation sets (DH2O

1 , DH2O
2 , and DH2O

3 ), shown
as green, orange, and blue dots, respectively.
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FIG. 11. Recall (TPR) and precision (PPV) for the DH2O
3 valida-

tion set for liquid water.

higher than the error one is willing to accept. Another simi-
larity is the presence of false positives; i.e., force components
are predicted relatively accurately despite the high uncertainty
associated with that prediction. The reliability diagram in the
top panel of Fig. 10 bears closer resemblance to an identity
than in the case of Al (cf. Fig. 6). We speculate that this is
because the validation set DH2O

3 of liquid water is described
worse by the ensemble than the validation set of Al(100)
(DAl

1500). The fact that the more accurate a model is, the more
likely the model is to be overconfident, has also been observed
in other work and is believed to constitute a general trend [69].

As is the case for Al(100), also in liquid water we find
regions of high TPR for high-error thresholds εmax and low
uncertainty bounds σmax, meaning that a strict uncertainty
bound σmax is almost guaranteed to find all examples of high
true error εmax (see Fig. 11). However, regions of high TPR
are also regions of low PPV, implying that the computational
efficiency in that regime is low. As a result, there is no region
with a F1 score close to 1 (see Fig. S6 of the Supplemental
Material [57]), except for the regime of very strict bounds on
uncertainty and error.

FIG. 12. Histogram of the true error for different subsets of
DH2O

3 , based on the predicted model uncertainty. The black bars
show the distribution of error distribution of the entire validation set.
With increasing model uncertainty threshold, the histogram becomes
skewed towards higher-error configurations.

FIG. 13. We plot the CCSD(T) forces against the predicted
forces of the NNP ensemble for the validation sets DC6H6

1...5 . RMSE
is given in brackets inside the legend.

In Fig. 12, we plot histograms of the true error distributions
for subsets of the validation sets with a minimal (top panel) or
maximal (bottom panel) uncertainty. Comparing to the case
study of Al (cf. Fig. 8), the histograms change more signifi-
cantly with increased threshold, meaning that one is likelier
to select high-error configurations by using an uncertainty
criterion (compared to random selection), which confirms the
findings above. The histogram is still peaked at low true
errors, but the difference in the histograms gives evidence
that the uncertainty criterion can improve the selection of
configurations for labeling and retraining in an active-learning
scenario.

In this case study, sampling based on the ensemble un-
certainty is shown to be advantageous, compared to random
sampling, as the probability of including high-error configura-
tions is increased. This has to be weighted against the higher
computational cost and complexity of the former approach.
Our results for water do not indicate that the true error can be
bounded by a limit on the ensemble uncertainty, merely that
the probability of picking a high-error configuration is higher
if selecting configurations with high ensemble uncertainty,
compared to random choice. As in the previous case study,
to rely on the ensemble uncertainty would require calibration,
as the predicted model uncertainties are of a magnitude sig-
nificantly lower than that of the model errors.

D. Benzene

As a last case study we show the results of the NEQUIP NNP
ensemble trained on the benzene data set. NEQUIP generalizes
well for this training set and can be trained with a compar-
atively small number of training points. The forces estimated
by the NNP ensemble trained on the 250 configurations lowest
in potential energy are plotted against the CCSD(T) predic-
tions in Fig. 13 for all validation sets. The RMSE increases
for validation sets of higher potential energy, as in the previous
example (cf. Sec. III C). The lower complexity of the benzene
molecule, compared to water or Al, has allowed us to study
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FIG. 14. The predicted uncertainty σIα against the true error of
an isolated benzene for the validation sets DC6H6

1 , DC6H6
3 , and DC6H6

5 ,
shown as green, orange, and blue dots, respectively.

which configurations result in comparatively larger model er-
rors. Based on a simple descriptor of the atomic environment,
we find that atoms in the training set whose descriptor falls
outside the convex hull of training-set descriptors can have
higher errors (see Fig. S10 of the Supplemental Material [57]).

The uncertainty estimates given by the ensemble deviation
are plotted against the error in Fig. 14. Here, as for the Al
case study (see Sec. III B), it is possible to heuristically bound
the error by a line of slope 8.2, which is significantly smaller
than a slope of 62 in the case of Al(100), evidence for a
lower degree of overconfidence of the ensemble. The line that
lies above 90% of the validation points has a slope of 1.4,
close to unity. Therefore, unlike the previous examples, the
true error and predicted uncertainties are of the same order
of magnitude, which means that this system and ensemble
are better calibrated. Furthermore, the reliability diagram in
the top panel of Fig. 14 resembles the identity function more
closely than in the case of Al(100) (cf. Fig. 6), especially
if we exclude the right portion of the histogram where the
data points are significantly less. We observe that, unlike for
liquid water and Al(100), the NEQUIP ensemble is not over-
confident: predictions of an uncertainty σIα have a mean error
εIα that is of the same order. Nevertheless, Fig. 15 implies
that the same problem persists as for the uncertainty estimates
in Al(100) and liquid water; namely, that it is not possible
to separate efficiently configurations (or force components)
of high uncertainty without also including a large amount of
false negatives (configurations that are accurately described,
but where the ensemble estimates a high uncertainty). In
Fig. 16, we show the histograms of the error distribution for
subsets of the validation set DC6H6

5 , screened by the ensemble
uncertainty. As for the case of liquid water, the histogram
is shifted towards higher-error configurations when exclud-
ing low-uncertainty configurations from the validation set.
Nevertheless, the histogram remains with its maximum value
at low-error configurations, which means that many false

FIG. 15. Recall (TPR) and precision (PPV) for the DC6H6
5 valida-

tion set.

positives are included, and the histograms are not significantly
different from a random selection. Also in this case study,
there is evidence to suggest that sampling based on the un-
certainty [37] can result in an improved training set with a
higher likelihood of unseen new data, compared to random
sampling.

To conclude, the NEQUIP ensemble for benzene is very
accurate without being overconfident of the prediction, which
is not the case for DEEPMD in Al(100) or water. The focus of
this work, however, is not to compare different implementa-
tions or architectures of NNPs, which would be a promising
question for future research, but rather to highlight that, for
certain implementations and systems, NNP ensembles can be
overconfident and that there is high variance in the degree of
overconfidence. The proper calibration of NNP ensembles in
order to be accurate without being overconfident needs to be
studied further. A very interesting perspective on this question
is provided by Guo et al. [69], who observed that the more
accurate a NN model is (due to added parameters and more
flexibility), the more it is overconfident.

FIG. 16. Histogram of the prediction error for different subsets of
DC6H6

5 , selected based on the ensemble model uncertainty. The black
bars show the distribution of error distribution of the entire validation
set. With increasing the model uncertainty threshold, the histogram
becomes skewed towards higher-error configurations.
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IV. CONCLUSIONS

Zhang et al. [67] have shown substantial evidence that
selecting data to label based on the uncertainty of NNP en-
sembles can result in high-quality models and trajectories. On
the other hand, Marcolongo et al. [18] performed an itera-
tive training where samples for the retraining were chosen
randomly, i.e., Boltzmann distributed, from a molecular-
dynamics trajectory, also resulting in models of high pre-
dictive accuracy. The results of this work reconcile these
findings: selecting configurations based on the ensemble un-
certainty is in many cases not significantly different from
random sampling. By applying low thresholds on the uncer-
tainty, the error of the model can be bound, but this will incur
many false positives, resulting in additional computational
effort in a learn-on-the-fly or active-learning scenario.

A second finding is that the uncertainty can be significantly
underestimated, in the case study of the DEEPMD ensemble
trained on Al(100) by an order of magnitude, where an un-
certainty threshold of, e.g., 10 meVÅ−1 results in errors of
≈ 100 meVÅ−1. When employing NNP ensembles, we ad-
vise the reader to calibrate the uncertainty threshold on a
validation set, as is also advisable in other machine-learning
applications [69,70]. Further research is needed on how to
properly calibrate NNP ensembles, and an especially interest-
ing avenue is, in our opinion, to explore whether there is an

accuracy-confidence trade-off, as observed in other machine-
learning applications [69].

Last, our results indicate that the uncertainty estimates can
be improved. The NNP ensemble trained on the atomic dimer
reveals that ensembles can be biased in a similar manner when
the same NN architecture is used, which is also found in
similar computational experiments [45]. One method to avoid
such common bias is to ensure different architectures of the
NNP, for example, by randomizing the activation function
for every neuron. A second, more rigorous method, is the
implementation of a Bayesian NNP, which can be obtained by
sampling the posterior distribution of parameters with HMC
and which results in a significantly improved estimate of the
uncertainty. Training a Bayesian NNP, however, comes at
great complexity and large computational expense, and we
defer its implementation and validation to future work.

ACKNOWLEDGMENTS

This research was supported by the NCCR MARVEL,
funded by the Swiss National Science Foundation. We are
indebted to Simon Batzner and Alby Musaelian for their gen-
erous help with NEQUIP. L.K. thanks Maria R. Cervera for
fruitful discussions.

[1] B. J. Alder, S. P. Frankel, and V. A. Lewinson, J. Chem. Phys.
23, 417 (1955).

[2] A. Rahman, Phys. Rev. 136, A405 (1964).
[3] F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994).
[4] M. A. González, École thématique Soc. Fr. Neutronique 12, 169

(2011).
[5] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[6] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[7] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
[8] M. Ceriotti, J. Chem. Phys. 150, 150901 (2019).
[9] F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi, and

M. Ceriotti, Chem. Rev. 121, 9759 (2021).
[10] J. Behler, Chem. Rev. 121, 10037 (2021).
[11] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csnyi,

A. V. Shapeev, A. P. Thompson, M. A. Wood, and S. P. Ong,
J. Phys. Chem. A 124, 731 (2020).

[12] X.-G. Li, C. Chen, H. Zheng, Y. Zuo, and S. P. Ong,
npj Comput. Mater. 6, 1 (2020).

[13] J. Qi, S. Banerjee, Y. Zuo, C. Chen, Z. Zhu, M. L. Holekevi
Chandrappa, X. Li, and S. P. Ong, Mater. Today Phys. 21,
100463 (2021).

[14] S. A. Ghasemi, A. Hofstetter, S. Saha, and S. Goedecker,
Phys. Rev. B 92, 045131 (2015).

[15] P. Bleiziffer, K. Schaller, and S. Riniker, J. Chem. Inf. Model.
58, 579 (2018).

[16] B. Nebgen, N. Lubbers, J. S. Smith, A. E. Sifain, A. Lokhov,
O. Isayev, A. E. Roitberg, K. Barros, and S. Tretiak, J. Chem.
Theory Comput. 14, 4687 (2018).

[17] Z. Deng, C. Chen, X.-G. Li, and S. P. Ong, npj Comput. Mater.
5, 1 (2019).

[18] A. Marcolongo, T. Binninger, F. Zipoli, and T. Laino,
ChemSystemsChem 2, e1900031 (2020).

[19] J. Huang, L. Zhang, H. Wang, J. Zhao, J. Cheng, and W. E,
J. Chem. Phys. 154, 094703 (2021).

[20] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401
(2007).

[21] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Phys. Rev. Lett.
120, 143001 (2018).

[22] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R.
Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P.
Adams, in Proceedings of the 28th International Conference
on Neural Information Processing Systems—Volume 2, NIPS’15
(MIT, Cambridge, MA, USA, 2015), pp. 2224–2232.

[23] T. S. Hy, S. Trivedi, H. Pan, B. M. Anderson, and R. Kondor,
J. Chem. Phys. 148, 241745 (2018).

[24] K. Ryczko, K. Mills, I. Luchak, C. Homenick, and I. Tamblyn,
Comput. Mater. Sci. 149, 134 (2018).

[25] T. Xie and J. C. Grossman, Phys. Rev. Lett. 120, 145301
(2018).

[26] J. Klicpera, J. Groß, and S. Günnemann, arXiv:2003.03123.
[27] K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A.

Tkatchenko, and K.-R. Müller, in NIPS’17: Proceedings of the
31st International Conference on Neural Information Process-
ing Systems, edited by U. von Luxburg, I. Guyon, S. Bengio, H.
Wallach, and R. Fergus Curran Associates Inc. Red Hook, NY,
2017), pp. 992–1002.

[28] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko,
and K.-R. Müller, J. Chem. Phys. 148, 241722 (2018).

[29] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff,
and P. Riley, arXiv:1802.08219.

015311-10

https://doi.org/10.1063/1.1742004
https://doi.org/10.1103/PhysRev.136.A405
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1051/sfn/201112009
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1063/1.5091842
https://doi.org/10.1021/acs.chemrev.1c00021
https://doi.org/10.1021/acs.chemrev.0c00868
https://doi.org/10.1021/acs.jpca.9b08723
https://doi.org/10.1038/s41524-019-0267-z
https://doi.org/10.1016/j.mtphys.2021.100463
https://doi.org/10.1103/PhysRevB.92.045131
https://doi.org/10.1021/acs.jcim.7b00663
https://doi.org/10.1021/acs.jctc.8b00524
https://doi.org/10.1038/s41524-019-0212-1
https://doi.org/10.1002/syst.201900031
https://doi.org/10.1063/5.0041849
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1063/1.5024797
https://doi.org/10.1016/j.commatsci.2018.03.005
https://doi.org/10.1103/PhysRevLett.120.145301
http://arxiv.org/abs/arXiv:2003.03123
https://doi.org/10.1063/1.5019779
http://arxiv.org/abs/arXiv:1802.08219


QUALITY OF UNCERTAINTY ESTIMATES FROM NEURAL … PHYSICAL REVIEW E 105, 015311 (2022)

[30] J. P. Mailoa, M. Kornbluth, S. Batzner, G. Samsonidze, S. T.
Lam, J. Vandermause, C. Ablitt, N. Molinari, and B. Kozinsky,
Nat. Mach. Intell. 1, 471 (2019).

[31] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa,
M. Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky,
arXiv:2101.03164.

[32] L. Zhang, J. Han, H. Wang, W. Saidi, R. Car, and W. E, in
Advances in Neural Information Processing Systems, Vol. 31,
edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett (Curran Associates, Inc., 2018).

[33] Z. Li, J. R. Kermode, and A. De Vita, Phys. Rev. Lett. 114,
096405 (2015).

[34] K. Miwa and H. Ohno, Phys. Rev. Mater. 1, 053801 (2017).
[35] A. D. Vita and R. Car, MRS Online Proceedings Library 491,

473 (1997).
[36] G. Csányi, T. Albaret, M. C. Payne, and A. De Vita, Phys. Rev.

Lett. 93, 175503 (2004).
[37] L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, Phys. Rev.

Mater. 3, 023804 (2019).
[38] M. Wen and E. B. Tadmor, npj Comput. Mater. 6, 1 (2020).
[39] C. Schran, K. Brezina, and O. Marsalek, J. Chem. Phys. 153,

104105 (2020).
[40] A. Kendall and Y. Gal, arXiv:1703.04977.
[41] N. Tagasovska and D. Lopez-Paz, in Advances in Neural In-

formation Processing Systems, Vol. 32, edited by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alche-Buc, E. Fox, and R.
Garnett (Curran Associates, Inc., 2019).

[42] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R.
Acharya, V. Makarenkov, and S. Nahavandi, Inf. Fusion 76, 243
(2021).

[43] B. Lakshminarayanan, A. Pritzel, and C. Blundell, in Advances
in Neural Information Processing Systems, Vol. 30, edited by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017).

[44] T. Pearce, F. Leibfried, and A. Brintrup, in Proceedings of the
Twenty Third International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Research, Vol.
108, edited by S. Chiappa and R. Calandra (PMLR, UK, 2020)
pp. 234–244.

[45] J. Yao, W. Pan, S. Ghosh, and F. Doshi-Velez,
arXiv:1906.09686.

[46] L. Chen, I. Sukuba, M. Probst, and A. Kaiser, RSC Adv. 10,
4293 (2020).

[47] W. Jeong, D. Yoo, K. Lee, J. Jung, and S. Han, J. Phys. Chem.
Lett. 11, 6090 (2020).

[48] Y. Gal, Ph.D. thesis, University of Cambridge, Cambridge, Eng-
land, 2016).

[49] F. D’Angelo and V. Fortuin, arXiv:2106.11642.

[50] D. J. C. MacKay, Neural Comput. 4, 448 (1992).
[51] R. M. Neal, Bayesian Learning for Neural Networks (Springer,

New York, 1996).
[52] G. M. Martin, D. T. Frazier, and C. P. Robert,

arXiv:2004.06425.
[53] R. M. Neal, in Advances in Neural Information Processing

Systems, Vol. 5, edited by S. Hanson, J. Cowan, and C. Giles
(Morgan-Kaufmann, USA, 1993).

[54] R. Chandra, K. Jain, R. V. Deo, and S. Cripps, Neurocomputing
359, 315 (2019).

[55] R. J. N. Baldock and N. Marzari, arXiv:1904.04154.
[56] J. T. Barron, arXiv:1704.07483.
[57] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.105.015311 for details of the neural-
network hyperparameters and additional results.

[58] N. L. Nguyen, F. Baletto, and N. Marzari, Mater. Cloud Arch.
2018.0002/v1, doi:10.24435/materialscloud:2018.0002/v1
(2018).

[59] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. D. Corso, S. d. Gironcoli, S. Fabris, G. Fratesi, R.
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos et al., J. Phys.: Condens. Matter 21, 395502
(2009).

[60] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[61] B. Cheng, E. Engel, J. Behler, C. Dellago, and
M. Ceriotti, Mater. Cloud Arch. 2018.0020/v1,
doi:10.24435/materialscloud:2018.0020/v1 (2018).

[62] B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti,
Proc. Natl. Acad. Sci. USA 116, 1110 (2019).

[63] S. Chmiela, H. E. Sauceda, K.-R. Müller, and A. Tkatchenko,
Nat. Commun. 9, 3887 (2018).

[64] F. Wenzel, K. Roth, B. S. Veeling, J. Witkowski, L. Tran, S.
Mandt, J. Snoek, T. Salimans, R. Jenatton, and S. Nowozin,
arXiv:2002.02405.

[65] R. M. Neal, in Handbook of Markov Chain Monte Carlo, edited
by S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng (CRC,
Boca Raton, FL, 2011), pp. 113–160.

[66] L. Verlet, Phys. Rev. 159, 98 (1967).
[67] Y. Zhang, H. Wang, W. Chen, J. Zeng, L. Zhang, H. Wang, and

W. E, Comput. Phys. Commun. 253, 107206 (2020).
[68] J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M.

Kolpak, and B. Kozinsky, npj Comput. Mater. 6, 1 (2020).
[69] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, in Proceedings

of the 34th International Conference on Machine Learning, Vol.
70, edited by D. Precup, and Y. W. Teh (PMLR, 2017), pp.
1321–1330.

[70] N. Seedat and C. Kanan, arXiv:1911.00104.

015311-11

https://doi.org/10.1038/s42256-019-0098-0
http://arxiv.org/abs/arXiv:2101.03164
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1103/PhysRevMaterials.1.053801
https://doi.org/10.1557/PROC-491-473
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1103/PhysRevMaterials.3.023804
https://doi.org/10.1038/s41524-020-00390-8
https://doi.org/10.1063/5.0016004
http://arxiv.org/abs/arXiv:1703.04977
https://doi.org/10.1016/j.inffus.2021.05.008
http://arxiv.org/abs/arXiv:1906.09686
https://doi.org/10.1039/C9RA09935B
https://doi.org/10.1021/acs.jpclett.0c01614
http://arxiv.org/abs/arXiv:2106.11642
https://doi.org/10.1162/neco.1992.4.3.448
http://arxiv.org/abs/arXiv:2004.06425
https://doi.org/10.1016/j.neucom.2019.05.082
http://arxiv.org/abs/arXiv:1904.04154
http://arxiv.org/abs/arXiv:1704.07483
http://link.aps.org/supplemental/10.1103/PhysRevE.105.015311
https://doi.org/10.24435/materialscloud:2018.0002/v1
https://doi.org/10.24435/materialscloud:2018.0002/v1
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.24435/materialscloud:2018.0020/v1
https://doi.org/10.24435/materialscloud:2018.0020/v1
https://doi.org/10.1073/pnas.1815117116
https://doi.org/10.1038/s41467-018-06169-2
http://arxiv.org/abs/arXiv:2002.02405
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1038/s41524-020-0283-z
http://arxiv.org/abs/arXiv:1911.00104

