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Simulating wet active polymers by multiparticle collision dynamics
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The conformational and dynamical properties of active Brownian polymers embedded in a fluid depend on the
nature of the driving mechanism, e.g., self-propulsion or external actuation of the monomers. Implementations
of self-propelled and actuated active Brownian polymers in a multiparticle collision (MPC) dynamics fluid are
presented, which capture the distinct differences between the two driving mechanisms. The active force-free
nature of self-propelled monomers requires adaptations of the MPC simulation scheme, with its streaming and
collision steps, where the monomer self-propulsion velocity has to be omitted in the collision step. Comparison
of MPC simulation results for active polymers in dilute solution with results of Brownian dynamics simulations
accounting for hydrodynamics via the Rotne-Prager-Yamakawa tensor confirm the suitability of the implemen-
tation. The polymer conformational and dynamical properties are analyzed by the static and dynamic structure
factor, and the scaling behavior of the latter with respect to the wave number and time dependence are discussed.
The dynamic structure factor displays various activity-induced temporal regimes, depending on the considered
wave number, which reflect the persistent diffusive motion of the whole polymer at small wave numbers, and the
activity-enhanced internal dynamics at large wave numbers. The obtained simulation results are compared with
theoretical predictions.
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I. INTRODUCTION

A wide class of active-matter agents exploits viscous
drag with the surrounding fluid for propulsion [1–3]. Bi-
ological microswimmers, e.g., bacteria, algae, ciliates, and
phytoplankton, are propelled by flagella or cilia, where the
frictional anisotropic of the rotating or beating flagella or cilia
provides directed motion [1,2,4]. Synthetic microswimmers
have been designed, which mimic biological microswimmer
propulsion mechanisms or are powered by phoretic processes,
e.g., thermophoresis or diffusiophoresis [2–5]. Moreover,
fluid-mediated interactions determine the collective behav-
ior of microswimmers. An example is the motility-induced
phase separation of dry active Brownian particles in two
dimensions [6–9], which is suppressed by fluid-mediated
interactions [10–12]. The provided examples underline the
fundamental importance of hydrodynamic interactions by the
embedding fluid for self-propelled objects and its elementary
nature for locomotion, with far-reaching consequences for the
structural and dynamical aspects of active matter assemblies.

A particular kind of active matter is filaments or polymer-
like structures. As is well known, the dynamics of passive
polymers in solution is determined by fluid-mediated inter-
actions [13–15]. By now, various studies reveal the relevance
of hydrodynamics [16,17] and hydrodynamic interactions on
the dynamics of active polymers, with a major impact even on
the polymer conformations [18–20].

So far, active polymers in dilute bulk solution have been
considered mainly by employing the Rotne-Prager-Yamakawa
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(RPY) hydrodynamic tensor [21,22] to account for hydrody-
namic interactions [18,19,23]. However, this approach poses
severe challenges for polymers confined in complex ge-
ometries, where the hydrodynamic tensor needs to fulfill,
e.g., no-slip boundary conditions on walls, and can of-
ten not be determined analytically. Here, other simulation
approaches, which describe the fluid explicitly, are advan-
tageous. An example is the multiparticle collision (MPC)
dynamics method [24–26]. MPC is a coarse-grained, particle-
based mesoscale simulation approach for fluids with inherent
thermal fluctuations. It has been shown that MPC obeys
the Navier-Stokes equations with an ideal gas equation of
state [24,27], and that it correctly captures hydrodynamic cor-
relations [28,29]. MPC has been utilized in a broad range of
equilibrium, nonequilibrium, and active system simulations,
in particular, in combination with a mechanoelastic elastic
model of a microswimmer [30–32], as well as the more
generic squirmer model [11,33–40]. The versatility of the
MPC method facilitates a straightforward coupling with other
simulation techniques, e.g., molecular dynamics simulations
for embedded objects [11,26,36,41,42]. Moreover, the MPC
algorithm is highly parallel, and is suitable for GPU imple-
mentation with a high performance gain [43].

In this article, we present an implementation of an active
Brownian polymer in MPC, where a polymer is comprised
of linearly linked monomers. Two types of active polymers
are considered, with self-propelled monomers (S-ABPO), and
with monomers, which experience an external active force
(E-ABPO). In both cases, the pointlike monomers are con-
sidered as active particles, which are propelled by an active
force in a direction, which changes diffusively. The two types
of monomers differ in the coupling between the active force
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and the fluid. A self-propelled monomer is active-force free
and torque free. Hence, no Stokeslet flow emerges directly
by the active motion. In contrast, the external forces of E-
ABPOs give rise to such a flow field. The implementation
of E-ABPOs in MPC is straightforward and very similar to
passive polymers exposed to an external gravitational or elec-
tric field [44–46]. Certain aspects for E-ABPOs have already
been presented before [19,20]. However, in the case of S-
ABPOs the equations of motion and their interaction with
the MPC fluid have to be adjusted to properly account for
their active-force-free character. In MPC, with its sequence
of streaming and collision steps, the active contribution to the
monomer velocity has to be omitted in the collision step, and
only thermal contributions have to be included to prevent the
generation of a Stokeslet by active forces.

The polymer conformational and dynamical properties are
analyzed in terms of the static and dynamic structure fac-
tors for the two types of polymers for various activities and
persistence lengths, which illustrates the impact of activ-
ity on the polymer conformations at different intramolecular
lengthscales. Specifically, for small wave numbers, the time
dependence of the dynamic structure factor is given by the
center-of-mass mean-square displacement of the active poly-
mer. The internal polymer dynamics is visible for large wave
numbers and a stretched exponential decay of the dynamic
structure factor is obtained, with an exponent close to 2,
the value for the active ballistic motion, as predicted by the
provided analytical approximations.

The flow field of self-propelled particles typically includes
higher-order multipole contributions, e.g., force dipoles,
source dipoles, etc. [40,47–53]. In combination with polymer
conformational changes, the interference of such monomer
flow fields leads to autonomous filament or polymer motion
even when individual monomers are nonmotile [16,49,54].
In the current approach, we consider point particles and ne-
glect the force field by active stresses, thus the monomers
correspond to neutral swimmers [40]. Already the flow fields
created by intramolecular (and external) forces yield complex
flow patterns, from the level of single monomers to the full
polymer, which lead to particular conformational and dynam-
ical features, such as hydrodynamically induced shrinkage of
S-ABPOs [18]. Yet, simulations of dumbbells comprised of
squirmers reveal an influence of the squirmer active stress on
the dumbbell motility [40]. Here, further studies on polymers
are desirable to resolve the influence of swimmer-specific
multipoles on the polymer properties.

The paper is organized as follows. Section II outlines the
MPC approach. The active polymer model and its imple-
mentation in the MPC fluid are described in Sec. III for
self-propelled as well as externally driven monomers. Sec-
tion IV presents results for the conformational properties of
the polymers, and Sec. V discusses their dynamical aspects,
in particular, the dynamic structure factor. Finally, Sec. VI
summarizes our findings and presents conclusions.

II. MULTIPARTICLE COLLISION DYNAMICS FLUID

The MPC fluid consists of N point particles of mass m
with the positions ri and velocities vi (i = 1, . . . , N). Their
dynamics proceeds in two steps: streaming and collision.

During the streaming step, particles move ballistically over
a time interval h, which is denoted as collision time, in ab-
sence of external forces and fields. Hence, the positions and
velocities are updated as [25,26]

ri(t + h) = ri(t ) + hvi(t ), (1)

vi(t + h) = vi(t ). (2)

The presence of external fields modifies the dynamics and
the equations of motion may have to be solved by, e.g., the
velocity Verlet algorithm [19,45,46]. In the collision step, the
system is partitioned into a lattice of cubic cells of length
a, which define the local interaction environment. Coupling
and linear momentum exchange between the Nc particles of a
collision cell is achieved by a rotation of the relative velocities
�vi(t ) = vi(t ) − vc.m.(t ), with respect to the center-of-mass
velocity vc.m.(t ) = ∑

i vi(t )/Nc of the cell, around a randomly
oriented axis by an angle α [26]. The orientation of the rota-
tion axis is chosen randomly and independently for every cell
and collision step. This yields the final velocities

vi(t + h) = vc.m.(t + h) + R(α)�vi(t + h), (3)

with R(α) the rotation matrix [55]. This scheme conserves
momentum on the collision cell level. However, angular mo-
mentum is not conserved, which does not affect the polymer
dynamics, because the monomers are treated as point parti-
cles and, hence, possess no rotational degrees of freedom.
Angular momentum conserving algorithms are provided in
Refs. [11,56,57]. A constant local temperature is maintained
by a collision cell-based, Maxwellian thermostat, where the
relative velocities of the particles in a collision cell are scaled
according to the Maxwell-Boltzmann scaling method [55]. By
the construction of the algorithm for S-ABPOs, the thermostat
only affects the thermal velocities of the monomers and the
MPC particles, and not the active velocity. In the case of
E-ABPOs the relative velocities, including contributions by
activity velocities, are scaled, as for any other external force.
Discretization in collision cells implies violation of Galilean
invariance, which is reestablished by a random shift of the
collision-cell lattice after every streaming step [26,58].

III. ACTIVE BROWNIAN POLYMERS

A. Polymer model

We consider linear semiflexible polymers composed of Nm

active pointlike monomers of mass M, positions rk , and veloc-
ities vk (k = 1, . . . , Nm), which are connected by harmonic
bonds with the potential Ul . Bending stiffness is taken into
account by restrictions of bond orientations via the bending
potential Ub, and excluded-volume interactions by a truncated
purely repulsive Lennard-Jones potential, where [19]

Ul = κl

2

Nm∑
k=2

(|Rk| − l )2, (4)

Ub = κ̃b

2

Nm−1∑
k=2

(Rk+1 − Rk )2, (5)
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ULJ = 4ε
∑
k<k′

[( σ

rkk′

)12
−

( σ

rkk′

)6
+ 1

4

]
�( 6

√
2σ − rkk′ ),

(6)

with the bond vector Rk+1 = rk+1 − rk of equilibrium length
l . κl and κ̃b characterize the strength of the bond and bend-
ing potential. The vector rkk′ = rk − rk′ is the vector between
monomers k and k′, rkk′ = |rkk′ |, and �(x) is the Heaviside
function. The energy ε measures the strength of the repulsive
potential and σ defines the particle diameter.

The bending rigidity, κ̃b, is related to the polymer persis-
tence length lp = 1/(2p) by

pL = Nm
κb[1 − coth (κb)] + 1

κb[1 + coth (κb)] − 1
, (7)

where κb = κ̃bl2/kBT is the scaled bending rigidity, kBT the
thermal energy with kB the Boltzmann constant and T the
temperature, and L = (Nm − 1)l the polymer length. We will
use κb to characterize the polymer stiffness in the following.

B. Active Brownian particle monomers

The activity of our monomers is captured in an active
Brownian particle-type (ABP) manner [2,5]. This implies an
active translational motion of the point particles with a veloc-
ity va

k = v0ek of magnitude v0 and direction ek , and a change
of ek in a diffusive manner according to the equations of
motion

d

dt
ek (t ) = �k (t ) × ek (t ), (8)

where �k (t ) is a Gaussian and Markovian stochastic process
with zero mean and the second moments

〈�αk (t )�βk′ (t ′)〉 = 2DRδαβδkk′δ(t − t ′). (9)

Here, DR is the rotational diffusion coefficient of a spherical
colloid and α, β ∈ {x, y, z} refer to the axis of the Cartesian
reference frame. Equation (8) yields the correlation function

〈ek (t ) · ek (0)〉 = e−2DRt (10)

in three dimensions. We would like to emphasize that the
active velocity is an independent quantity, affected neither by
intrapolymer forces nor hydrodynamic interactions.

The activity is characterized by the Péclet number

Pe = v0

lDR
. (11)

As for hard spheres in a fluid, we fix the ratio between the
translational, DT = kBT/γT , and rotational diffusion coeffi-
cient,

� = DT

(2Rh)2DR
= 1

3
, (12)

where Rh is the hydrodynamic radius of a monomer, which
defines the translational friction coefficient γT for a given DR.

C. Dynamics of polymers with self-propelled ABP
monomers in MPC fluid (S-ABPO)

An essential aspect of a self-propelled monomer embedded
in a fluid is that active forces do not give rise to a Stokeslet,

i.e., a monomer is active-force free. However, monomers ex-
perience forces due to intramolecular interactions, e.g., the
forces of Eqs. (4)–(6). Within a coarse-grained description,
we are free to model the active process such that these as-
pects are correctly captured. To account for nonactive forces,
equations of motion for auxiliary particle positions r̃k are
introduced as

M
d2

dt2
r̃k (t ) = Fk (t ), (13)

with forces, Fk (t ), from the potentials (4)–(6). The solution of
these equations yields the velocities ṽk = d r̃k/dt . Taking the
active process into account, the actual particle velocities are

d

dt
rk ≡ vk (t ) = ṽk (t ) + va

k (t ), (14)

and the final positions rk follow by integration. Using a veloc-
ity Verlet-type approach, we obtain the following scheme for
the integration of the equations of motion:

r̃k (t + �t ) = rk (t ) + �t ṽk (t ) + �t2

2M
Fk (t ), (15)

rk (t + �t ) = r̃k (t + �t ) + �tva
k (t ), (16)

ṽk (t + �t ) = ṽk (t ) + �t

2M
[Fk (t ) + Fk (t + �t )], (17)

vk (t + �t ) = ṽk (t + �t ) + va
k (t + �t ), (18)

with the integration time step �t and Fk (t ) = Fk[r(t )]. The
scheme for the integration of Eq. (8) is described in Ref. [59].

Coupling of the polymer with the MPC fluid is established
by incorporation of the monomers in the collision step. Here,
the monomers are sorted into collision cells according to their
positions rk (t + h), but only the velocities ṽk are taken into
account in the collision to ensure active force-free motion.
Hence, the monomer velocities after collision are

ṽk (t + h) = ṽc.m.(t + h) + R(α)[ṽk (t + h) − ṽc.m.(t + h)],
(19)

with

ṽc.m. =
∑Nc

i=1 mvi + ∑Nm
c

k=1 Mṽk

mNc + MNm
c

, (20)

where Nm
c is the number of monomers in the collision cell of

particle k.

D. Dynamics of polymers with externally driven
monomers in MPC fluid (E-ABPO)

In the case of an externally driven monomer, the active
force is Fa

k = γT va
k = γT v0ek , where γT is the translational

friction coefficient, and its equation of motion becomes

M
d2

dt2
rk = Fk (t ) + Fa

k (t ), (21)

with the force Fk of Eq. (13). The external forces induce an
overall fluid flow, because their sum,

Fa(t ) =
Nm∑

k=1

[Fk (t ) + Fa
k (t )] =

Nm∑
k=1

γT v0ek (t ), (22)
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FIG. 1. Sketch illustrating the differences in the flow fields
of self-propelled (left; S-ABPOs) and externally driven dumbbells
(right; E-ABPOs) highlighting the distinct features of the propulsion
mechanisms (arbitrary units). For S-ABPOs, the self-propulsion ve-
locity does not contribute to the flow field and it is determined by
bond forces, indicated by the arrows, only, i.e., a force-dipole flow
field appears by the Stokeslets of the two monomers. The flow field
of an E-ABPO comprises the flow field of the S-ABPO as well as
contributions from the Stokeslets flows of the active monomers with
their directions indicated by the arrows.

is nonzero, which leads to fluid backflow in confined sys-
tems. In a system with periodic boundary conditions, this is
achieved by a backflow force applied on the MPC fluid and a
force applied on the monomers, such that the total momentum
of the system is zero [19]. The backflow force, Fb

k (t ), on a
monomer is

Fb
k = − M

mN + MNm
Fa. (23)

The monomer dynamics is then described by the equations of
motion

M
d2

dt2
rk = Fk + Fa

k + Fb
k, (24)

which is solved by applying the velocity-Verlet algo-
rithm [19,60].

Under the assumption of a very slow change of the ei

for a small diffusion coefficient DR during a collision-time
interval h, the MPC fluid particle velocities and positions after
streaming are

vi(t + h) = vi(t ) − h

mN + MNm
Fa(t ), (25)

ri(t + h) = ri(t ) + hvi(t ) − h2

2(mN + MNm)
Fa(t ) (26)

in the presence of the backflow force mFb/M.
MPC collisions involving monomers implies the rotation

of their velocities according to Eq. (19), however, with the
velocities following as the solution of Eq. (24), i.e., the ac-
tual velocities, vk (t + k), after streaming are used rather than
ṽk (t ). Thus, a Stokeslet flow field by the active forces appears
for every monomer, in addition to the flow field by passive
forces. Figure 1 illustrates the differences in the emerging flow
fields for S-ABPOs and E-ABPOs.

E. Parameters

We measure length in units of the bond length l , energy
in units of the thermal energy kBT , and time in units of

τ =
√

ml2/kBT . The MPC particle mass is set to m = 1, the
collision cell size to a = l , the rotation angle to α = 130◦,
and the collision time step to h = 0.01τ . MPC is an ideal gas
with the isothermal velocity of sound cT = √

kBT/m, which
is unity in units of the simulation.

In the case of the E-ABPO, we choose the average MPC
particle number per collision cell 〈Nc〉 = 10, which yields
the viscosity η = 82.1

√
mkBT/a4 according to the theoretical

formula [61]. The rotational diffusion coefficient is set to
DR = 10−2/τ and the length of the cubic simulation box to
Lb = 60a.

For the S-ABPO, the average MPC particle number per
collision cell is 〈Nc〉 = 50, which yields the viscosity η =
447.4

√
mkBT/a4 [61]. The rotational diffusion coefficient is

set to DR = 3 × 10−3/τ and the length of the qubic simulation
box to Lb = 50a.

We consider a polymer with Nm = 50 monomers, i.e.,
its length is L = (Nm − 1)l . The monomer mass is set to
M = m〈Nc〉 to achieve a suitable hydrodynamic coupling with
the MPC fluid [62]. The small collision time step implies
the monomer hydrodynamic radius Rh = 0.3a [63]. The time
step for solving the monomer equations of motion is �t =
10−3τ = h/10. The coefficient κl for the bond strength is ad-
justed according to the applied active force strength, in order
to avoid bond stretching with increasing activity. By choos-
ing κl l2/kBT = (1 + 2Pe) × 103, bond-length variations are
smaller than 3% of the equilibrium value l . For semiflexi-
ble polymers, we consider the bending rigidity κb = 10 and
κb = 103, which yields via Eq. (7) pL = 2.6 and pL = 2.5 ×
10−2 or the persistence lengths lp = 9.4l and lp = 980l [lp =
1/(2p)], respectively.

IV. CONFORMATIONAL PROPERTIES

A. Mean-square end-to-end distance

We characterize the polymer conformational properties by
the mean-square end-to-end distance 〈R2

e〉 = 〈(rN − r1)2〉. Re-
sults for E-ABPOs and S-ABPOs are presented in Fig. 2 for
simulations with the MPC implementation (bullets, squares)
as well as for Brownian dynamics (BD) simulations, where
fluid interactions are taken into account by the RPY hy-
drodynamic tensor (solid lines) [18,19]. As already shown
previously, semiflexible polymers shrink for moderate Péclet
numbers and swell for high Pe independent of the nature
of the propulsion mechanism [18–20,64]. However, in the
presence of hydrodynamic interactions even flexible poly-
mers with self-propelled monomers shrink for 0.1 < Pe � 10,
in contrast to externally driven ones, which monotonically
swell with increasing Péclet number [18,19]. Moreover, the
asymptotic value of 〈R2

e〉 of S-ABPOs is smaller than that of
E-ABPOs [18,20], reflecting the differences in the hydrody-
namic coupling. The hydrodynamic contribution to 〈R2

e〉 for
E-ABPOs decreases with increasing swelling, and the asymp-
totic value in the limit Pe → ∞ agrees with that of a dry
active Brownian polymer (D-ABPO), i.e., a polymer without
hydrodynamic interactions [19,20].

The mean-square end-to-end distances obtained by the two
approaches (MPC, BD) agree very well with each other. How-
ever, the results of the MPC approach deviate from the RPY
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10−1 100 101 102 103

Pe

10−1

100

r
2 e

/L
2

FIG. 2. Polymer mean-square end-to-end distance as a function
of the Péclet number of semiflexible polymers with Nm = 50 (L =
49l) monomers for κb = 0, 10, and 103 (dark to bright, bottom to
top). Results of MPC simulations (squares, bullets) and BD simula-
tions with the RPY hydrodynamic tensor (solid lines) are shown for
S-ABPOs (blue, squares) and E-ABPOs (red, bullets).

tensor simulations for Pe � 102, especially for the S-ABPO
implementation. This is attributed to the compressibility of the
MPC fluid. The diffusive transport of vorticity (shear waves)
has to be faster than (active) diffusion of the polymer to
establish proper hydrodynamic interactions [28,29], which is
achieved by avoiding large velocities v0. However, to reach
large Pe at the same time, a smaller DR has to be chosen.
Moreover, the oscillatory Reynolds number ReT = τν/τ̃1 has
to obey ReT � 1 [65,66], where τν is the viscous timescale
and τ̃1 the longest polymer relaxation time in the presence of
hydrodynamic interactions [18–20,28,29]. Since τ̃1 ∼ η, but
decreases with in increasing Péclet number, a large viscosity
is needed to ensure low-Reynolds number hydrodynamics, es-
pecially for S-ABPOs. Our simulations of E-ABPOs suggest
that here the requirements are less stringent and smaller vis-
cosities, hence shorter relaxation times, already yield accurate
results. This is related to the different coupling of the active
monomer and fluid motion by inclusion of the active velocity
in the collision step. Furthermore, E-ABPOs behave as free-
draining polymers for Pe 
 1 and asymptotically approach
the mean-square end-to-end curves of D-ABPOs [20].

B. Static structure factor

In order to provide a more detailed insight into the active
polymer conformational properties on the various length-
scales, we determine the static structure factor

S(q) = 1

Nm

Nm∑
k=1

Nm∑
n=1

〈e−iq·(rk−rn )〉, (27)

where q is the wave vector. Figure 3 illustrates the strong
dependence of S(q) on activity and the driving mechanism.
Sufficiently long flexible self-avoiding passive polymers ex-
hibit the power-law relation S(q) ∼ q−5/3 (q = |q|) over a
polymer-length dependent q range [14,67]. Analogously, rod-
like polymers show the power-law relation S(q) ∼ q−1 [14].

10−1 100

ql

100

101

S
(q

)

∝ q−5/3

∝ q−1

(a)

κb = 0

E, Pe = 1
E, Pe = 5
E, Pe = 31
E, Pe = 100
S, Pe = 1
S, Pe = 5
S, Pe = 31
S, Pe = 100

10−1 100

ql

100

101

S
(q

)

∝ q−5/3

∝ q−1

(b)

κb = 10

ED, Pe = 1
ED, Pe = 5
ED, Pe = 31
ED, Pe = 100
SP, Pe = 1
SP, Pe = 5
SP, Pe = 31
SP, Pe = 100

FIG. 3. Static structure factors of S-ABPOs (dashed blue) and
E-ABPOs (solid red) as a function of the wave vector q for the
polymer stiffness (a) κb = 0 and (b) κb = 10, and the indicated Péclet
numbers Pe = 1, 5, 31, and 100 (dark to bright). The short black
lines indicate power-law regimes for self-avoiding, q−5/3, and rodlike
polymers, q−1.

Dependent on the Péclet number, both regimes are present in
Fig. 3.

The structure-factor curves of flexible E-ABPOs show
a continuous change of S(q) from the (approximate) q−5/3

power-law decay at Pe = 0 to q−1 for Pe = 100, as a con-
sequence of the swelling of the polymer, as displayed in
Fig. 2(a), and reflected by the shift of the crossover from
the small q plateau to the power-law regime, and an associ-
ated stiffening. A theoretical explanation of the influence of
activity on S(q) is provided in Sec. IV C below. The struc-
ture factors of S-ABPOs exhibit a similar behavior, except
for Pe = 6, corresponding approximately to the minimum of
〈R2

e〉 in Fig. 2. The latter S(q) curve is shifted to larger q
for ql � 2 compared to that for Pe = 1, but drops faster for
ql � 1 reflecting the polymer shrinkage and a smaller radius
of gyration (Fig. 2). The polymer swelling with increasing
Pe increases the slope toward −1. Noteworthy, for Pe = 100,
the structure factor curve is flatter in the vicinity of ql = 0.5
and becomes steeper for larger q values. Hence, the swollen
polymer is stiffer on larger scales, but nearly as flexible as a
passive polymer on smaller scales.
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The variation in the slope as a function of Pe is more
pronounced for stiffer polymers. The structure factors for
κ = 10 and Pe = 1 of E-ABPOs and S-ABPOs are very sim-
ilar, specifically, they reflect the intrinsic stiffness at scales
ql > 0.5 with the dependence S(q) ∼ q−1 [Fig. 2(b)]. The
activity-induced shrinkage, with a minimum at Pe ≈ 6, and
correspondingly smaller radius of gyration, implies a steeper
slope with a power-law S(q) ∼ q−5/3. The swelling of the
polymers for large Péclet numbers causes also a stiffen-
ing of the semiflexible polymer. As shown in Fig. 2, the
swelling for Pe � 30 is independent of stiffness, hence, the
respective curves (Pe = 31, 100) in Figs. 3(a) and 3(b) are
(nearly) identical. For even stiffer polymers, S(q) displays
the power law q−1 as for a rodlike object, but for a rather

different physical mechanism—at Pe = 1 (and similarly for
Pe < 1) due to intrinsic stiffness and at Pe � 30 due to
activity.

C. Analytical considerations

Qualitatively, the activity-induced change in the structure
factor can be explained by the dry active Brownian polymer
model (D-ABPO) [20,64]. Adopting the Gaussian polymer
model in the continuum limit [18–20,64], the mean-square
distance �r2(s, s′) = 〈(r(s) − r(s′))2〉 between two points at
r(s) and r(s′) on the polymer, 0 � s � L is the contour co-
ordinate of the polymer of length L, of a flexible polymer
(pL 
 1) is given by

〈�r2(s, s′)〉 =
(

1 + Pe2

6�

) |s − s′|
pμ

+ Pe2L2

2

√
1

6pLμN3�

(
cosh(β(s + s′)/L)[1 − cosh(β|s − s′|/L)]

sinh(β )

+cosh(β )[cosh(β|s − s′|/L) − 1]

sinh(β )
− sinh(β|s − s′|/L)

)
, (28)

where β =
√

2N3/(3pLμ�) and N is the number of active
sites. The stretching coefficient μ = μ(pL, Pe) accounts for
the inextensibility of a polymer and depends nonlinearly
on the activity [64,68]. In contrast to a passive polymer,
�r2(s, s′) is not only a function of s − s′, but depends also
on s + s′. Taylor expansion for (s − s′)/L � 1 yields

〈�r2(s, s′)〉 ≈ Pe2β2

4

√
1

6pLμN3�
(s − s′)2 (29)

for Pe 
 1 and (s + s′)/L < 1. Hence, �r2(s, s′) depends
quadratically on the distance s − s′ due to the active forces.

The Gaussian nature of the polymer implies that the struc-
ture factor is given by

S(q) = 1

L2

∫ L

0

∫ L

0
exp

(
−q2

6
〈�r2(s, s′)〉

)
ds ds′. (30)

For qL 
 1, insertion of Eq. (29) yields S(q) ∼ μ4/3/(qPe).
Hence, we obtain the dependence S(q) ∼ 1/q for
Pe 
 1 as for rodlike polymers. Moreover, with
μ ∼ Pe2N/(pL) [20,64], S(q) becomes independent of
Pe, as is reflected in Fig. 3 for S-ABPOs and E-ABPOs.

V. DYNAMICAL PROPERTIES

A. Center-of-mass mean-square displacement

The center-of-mass mean-square displacement (CM-
MSD), 〈�r2

c.m.(t )〉 = 〈(rc.m.(t ) − rc.m(0))2〉, of D-ABPOs can
easily be calculated, since 〈�r2

c.m.(t )〉 is independent of in-
tramolecular forces, and only external noise and active forces
contribute [20,64]. The presence of hydrodynamic interac-
tions affects the polymer relaxation times, and in turn the
polymer mean-square displacement (MSD). Analytically, an
approximate expression of the MSD can be obtained within
the preaveraging approximation of the hydrodynamic tensor.

In general, the center-of-mass MSD is then given by [19,20]

〈
�r2

c.m.(t )
〉 = �p

6kBT

γT Nm
+ 〈

�r̂2
c.m.(t )

〉
, (31)

with the contribution by activity:

〈
�r̂2

c.m.(t )
〉 = �a

2v2
0

γ 2
R Nm

(γRt − 1 + e−γRt ), (32)

where γR = 2DR. The parameters �p and �a depend
on the particular polymer environment and propulsion,
for D-ABPOs �p = �a = 1 [64], for S-ABPOs �p = 1 +

10−2 10−1 100 101

DRt

10−5

10−4

10−3

10−2

10−1

100

101

〈Δ
r

2 cm
(t

)〉/
L

2

∼ t2

∼ tPe = 6
Pe = 31
Pe = 102

FIG. 4. Center-of-mass mean-square displacement of E-ABPOs
with Nm = 50 monomers, the Péclet numbers Pe = 6 (red, bottom),
31 (blue, middle), and 100 (green, top), and the bending rigidities
κb = 0, 10, and 103 (bright to dark, top to bottom). The dashed lines
are examples of fits of the CM-MSD in Eq. (32) for Pe = 6. The
fit parameters �a for all curves are presented in Table I. The short
purple lines present power laws with the indicated exponents.
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TABLE I. Hydrodynamic contribution �a to the active part of
the center-of-mass mean-square displacement [Eq. (32)] for various
Péclet numbers, Pe, and bending rigidities, κb, of E-ABPOs.

Pe 5 31 100

κb 0 10 1000 0 10 1000 0 10 1000
�a 21.5 15.9 9.0 10.0 12.2 8.8 9.2 8.3 7.6

3πη�00 and �a = 1 [18], and for E-ABPOs �p = �a =
1 + 3πη�00 [19], where �00 is the preaveraged Oseen tensor
of the translational motion [18–20]. Since 1 + 3πη�00 > 1,
hydrodynamic interactions accelerate the polymer dynamics.
The distinct �a values for S-ABPOs and E-ABPOs reflect
the differences in the underlying propulsion mechanism; in E-
ABPOs, �00 > 0 is a consequence of the Stokeslets induced
by the active forces.

Our simulations of S-ABPOs yield polymer CM-MSDs,
which, within the accuracy of the simulations, are indepen-
dent of polymer stiffness and hydrodynamic interactions for
Pe > 6, in agreement with the theoretical prediction, �a = 1.

Figure 4 depicts MSDs for E-ABPOs together with fits
to the CM-MSD in Eq. (32), with �a as fit parameter. The
simulation results follow the theoretical prediction very well
in all time regimes—the ballistic (DRt < 1) and the active
diffusive regime (DRt > 1). The fitting provides an estimation
of the influence of hydrodynamic interactions on the MSD. As
displayed in Table I, �a is in the range 7 < �a < 22, hence,
the MSD is about an order of magnitude larger than that of
S-ABPOs, where �a = 1. The �a values for Pe = 6, where
the polymers are still either rather flexible (κb = 0) or stiff
(κb = 10, 103), reflect the stronger effect of hydrodynamic
interactions for flexible polymers and its decreasing influ-
ence with increasing bending rigidity (Table I) [15,69]. For
Pe = 31 and Pe = 100, the polymer conformations are nearly
independent of bending rigidity (Fig. 2), as reflected in the
very similar �a values for these Péclet numbers, which vary
by approximately 20%, and are therefore within the accuracy
of the simulations.

B. Dynamic structure factor

Dynamical properties of polymers on various lengthscales
are accessible via the dynamic structure factor [14,15]

S(q, t ) = 1

Nm

Nm∑
k=1

Nm∑
n=1

〈e−iq·[rk (t )−rn(0)]〉. (33)

With the assumption of a Gaussian distribution of the
time-dependent monomer distance �rkn(t ) = rk (t ) − rn(0),
Eq. (33) becomes

S(q, t ) = 1

Nm

Nm∑
k=1

Nm∑
n=1

exp

(
−q2

6

〈
�r2

kn(t )
〉)

. (34)

As is well known, for qL � 1, the polymer dynamics is deter-
mined by the center-of-mass motion, which yields [14,15]

S(q, t ) = S(q) exp

(
−q2

6

〈
�r2

c.m.(t )
〉)

. (35)

In contrast, on lengthscales ql 
 qL 
 1, the dynamic struc-
ture factor is determined by the polymer internal dynamics.

1. Analytical consideration

For a continuous Gaussian (semiflexible) polymer
model [70–75], the dynamic structure factor is given by [15]

S(q, t ) = 1

L2

∫ L

0

∫ L

0
ds ds′ exp

(
−q2

6
〈�r2(s, s′, t )〉

)
, (36)

with the MSD 〈�r2(s, s′, t )〉 = 〈[r(s, t ) − r(s′, 0)]2〉.
An expression for the MSD 〈�r2(s, s′, t )〉 follows from

the active Gaussian semiflexible polymer model presented in
Refs. [18–20,64,76]. This model describes the properties of
semiflexible ABPOs well for Pe > 10, since the conforma-
tions depend only weakly on the persistence length for pL > 1
(Fig. 2) [18–20,64,76]. The MSD is then given by

〈�r2(s, s′, t )〉 = 〈
�r2

c.m.(t )
〉 + 〈�r2(s, s′)〉 + 〈

�r2
in(s, s′, t )

〉
,

(37)

with the intramolecular contribution

〈
�r2

in(s, s′, t )
〉 = 4

L

∞∑
m=1

(〈
χ2

m(0)
〉 − 〈χm(t ) · χm(0)〉)

× cos
(mπs

L

)
cos

(
mπs′

L

)
(38)

in terms of an eigenfunction representation, with the eigen-
functions cos(mπs/L) for the mode m ∈ N\0. The χm(t )
are the normal-mode amplitudes. Note that we neglect the
coupling of different modes, which appears for systems
with hydrodynamic interactions [14,15]. Nevertheless, the
expression captures the qualitative behavior [77]. We fo-
cus on the effect of the internal polymer dynamics on the
dynamic structure factor, with the relevant q-value range
qL 
 1 and timescale t/τr � 1, where τr denotes the longest
polymer relaxation time. Then, the sum in Eq. (38) is dom-
inated by large m values, and the integrand has a sharp
peak at s ≈ s′, hence, while evaluating the sum in Eq. (38),
the product of the eigenfunctions can be approximated as
cos(mπs/L) cos(mπs′/L) ≈ cos[mπ (s − s′)/L]/2 [14]. As a
consequence, the displacement (38) is equal to half of the
mean-square displacement of the point r(s, t ) in the center-
of-mass reference frame. The dynamic structure factor (36) is
then given by

S(q, t ) = 1

L2

∫ L

0

∫ L

0
ds ds′ exp

(
−q2

6
〈�r2(s, s′)〉

)

× exp

(
− q2

12

〈
�r2

in(s, t )
〉)

. (39)

The MSD of ABPOs has been discussed in detail in
Refs. [18,19,76]. For Pe > 10, γRt = 2DRt � 1, and t/τr �
1, the MSD is dominated by the activity-induced ballistic
motion, which yields

〈
�r2

in(s, t )
〉 = v2

0 lγR

L
t2

∞∑
m=1

cos2
(mπs

L

)
�m, (40)

with �m = τm/(1 + γRτm), τ̃m/(1 + γRτ̃m), and τ 2
m/[τ̃m(1 +

γRτ̃m)] for D-ABPOs, S-ABPOs, and E-ABPOs, respectively,
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FIG. 5. Dynamic structure factors of S-ABPOs as a function of
time for various q values as indicated in the legend (q values increase
from right to left). The polymer stiffness is κb = 0 and the Péclet
number Pe = 31. The blue lines indicate simulation results. The
(thin) black solid lines for ql = 0.05 − 0.5 are obtained by Eq. (35)
with the CM-MSD of Eq. (32). The dashed line for ql = 0.5 rep-
resents the linear dependence ln[(S(q, t )] ∼ −t and the (thin) black
solid lines for ql = 1.0, 2.0 the power law ln[S(q, t )] ∼ −t1.75.

and the relaxation times τm and τ̃m in the absence or presence
of hydrodynamic interactions, respectively. Hence, in the ac-
tive ballistic regime, the dynamic structure factor decays as

S(q, t ) = S(q)e−(�qt )ζ , (41)

with ζ = 2 and a rate �q ∼ q. In terms of the Péclet-number
dependence, �q ∼ Pe4/3 for a D-ABPO. Since τm and τ̃m

depend on Pe, an analytical derivation of the Pe dependence
is difficult for S-ABPOs and E-ABPOs.

For long and flexible polymers, pL 
 1, polymer char-
acteristic dynamical regimes appear for γRt > 1 and t/τr �
1, where the MSD in the center-of-mass reference frame
increases by a power law with an exponent smaller than
unity [18,19,76]. Our analytical studies predict the depen-
dencies 〈�r2

in(s, t )〉 ∼ Pe4/3t1/2 (D-ABPO) [64], Pe3/2t5/7

(E-APBO) [19], and Pe5/3t1/3 (S-APBO) [18]. Hence, in this
time regime, the decay rate, �q in Eq. (41), exhibits the
dependencies �q ∼ q4Pe8/3 (D-ABPO) (this q dependence is
identical with that of a Rouse polymer), �q ∼ q14/5Pe21/10 for
E-ABPOs, and �q ∼ q6Pe5 for S-ABPOs. The latter indicates
a decisive influence of hydrodynamic interactions on the dis-
tinct wave-number dependence.

2. Simulation results

Dynamic structure factors of S-ABPOs for the stiffness
κb = 0, the Péclet number Pe = 31, and various q values
are displayed in Fig. 5. For ql < 0.5, the S(q, t ) curves are
well described by Eq. (35), with 〈�r2

c.m.(t )〉 of Eq. (32). This
reveals the dominance of the center-of-mass dynamics over
the internal dynamics on this length- and timescale. However,
quantitative agreement between theory and simulation results
is only achieved for factors �a larger than unity, namely,
�a = 1.28 for ql = 0.05, 0.1 and �a = 1.4 for ql = 0.2. This

10−2 10−1 100 101

DRt

0.0

0.2

0.4

0.6

0.8

1.0

S
(q

,t
)/

S
(q

)

ql = 0.1
ql = 0.2
ql = 0.5
ql = 1.0
ql = 2.0

FIG. 6. Dynamic structure factors of E-ABPOs as a function of
time for various q values and the Péclet number Pe = 31 (q values
increase from right to left). Simulation results for the polymer stiff-
ness κb = 0 are indicated by red solid lines and those for κb = 10
by dashed red lines. The (thin) black solid lines for ql = 0.1, 0.2 are
obtained by Eq. (35) with the CM-MSD of Eq. (32); for ql � 0.5,
they represent the power law ln[S(q, t )] ∼ −t1.8.

could be due to limited statistical accuracy of the simulation
data, or, more likely, is a consequence of the applied ap-
proximations in the derivation of the analytical expression.
Similarly, the short-time behavior of the S(q, t ) curve for
ql = 0.5 is well described by the center-of mass dynamics.
However, for DRt > 1, S(q, t ) is no longer determined by the
CM-MSD, but still exhibits the dependence ln[S(q, t )] ∼ −t ,
characteristic for diffusion, yet with a different �q including
contributions from the internal dynamics. This reflects the
increasing importance of the internal polymer dynamics on
S(q, t ) with increasing q values. For ql � 1.0, the internal
dynamics dominates the decay of the dynamic structure factor,
and S(q, t ) is well described by Eq. (41) with the exponent
ζ ≈ 1.75. Since DRt < 1, the decay of S(q, t ) occurs within
the active ballistic regime close to the crossover to the active
diffusive regime (Fig. 4), which explains that ζ is somewhat
smaller than the theoretical value of a fully developed bal-
listic regime of ζ = 2. Here, longer polymers are required
to observe scaling with qt . However, the power-law decay
demonstrates the influence of activity on the internal dynam-
ics, as has been discussed before in terms of the S-APBO
mean-square displacement [18].

Figure 6 presents dynamic structure factors of E-ABPOs
for the bending parameters κb = 0 and κb = 10 for the activity
Pe = 31. As for the S-ABPOs, for ql � 0.2, S(q, t ) is well
described by the CM-MSD of the active polymer. Similarly,
the structure factors for ql � 0.5 exhibit a power-law decay
[Eq. (41)], here with the exponent ζ ≈ 1.8, somewhat larger
than that of S-ABPOs. The S(q, t ) curves for the two persis-
tence lengths are very similar; the small horizontal shifts by up
to 20% are due to statistical inaccuracies. The polymers for the
two stiffnesses exhibit the same dynamics on all lengthscales.
This is not surprising, since the conformational properties are
also nearly identical, as reflected by their mean-square end-to-
end distances (Fig. 2) and the static structure factors (Fig. 3).
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Thus, the active forces dominate over the bending forces and
determine the polymer conformational properties [20,64,76].
The exponent ζ ≈ 1.8 is close to the value ζ = 2 for a ballistic
active motion. The polymers are too short to exactly exhibit
the active ballistic time dependence in the dynamic structure
factor.

Considering the dynamic structure factors for the smaller
activity of Pe = 6, we find qualitatively the same behavior
as displayed in Figs. 5 and 6. For ql = 0.1, 0.2, S(q) is well
described by Eq. (35) with the CM-MSD of Eq. (32). Focusing
on E-ABPOs, the respective curves for κb = 0 and κb = 10 are
slightly shifted with respect to each other, since the CM-MSD
for κb = 0 is slightly larger at a given time DRt (Fig. 4). At
ql = 1, 2, the curves for κb = 0 and κb = 10 are identical
within the numerical accuracy with the exponent ζ ≈ 1.6, a
value somewhat smaller than that for Pe = 31. As in Fig. 5, for
ql = 0.5, S(q) of E-ABPOs exhibits two time regimes, where
ζ � 2 for shorter times and ζ ≈ 1.3 for longer times. Again,
the latter reflects the increasing importance of the internal
polymer dynamics with increasing q values.

The dynamic structure factor of an anisotropic active
Brownian particle (spherocylinder) has been determined the-
oretically and by simulations [78]. Interestingly, S(q, t )
exhibits damped oscillations over a certain range of wave
numbers, which reflects the active persistent motion. We
observe oscillatory-type behavior with negative S(q, t ) for
ql � 1 and Pe = 31. However, we have not attempted to re-
solve it accurately. The oscillations are a particular feature
of persistent (ballistic) active motion, but are not necessary
to characterize the ABP or ABPO dynamics. The decay of
S(q, t ) before the oscillations appear is already determined by
the active persistent motion (Sec. V B 1).

VI. SUMMARY AND CONCLUSIONS

We have presented implementations of active polymers
with either self-propelled monomers (S-ABPOs) or externally
driven monomers (E-ABPOs) in a MPC fluid. In addition, we
have analyzed their conformational and dynamical properties
in terms of the static and dynamic structure factors.

The force-free nature of S-ABPOs is captured in the MPC
approach by a modification of the collision step, namely, the
omission of active velocities in the collision step and the con-
sideration of the thermal velocities of the monomers only. The
comparison of mean-square end-to-end distances obtained by
MPC simulations with results from Brownian dynamics sim-
ulations, accounting for hydrodynamic interactions via the
Rotne-Prager-Yamakawa hydrodynamic tensor [18], confirms
the suitability of this approach.

As previously reported [19,20] and displayed in Fig. 2, the
difference in the driving mechanism leads to substantially dif-
ferent polymer conformations, where S-ABPOs swell far less

than E-ABPOs at high activities. This is reflected in the static
structure factor, where even very stiff passive polymers exhibit
a scaling behavior with respect to the wave number, which
deviates substantially from that of a rod on larger lengthscales.
In contrast, even passive flexible E-ABPOs exhibit rodlike
scaling for Pe > 30 (Fig. 3). The observed dependencies are
supported by analytical considerations.

Simulation results for the active polymer center-of-mass
mean-square displacement confirm the theoretical expecta-
tions [18,19], where the CM-MSD of S-ABPOs is indepen-
dent of hydrodynamic contributions and agrees with that of
D-ABPOs [18,20]. However, the MSD of E-ABPOs is am-
plified by hydrodynamic interactions. A fit of the theoretical
expression Eq. (32) provides a measure of the hydrodynamic
enhancement, and shows that the center-of-mass dynamics of
E-ABPOs is approximately an order of magnitude faster than
that of S-ABPOs. The polymer stiffness affects the contribu-
tion of hydrodynamic interactions for lower Péclet numbers
(Pe = 6), but the persistence-length dependence becomes
weak for higher Pe, and thus for more extended polymers.
This agrees with the behavior of passive semiflexible poly-
mers, where hydrodynamic effects also become less important
with increasing stiffness [15].

The dynamic structure factor reflects the overall active
diffusive motion for small wave numbers q, and the ac-
tive internal dynamics for large q. Correspondingly, the time
dependence of S(q, t ) is well described by the active center-
of-mass mean-square displacement for ql < 0.5. The nearly
ballistic monomer motion leads to a stretched exponential
decay of the dynamic structure factor for ql � 0.5, with an
exponent ζ ≈ 1.8, smaller than the value 2 of a ballistic mo-
tion. The difference is a consequence of the shortness of the
polymer of Nm = 50 monomers. Nevertheless, the dynamic
structure factor reflects the active dynamics for S-ABPOs and
E-ABPOs on all lengthscales.

The outlined implementation of polymer hydrodynamics
facilitates the study of more complex systems, where a Brow-
nian dynamics simulation approach would fail, because of the
lack of a suitable hydrodynamic tensor, e.g., for active objects
in confinement or in complex geometries. Here, the MPC
approach can provide the correct hydrodynamic behavior. The
presented examples of active polymers serve as examples to
confirm the suitability of our approach. The application to
more challenging and interesting problems can be expected
in the future. In particular, extensions are possible to include
active stresses for a study of pusher- or puller-type motile ob-
jects. In Ref. [37], a squirmer-type colloidal particle has been
implemented by applying a similar strategy for the coupling
of the colloid and the MPC fluid. Alternatively, motile point
particles can be replaced by force dipoles, which again can be
combined in a polymer.
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