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Large-scale dynamics of event-chain Monte Carlo
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Event-chain Monte Carlo (ECMC) accelerates the sampling of hard-sphere systems, and has been generalized
to the potentials used in classical molecular simulations. Rather than imposing detailed balance on the transition
probabilities, the method enforces a weaker global-balance condition in order to guarantee convergence to
equilibrium. In this paper, we generalize the factor-field variant of ECMC to higher space dimensions. In the
two-dimensional fluid phase, factor-field ECMC saturates the lower bound z = 0 for the dynamical scaling
exponent for local dynamics, whereas molecular dynamics is characterized by z = 1 and local Metropolis Monte
Carlo by z = 2. In the presence of hexatic order, factor fields are not found to speed up the convergence. We note
that generalizations of factor fields could couple to orientational order.
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I. INTRODUCTION

Event-chain Monte Carlo (ECMC) has led to important
advances in the simulation of N-particle systems [1-11].
The efficiency gains that it brings have improved the un-
derstanding of phase transitions in two spatial dimensions
(2D) [12]. As a nonreversible Markov-chain Monte Carlo
MCMC) algorithm [13-15], ECMC exactly samples the
equilibrium Boltzmann distribution. However, it is itself out
of equilibrium, because it replaces the diffusive dynamics of
reversible MCMC (based on the detailed-balance condition)
by ballistic dynamics (rooted in the more general global-
balance condition). Nonreversible MCMC can approach the
steady state, often the equilibrium Boltzmann distribution,
on shorter timescales than reversible formulations [16,17].
At large MCMC times, steady-state autocorrelation functions
are exponential both for reversible and generally also for
nonreversible Markov chains. The slowest mode generally
relaxes on a timescale T which depends on the system size
L as t ~ L*. For N-particle systems in one spatial dimension
(1D), the ECMC relaxation dynamics can be compared in de-
tail [18,19] to that of molecular dynamics and of the reversible
local Metropolis algorithm. The autocorrelation functions of
density fluctuations in ECMC, as in molecular dynamics, are
characterized by a dynamic exponent z = 1, where the unit of
time corresponds to a sweep of N moves or events. This is
asymptotically faster than for the reversible local Metropolis
algorithm, for which z = 2 so that the autocorrelation time, in
d dimensions, corresponds to ~L*N ~ N'*%/4 moves. For 1D
systems, a powerful variant of ECMC [19] consists in adding a
factor potential to the Hamiltonian. The factor potential leaves
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thermodynamic properties rigorously invariant, yet takes the
system to zero pressure P, by supplementing the external
forces by an attraction between particles. Factor-field ECMC
lowers the 1D dynamic exponents to z = 1/2, the theoretical
minimum for a local MCMC algorithm. This acceleration is
accompanied by superdiffusive dynamics of the instantaneous
active particle [19,20].

In the present paper, we formulate factor fields for higher-
dimensional particle models and implement them for hard
spheres in a 2D box. In fluid phases, hydrodynamic fluctua-
tions that are coupled to local conservation laws constitute the
long-lived modes for stochastic dynamics of the types realized
in local MCMC algorithms [21-23]. We demonstrate through
extensive numerical simulations for the 2D hard-sphere model
that factor fields can again lower the dynamical scaling ex-
ponents for such modes to their theoretical minimum, below
those reached by molecular dynamics and by reversible local
Monte Carlo. The reduction in dynamical scaling exponents
translates into shorter correlation times for density fluctua-
tions and, more generally, shorter overall correlation times.

The 2D factor fields introduced in this paper do not seem
to couple to orientational degrees of freedom. In the hex-
atic phase, orientational order is itself (quasi)-long-ranged,
and the dynamical scaling exponent of the hexatic field is
thought to be diffusive for Hamiltonian dynamics, with z ~ 2
(see Ref. [24]). We expect this scaling to hold for reversible
MCMC and for ECMC, but also for molecular dynamics. Dy-
namical scaling exponents remain poorly characterized (see,
however, Ref. [25]), as their computation is more difficult than
establishing a phase diagram. Devising ECMC with modi-
fied factor fields with reduced scaling exponents for ordered
phases appears as an outstanding challenge.

The hard-sphere ECMC algorithm evolves in continuous
MCMC time ¢. Its event-driven implementation is free of all
discretization errors [1-3]. In the straight variant of ECMC,
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a unique active sphere moves at unit speed in the chain di-
rection, along one of the coordinate axes (in 2D between
+&, and +€,). At a lifting event, which corresponds to a
pair collision, the motion transfers from the active sphere to
the target sphere which then becomes active while preserving
the chain direction. The algorithm is organized into event
chains of chain time T¢pain, an intrinsic parameter of straight
ECMC that influences its efficiency. At the end of a chain a
new active sphere particle is randomly sampled and the chain
direction may alternate between &, and &,. The active sphere
advances at a speed whose long-time average is proportional
to the pressure P. More precisely, the total displacement A p,in
of the chain—the difference of the final position of the last
chain sphere and of the initial position of the initial chain
sphere—depends on the continuous MCMC time Tcp,in Of the
chain as [3]

N

ﬁpzv<

Achain >, (])

Tchain

where (-) is the ensemble mean and S the inverse temperature,
which is set to 8 = 1 throughout. Equation (1) holds for
general pair potentials and it allows for the presence of factor
potentials.

In this paper, we focus on the two-dimensional system of N
hard spheres of radius o in a square box of sides L with peri-
odic boundary conditions. The position of each sphere is given
by the coordinates of its center. The density is n = Nmo?/L>.
For large N, the system is fluid for densities 0 < n < 0.7. Itis
in fluid-hexatic coexistence for 0.7 < n < 0.716 as a conse-
quence of an underlying first-order phase transition, and it is
hexatic at 0.716 < n < 0.72, above which it is solid [1,26].
The hard-sphere factor-field ECMC can be generalized to
smooth potentials, where we expect our conclusions to carry
over.

II. FACTOR FIELDS IN 1D AND 2D

We first consider N spheres on a continuous 1D interval of
length L. The hard-sphere pair interaction,

N
Voo = D Uns(xig1 — i), )

i=1

between successive spheres (with vy either zero or infinity)
is understood with periodic boundary conditions in positions
(x + L =x) and indices (i + N =i). The 1D factor poten-
tial [19] consists in a sum of linear potentials

Vie = —hy Z(xi-H —Xi) = —hgL, 3)

that is constant for any factor field A, because of the periodic
boundary conditions. The factor potential Vi can be added to
the interparticle potential without changing correlation func-
tions, as the constant —/AgL cancels between the statistical
weight and the partition function. Furthermore, force-based
time evolutions such as molecular dynamics and energy-based
Monte Carlo trajectories (Metropolis, heat bath, etc.) have
indistinguishable dynamics for all 4. In contrast, in ECMC,
the acceptance of a move depends on independent decisions
made by pairs of spheres (see Ref. [9] for a detailed discussion
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FIG. 1. Spheres in a 2D box, with a grating of lanes derived
from a 2D cell system, shown as squares. Hard-sphere lifting moves
correspond to collisions (for example of the active sphere B with
(). Factor-field lifting moves always concern same-lane spheres (for
example A, for the active sphere B).

of the general case), and the ECMC dynamics is strongly
altered through Vi. A factor field Ay = P, with P throughout
this paper the pressure in the absence of factor fields, implies
that the factor-field system, with potential Vis 4+ Vi, has zero
pressure, so that the average chain displacement (Acpain) van-
ishes [see Eq. (1)]. The lifting move between an active and a
target sphere can be a hard-sphere collision, that always goes
forward in the chain direction, or else a factor-field lifting
move that always goes backward. In the absence of drift, at
hg = P, the position of the instantaneous active sphere (that
changes identity at each lifting move) is characterized by
hyperdiffusive motion with long-term memory. In the steady
state, this lowers the 1D dynamical exponent from z = 1 to
z= % and it also accelerates mixing.

To adapt factor fields to 2D hard spheres, we construct
for each chain a grating of lanes of width wy,e < 20 that is
compatible with L and that is oriented parallel to the chain di-
rection (see Fig. 1). There, spheres are quasi-one-dimensional,
and the factor potential of Eq. (3) can again be added between
spheres in the same lane. Spheres in nearby lanes only interact
through the hard-sphere potential (see Fig. 1 for examples).
The factor potential is now a sum over all lanes of an ex-
pression analogous to the 1D factor potential of Eq. (3), each
of which is a constant. Again, the factor field leaves thermo-
dynamic properties rigorously invariant. As we will show, at
least in the fluid phase, it also lowers the dynamical scaling
exponent to its theoretical minimum.

A hard-sphere lifting move can concern an active and a
target sphere in different lanes so that the active sphere effec-
tively moves in 2D. A factor-field lifting move, in contrast,
always remains within a given lane. The optimal factor field is
now hg = Pwiyne. At this value, the active sphere undergoes
diffusive 2D motion that is free of drift (see Fig. 2). The
degree of anisotropy depends on the lane width wja.. Without
the factor field, the active-sphere trajectory has a finite drift
velocity, illustrating the strong impact of /g on the Markov-
chain dynamics.

Practically, the grating is derived from the 2D local cell
system which is used to scan for possible hard-sphere colli-
sions using only local operations (see Fig. 1). For simplicity,
the value of the factor field /4 is taken to be identical in all
lanes, although this is not required. The underlying Poisson
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FIG. 2. Active-sphere trajectory featuring anisotropic 2D diffu-
sion of a single event chain with direction &, for the 2D hard-sphere
system at n = 0.67. The optimal Ay = Pwiyy. is used (N = 1922).

process for the factor-field events does not require the advance
knowledge of the position or identity of the target sphere (as
the lifting move B to A in Fig. 1). A factor-field event simply
requires walking back through the cells of the active-sphere
lane to find the target sphere. The use of narrow lanes (Wyape <
20) simplifies the implementation of this algorithm, but it is
in no way required. The algorithm generalizes to larger lanes,
to arbitrary pair potentials, and to more than two dimensions.
In 2D, two different chain directions, as &, and &,, are needed
for the irreducibility of the ECMC algorithm (see Ref. [27]
for a detailed discussion of irreducibility in 2D hard-sphere
systems). The orientation of the lane system flips with every
change of the chain direction, so that spheres always move
parallel to the grating.

In 2D, the P can be estimated through independent sim-
ulations in small physical systems. It need not be known to
high precision to obtain efficient acceleration of the simu-
lation. The correctness of the factor-field algorithm can be
checked by comparing the pair-distribution function rg(r)
near contact using a Kolmogorov-Smirnov-like statistic [28].
We construct the empirical cumulative distribution function
of the pair distances by performing two simulations, with and
without factor fields. The maximum separation between these
two distributions (shown in the inset of Fig. 3) then converges
to zero as the number of considered samples increases. Within
the numerical precision the results of the simulations are thus
independent of the value of i (see Fig. 3, main figure).

II1. UNIDIRECTIONAL DISPLACEMENTS: EIGENMODES
AND DYNAMICS

We now consider the restricted ECMC dynamics for a
chain direction &, and for moves from a specific equilibrated
2D hard-sphere configuration x(t = 0). The Markov chain
then evolves for + — 0o towards a restricted Boltzmann equi-
librium among samples that can be reached from x(r = 0). We
write x(t) = {x1(t), ..., xy(t)}, where x;(¢) = {x;(¢), y;(¢)}

- 1/ ym;
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FIG. 3. Maximum distance of the empirical cumulated distribu-
tion function of rg(r) for 20 < r < 40, with and without a factor
field for n. recordings (i.e., n. N-sphere samples). The ~1/,/n, scal-
ing of this Kolmogorov—Smirnov-like statistic indicates that rg(r)
(shown in the inset) is independent of A (N = 642, n = 0.67).

describes the 2D position of sphere i, with periodic boundary
conditions understood, and with all y; independent of . (See
Sec. IV for the full dynamics, with chain directions &, and
€,.) As discussed, spheres inside a narrow lane cannot reorder.
The same applies to pairs 7, j of spheres in different lanes,
with |y; — y;| < 20. Each resulting constraint between x; and
x; can be expressed as an inequality, and the sample space
accessible from x(r = 0) forms a convex polytope [29]. The
ECMC dynamics of this restricted problem will allow us to
better understand the full dynamics of the 2D fluid.

We first extract the eigenmodes of fluctuations from a given
initial configuration x (moving only along &,). Subtracting the
center-of-mass motion allows one to define average positions,

m

_ 1
%= t;x,»a), 4)

and the equal-time correlation matrix D = (Dj;) with
1 & _ -
Djy=— % Ix(0) =%l () - %il. )
=1

Lanczos’ algorithm yields the largest eigenvalues A®) and
eigenmodes v®) of the symmetric N x N matrix D (see
Fig. 4 for examples). The matrix D, and therefore the precise
eigenmodes, depend on the initial configuration x(r = 0), and
degeneracies of the associated eigenvalues, for example of the
two simple shear modes, are lifted for this reason.

The modes displayed in Figs. 4(a)-4(d) resemble those of
a vibrating plate. They have almost perfect overlap with sinu-
soidal harmonics. This allows us to study even larger systems
where the creation of the correlation matrix is numerically
impossible by replacing these exact eigenmodes by a simple
approximation. The shear modes [Figs. 4(a) and 4(b)] are
phase-shifted companions. The mode [Fig. 4(c)] is a higher
harmonic excitation in the shearing of the system. Figure 4(d)
is the first compressional mode.
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FIG. 4. Selected eigenmodes v® with eigenvalues A% of the steady-state equal-time correlation matrix of Eq. (5) [moves in &, from a
given initial configuration x(r = 0)]. Red and blue denote positive and negative displacements of x; around its mean. (a), (b) Simple shears
coexist with (c) higher-order shear, (d) compression, and mixed modes (N = 2562, n = 0.67).

In a Markov chain started from the same initial configura-
tion x(r = 0) that was used to compute the correlation matrix
D, the configurations x(¢) (with all the y; kept fixed) may now
be decomposed onto the eigenmodes v®). The time averages
of autocorrelations of the eigenmode amplitudes a®),

Ri(t) = (@P0)a® @ + 1)), (6)

characterize the decay of correlations. In straight ECMC,
the chain time ¢,y 1S an intrinsic parameter which through
Eq. (1) is connected to the chain length A p,in, its overall ex-
tension. The shortest autocorrelation times are obtained for a
chain length Acpain ~ +/N ~ L (see Ref. [1]). For large chain
times (chain length Apain > L), compression eigenmodes re-
lax more slowly than shear eigenmodes and show long-time
oscillations, while for short chains (Acpain << L), the opposite
is true, and shears can relax more slowly [see Figs. 5(a)
and 5(b)]. A factor field i = Pwiane leads to the coordinated
decay of autocorrelation functions for all eigenmodes on a
timescale that is much shorter than for g = 0 (see Fig. 5(c)).
The sampling of the polytope is thus greatly accelerated by
the factor fields.

In order to extract the integrated autocorrelation time of
the dominant eigenmode for large system sizes N [where the
equal time correlation matrix D of Eq. (5) cannot be easily
stored in main memory because of its large size], we approx-
imate the eigenmode in Fig. 4(a), that is the displacement
Xi =X + v? as a constant in €, multiplied by a sine wave

i

in &, [see Fig. 4(b)]:

approx

v ={vy,...,vy} withv; =sin 2ry;/L). (7)

As noted above this faithfully approximates the modes found
by exact diagonalization.

We then compute a projection coefficient as the scalar
product of the displacement {[x;(t) — X1, ..., [xy() — Xn]1}
with v*P™* The time series of the projection coefficients
yields an autocorrelation function, and an autocorrelation
time. For A = 0, the optimal choice of the intrinsic param-
eter Tchain 1S adopted from Fig. 5(b). The autocorrelation time
increases proportionally to L. For this restricted MCMC with
a fixed chain direction, this is consistent with a dynamical
scaling exponent z = 1 (see Fig. 6). For the optimal factor
field hgr = Pwjape, the autocorrelation time of the approximate
eigenmode of Eq. (7) is consistent with z = 0. For our largest
system with N = 5122, factor fields accelerate the decorrela-
tion by more than two orders of magnitude. It thus appears
that factor-field ECMC realizes the optimal z.

IV. ECMC DYNAMICS IN THE FLUID PHASE

In the fluid phase, hydrodynamic modes are long lived
due to the presence of local conservation laws [21-23]. Basic
thermodynamics stipulates that fluctuations of extensive quan-
tities, as the volume, grow as their square root. If a volume V
corresponds to a length scale L%, then V 4 +/V corresponds
to a length L + L~%/?>*! In 1D, a test volume ~L may thus
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FIG. 5. Autocorrelation of the static eigenmodes from Eq. (6) [legends refer to Fig. 4, displacements in &, from a given initial configuration
x(t = 0), center-of-mass motion subtracted]. (a) Factor field g = 0, large chain times 7.y, (corresponding to Acpain = 3.1L): Compression
eigenmodes relax more slowly that shear eigenmodes and are oscillatory. (b) Factor field ig = 0, small 7p,;, (corresponding to A, = 0.54L):
Shear eigenmodes may relax more slowly than compression eigenmodes. (c) Factor fields Ay = Pwiue: All eigenmodes decay rapidly, on

similar timescales (N = 2562, n = 0.67).

expand by its square root, leading to a lower limit z = 1/2
for local algorithms with moves on a scale O(1) This, as
discussed, is realized by factor-field ECMC. In 2D, the test
volume expands only by a constant length, corresponding to
a minimum of a single O(1) move per sphere, which corre-
sponds to z = 0. We will now present evidence showing that
this value of z = 0 [which may contain a logarithm so that the
correlation time is of order O(log N)] is actually realized by
factor-field ECMC, implying that a local algorithm may well
reach the same scaling as the nonlocal MCMC algorithms,
which have a proven mixing rate of O(N log N) at small but
finite densities [30], in the fluid phase [31].

To trace the ECMC evolution of density fluctuations at
the largest available length scales, we consider the Fourier
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FIG. 6. Integrated ECMC autocorrelation time for the eigen-
modes of Figs. 4(a) and 4(b) in the harmonic approximation of
Eq. (7). [Chain direction &, moves from given initial configurations
x(t = 0).] The scaling exponent for sy = Pw).e appears to saturate
the lower bound z = 0 (density n = 0.67).

coefficient p(q) of the number density p(x) = >, 8(x — Xx;),

p(@) =) exp(iq-x)), ®)
J

at the longest wavelength q = (2 /L)(1, 0). We studied the
autocorrelation function of p(q) or relatedly, the autocorrela-
tion of the corresponding structure factor Sq = | o(Q)]?,

RS(v) = (Sq(1)S(t + 1)). ©)

For hg = 0, the optimal chain time 7.y, again corresponds
to Achain ~ L, and long chains (Acpin 3> L) again oscillate
slowly (compare with Fig. 5). Without factor fields, long-
wavelength excitations are much slower to decorrelate (see
Fig. 7). The factor field again appears to lower the dynamical

S
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0.2 1 hg =0, N = 642 o
N
== g = Pue, N =256 0=\
0.0] =7 he = P, N =642 =
10° 10" 102 10°
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FIG. 7. Autocorrelation RS(t) of the structure factor Sq for full
ECMC in the fluid phase (density n = 0.67). With factor fields, the
autocorrelations seem to decay on a timescale that is independent of
N, indicating z = 0.
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FIG. 8. Autocorrelation RY (7) of the squared amplitude |/|* of
the global orientational order parameter in the two-phase region
(n = 0.708). The autocorrelations decay on a timescale that increases
with N both for iy = 0 and for Ay = Pwiane, Where the simulation is
slightly slowed down

scaling exponent of density fluctuations, and by the same
token, of overall correlations.

V. ECMC DYNAMICS IN THE COEXISTING-PHASE
REGIME

At density n = 0.708, the 2D hard-sphere system presents
coexisting fluid and hexatic phases of different densities.
In the two-phase region, the lower limit for the dynamical
scaling exponent of a local MCMC algorithm is z = 1 be-
cause switching from one of the coexisting to the other in
an extensive test volume requires mass transport of O(N)
spheres by a distance O(L). One of the coexisting phases,
the hexatic, has quasi-long-range order, for which one expects
z ~ 2 for Hamiltonian dynamics [24] and possibly also for
ECMC. The hydrodynamic modes discussed in Sec. IV are
no longer the only slow ones. The correlation times of local
MCMC algorithms have however not been firmly established
in the coexisting-phase region and in the hexatic phase. Our
preliminary computations in this section present evidence that
in the coexisting-phase regime factor fields certainly do not
greatly speed up the convergence. It is thus likely that the
factor fields, as presently formulated, do not couple to the
orientational order.

We evaluate the global orientational order parameter

I 1 6i0;,
VEN ]:Zl n(j) gj ’ (o
where n(j) denotes the number of neighbors p of sphere j,
and 6;, is the angle between spheres j and p. Rather than
the Voronoi classification of neighbors we simply determine
neighborhood through a cutoff based on the cell system. This
does not change the qualitative features. We study the auto-
correlation of the norm of this complex field, Fig. 8, which is
sensitive to fluctuations in the amplitude of the hexatic field,

RV (v) = (W FOIY (¢t + 1)). (11)

We perform simulations for hg = 0 and for Ay = Pwiype
(see Fig. 8 in the middle of the coexistence region). Unlike
the case of the density fluctuations in the fluid phase we find
that the factor field slows the dynamics of the orientational
order parameter Y by a small numerical factor. Even though
long-wavelength density fluctuations are sampled efficiently
by factor-field ECMC, this efficiency does not seem to feed
into the dynamics of the global orientational order parameter.
Other simulations at a higher density in the coexistence region
give very similar results for the relative speeds of different
methods.

VI. CONCLUSIONS

In this paper, we have generalized factor-field ECMC from
the previously introduced 1D case, where it appears natu-
ral, to higher-dimensional particle systems. As an example,
we have implemented it for 2D hard spheres, although the
new algorithm is trivial to extend to smooth interactions, as
for example Lennard-Jones or soft-sphere potentials in any
spatial dimension. Factor-field ECMC is found to sample
density fluctuations very quickly, with a dynamical scaling
exponent at the theoretical minimum z = 0 (in the 2D fluid
phase), while reversible local Markov chains feature z = 2
and molecular dynamics with coupling to a thermostat z = 1.
The autocorrelation time is reached once each sphere has
moved a number of times that at most grows with the loga-
rithm of the system size.

We have further discussed the factor-field algorithm at den-
sities where 2D hard spheres present two coexisting phases
of different densities, namely the fluid and the hexatic, and
demonstrated that local MCMC algorithms must have a dy-
namical scaling exponent z > 1, simply because the density
differences require important mass transfers between any two
independent equilibrium configurations. Moreover, as one of
the coexistent phases has quasi-long-range orientational or-
der, we expect local algorithms to satisfy z = 2. Simulation
timescales involved in studying 2D hard spheres in the hex-
atic phase are still today extremely time consuming, and the
dynamical scaling exponents have not yet been computed.
Our preliminary studies however do not allow us to conclude
to any speed increases of factor-field ECMC in the presence
of a hexatic phase. We conjecture that the factor field does
not couple to orientational degrees of freedom, because it
is aligned with the chain direction. Modified nonreversible
Markov chains that couple to hexatic order can be set up,
possibly with factor fields that point in a direction different
from the chain direction.

Besides its theoretical interest, we imagine applications
of factor-field ECMC (already in its present formulation) in
the physics of glasses, as well as in studies of the melting
transition for soft spheres, in 2D and higher. Most impor-
tantly, factor-field ECMC outperforms molecular dynamics,
and it has superior dynamical scaling. This fact was already
proven in 1D (see Ref. [19]) and is now firmly established in
higher-dimensional systems. It should motivate further studies
in nonreversible Markov chains.
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