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Introducing a lattice Boltzman time-domain method: A thermodynamics-based
approach for simulating quantum effects
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In this work, using the generalized Boltzmann equation of Zadehgol [Phys. Rev. E 94, 023316 (2016)] a lattice
Boltzmann time-domain (LBTD) method is proposed. The time-domain methods, such as the finite-difference
time-domain method (FDTD), have been proposed by researchers, as tools in the study and design of semicon-
ductor and optoelectronic devices. The LBTD inherits the main advantages of the lattice Boltzmann methods
over the conventional methods, i.e., simplicity of the implementation, easy handling of complex geometries,
and explicit algorithms which make the method highly suitable for efficient parallel processing. The theoretical
findings have been verified by performing LBTD analysis on some benchmark structures.
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I. INTRODUCTION

Time-domain methods are numerical techniques used
for modeling computational electrodynamics and for study-
ing quantum effects in electronic or optoelectronic devices.
The methods are based on solutions of the time-dependent
Schrodinger equation (TDSE), as in the finite-difference time-
domain (FDTD) [1,2], finite element time-domain (FETD)
[3], and spectral element time-domain (SETD) [4] methods,
followed by a spectral analysis, to determine certain char-
acteristics of the device, such as its eigen frequencies and
eigenfunctions.

In the present work, a lattice Boltzmann time-domain
(LBTD) method is introduced, in which the transient solution
of the TDSE is provided by a kinetics-based method, using
the generalized Boltzmann equation of Ref. [5]. The charac-
teristics of the structure, next, are determined by performing a
spectral analysis on the time-domain data.

The proposed quantum kinetic model inherits the main
advantages of the lattice Boltzmann method (LBM) over
the conventional methods, e.g., its simple algorithms for nu-
merical implementations, easy and efficient procedures for
defining the initial and boundary conditions, and local algo-
rithms for efficient parallel programming.

Among other numerical methods which can be used to de-
termine the quantum characteristics of the electronic devices
governed by the TDSE, the exact diagonalization [6,7], and
the imaginary time methods can be named.

The exact diagonalization method is used to extract exact
information on finite systems. The exact results, however, can
be obtained at a very high computational cost, due to the
exponential growth of the Hilbert space dimension with the
size of the quantum system [6]. The main limitation of this
method is its restriction to small lattices, and thus properties
in the thermodynamic limit are difficult to obtain [7].

In the imaginary time methods [2,8,9], the real time, t ,
is replaced by an imaginary time, it . This change of vari-
able, also referred to as the Wick’s rotation, converts the
time-dependent Schrodinger equation into a diffusion type

equation using which certain spectral data, such as the eigen
frequencies and eigenfunctions of the structure, can be ex-
tracted. Note that the ground state quickly dominates, as the
system evolves in imaginary time [9], because its amplitude
grows exponentially faster than the amplitudes of the other
states. To detect the next eigen frequency and eigenstate, using
the imaginary time method, therefore, one must remove the
ground state from the initial state condition and repeat the
simulation. Details of the removal procedure can be found in
Refs. [2,9]. It is clear that to detect each eigen frequency and
eigenstate, the simulation has to be repeated after performing
a separate removal procedure, which add to the computational
costs of the model.

Statistical mechanics has long been recognized as a valu-
able tool for connecting the micro and macro states to each
other. It also provides a foundation using which the govern-
ing equations of the classical mechanics can be recovered,
interpreted, justified, or understood. The recovery of the mass,
momentum, and energy equations of the fluid dynamics from
the Boltzmann equation are important examples of the appli-
cation of the statistical mechanics in classical physics.

The formal analogies between Dirac and Boltzmann
equations and between Schrödinger and Navier-Stokes equa-
tions, and the existence of connections between the heat
and Schrodinger equation through replacement of the real
time with an imaginary time, i.e., the so called Wick’s rota-
tion, have motivated researchers to propose quantum kinetic
models. For example, fluid dynamics formulations of the
Schrödinger and Dirac equations are proposed by researchers
[10–12]. An interesting outlook on the lattice Boltzmann
method and its applications in quantum mechanics and rela-
tivistic hydrodynamics can be found in Ref. [13].

Wigner and Moyal [14,15] proposed the following
equation which is structurally similar to the classical
Boltzmann equation:

∂W

∂t
+ pα

m

∂W

∂xα

= �, (1)
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and it governs the evolution of the Wigner distribution func-
tion [14] as described below:

W = i

π h̄

∫
ψ∗(x + y)ψ (x − y)e2ipy/h̄dy, (2)

where x and y denote position, and p and ψ represent the
momentum and wave function, respectively, and the “collision
term,” �, is given by

� = i

2π h̄2

∫
e− i

h̄ (p−p′ )λW (x, p′)ξ (x, λ)dλd p′. (3)

Using a free parameter, λ, and denoting the potential by 	,
the following relation is used to define ξ :

ξ (x, λ) =
[
	

(
x − λ

2

)
− 	

(
x + λ

2

)]
. (4)

In the Wigner-Moyal equation, as described above, the
collision term and relaxation time of the standard kinetic
models are not explicitly identified. Taking advantage of
the formal analogy between the collisionless Wigner and
Boltzmann equations, however, Ref. [16] proposed a lattice
kinetic method (also called the Lattice Wigner method) which
can be used to solve the Wigner equation.

Numerical instabilities in Eq. (1) have been reported in
Ref. [16], where it is mentioned that these instabilities can
be reduced by inserting a regularizing artificial collision term,
through selective numerical dissipation.

Using a kinetics-based approach and aiming to devise
a generalized Boltzmann equation which can be used in
transport of complex valued properties, Ref. [5] proposed
the following generalized Boltzmann equation (GBE), in the
scope of constant speed kinetic models [5,17–22]:

D f

Dt
≡

(
∂

∂t
+ ∇

)
f = −1

λ
( f − f eq), (5)

where f = f1 + i f2, z = x1 + ix2, t = t1 + it2, v = v1 + iv2,
and u = u1 + iu2 are used to denote the complex valued
probability density, position, time, and microscopic and
macroscopic velocities of the fluid, respectively. Here, f eq and
λ are complex valued equilibrium distribution function (EDF)
and relaxation time, respectively.

It is to be noted that, in contrast to the Wigner-Moyal
equation, the collision term and the relaxation time of the
GBE are identifiable, and there is no need to use an analogy
to model these terms.

Defining the complex valued equilibrium probability den-
sity of: f eq = ρ

v−u , and using the following relations: ρ =∫
f dv = ∫

f eqdv and ρu = ∫
v f dv = ∫

v f eqdv, to evaluate
the density and velocity of the fluid, respectively, Ref. [5]
shows that the GBE can recover the continuity and incom-
pressible Navier Stokes equations, in the 2D-space, if the
condition of purely real macroscopic fluid density can be
enforce.

Defining the EDF by: f eq = ψ

2π
and using ψ = ∫

f dθ for
evaluating the wave function, in a separate study, Ref. [21]
shows that the 2D Schrodinger equation can be recovered
from the GBE, where the potential term is treated as a source
term. This proof, however, is limited to the 2D space.

The paper has been organized as follows. In Sec. II, a
mathematical formulation of the LBTD, which is not limited

to the 2D space, is proposed. In Sec. III details of the numeri-
cal implementation of the LBTD, are presented. In Sec. IV,
numerical verification of the present method are presented.
Finally, the paper is concluded in Sec. V.

II. MATHEMATICAL FORMULATION

The constant speed kinetic model (CSKM), proposed in
Refs. [5,17–22], is an entropic kinetic model obeying the non-
conventional entropies of Burg and Tsallis. The fixed-speed
particles with continuously varying direction of propagation
reside on the surfaces of n-dimensional (nD) spheres which
surround the computational nodes. Hence, the discretization
of the velocity space, in the CSKM, is to be viewed as an
implementation method, only, and not as a mathematical de-
scription.

Defining f eq = ρ

σ
vn−2(v2 − u2)/(v2 + u2 − 2vαuα )n/2,

and employing ρ = ∫
f dσ and ρuα = ∫

vα f dσ , in the
nD space, Ref. [19] shows that the CSKM can recover the
continuity and incompressible Navier Stokes equations. Here,
the density and macroscopic velocity are denoted by ρ and u,
respectively, and the area of the nD sphere surrounding the
node is denoted by σ .

In the next section, it is shown that the GBE of
Refs. [19,21] can recover the nD Schrodinger equation. This
proof does not require a complex representation of the posi-
tion and velocity vectors. Therefore, it is not limited to the
two-dimensional space.

A Chapman-Enskog analysis of the GBE

As shown in Ref. [21], the recovery of the Schrodinger
equation from the GBE with an added complex valued source
term, S, begins by expanding Eq. (5), using the method of
Guo et al. [23] as follows:

f (x + vδt, v, t + δt ) − f (x, v, t )

= − 1

τ
[ f (x, v, t ) − f eq(x, v, t )] +

(
1 − 1

2τ

)
δt S, (6)

f eq(x, v, t ) = ψ (x, v, t )/m, (7)

where the position and velocity vectors are denoted by x
and v ∈ {v1, v2, v3, . . . , vm}, respectively, and the number of
discrete velocities is depicted by m. Here, vk is the kth discrete
velocity vector of the lattice structure.

The actual and equilibrium probability densities are de-
noted by f (x, v, t ) and f eq(x, v, t ), respectively. Note that f
and f eq are functions of the position and velocity vectors, x
and v, respectively, and of the complex valued time, t . The
position and velocity vectors can also be represented in tensor
forms as: xα and vα , respectively.

In the upcoming discussions, to simplify the relations, the
following abbreviations are used:

δt ≡ δ ≡ ε, (8)

∂

∂t
≡ ∂

∂t0
+ δ

∂

∂t1
, (9)

A ≡
(

∂

∂t0
+ vα

∂

∂xα

)
, (10)

B ≡ ∂

∂t1
. (11)
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Following Ref. [24], the indexing parameter, ε, of the
Chapman-Enskog (CE) expansion, is assumed to be of the
same order of the time step, δt (also abbreviated by δ), as
indicated by Eq. (8).

Using the “slow” and “fast” timescales, t0 and t1, respec-
tively, of the CE procedure, the probability density function,
f , can be expanded as follows:

f = f 0 + δ f 1 + δ2 f 2 + δ3 f 3 + · · ·. (12)

A Taylor series expansion of f (x + vδt, v, t + δt ) around the
point (x, v, t ) of the phase space yields

f (x + vδt, v, t + δt )

= f (x, v, t ) + δt

(
∂

∂t
+ vα

∂

∂xα

)
f (x, v, t )

+ 1

2
(δt )2

(
∂

∂t
+ vα

∂

∂xα

)2

f (x, v, t ) + · · ·. (13)

Combining Eqs. (6) and (13), one obtains the following O(δ2)
accurate relation:⌈

δt

(
∂

∂t
+ vα

∂

∂xα

)
+ 1

2
(δt )2

(
∂

∂t
+ vα

∂

∂xα

)2⌉
f

= − 1

τ
[ f (x, v, t ) − f 0(x, v, t )] +

(
1 − 1

2τ

)
δt S. (14)

Now, using the above relations and abbreviations, one arrives
at the following result:[

δ(A + δB) + 1

2
δ2(A + δB)2

]
( f 0 + δ f 1 + · · ·)

= − 1

τ
(δ f 1 + δ2 f 2 + · · ·) +

(
1 − 1

2τ

)
δtS, (15)

which yields the following O(δ) order equation:

A f 0 = − 1
τ

f 1 + (
1 − 1

2τ

)
S, (16)

and the following O(δ2) order equation:

B f 0 + A f 1 + 1

2
A2 f 0 = − 1

τ
f 2. (17)

Rewriting Eq. (16) as follows:

f 1 = τ

[(
1 − 1

2τ

)
S − A f 0

]
, (18)

and combining Eqs. (17) and (18), one obtains

B f 0 +
(

1

2
− τ

)
A2 f 0 +

(
τ − 1

2

)
AS = − 1

τ
f 2. (19)

Using Ref. [23] for the nD CSKM [19], one can write

ψ =
∫

f 0dσ =
∫

f dσ + 1

2
δt

∫
Sdσ , (20)

where dσ is the differential area of the nD sphere [19] sur-
rounding a target node. Hence, one can write∫

( f − f 0)dσ = − 1

2
δt

∫
Sdσ , (21)

and, using Eq. (12), it can be simplified to obtain∫
f 1dσ = − 1

2

∫
Sdσ . (22)

Integrating Eq. (16) and using Eq. (22) to simplify the result,
one can write

∂ψ

∂t0
=

∫
Sdσ . (23)

Note that f 0 = ψ/σ , for an elemental nD sphere with area
of σ , surrounding the computational node. Hence, one can
write:

∫
vα f 0dσ = ψ

σ

∫
vαdσ = 0, due to the symmetric dis-

tribution of vα on the nD spatial directions.
Using the following complex valued source term:

S = −i	 f 0, (24)

it can be shown that∫
ASdσ = ∂

∂t0

∫
Sdσ . (25)

Integrating Eq. (19), one obtains

∂ψ

∂t1
+

(
1

2
− τ

) ∫ [
∂2

∂t2
0

+ vαvβ

∂

∂xα

∂

∂xβ

+ 2vα

∂

∂t0

∂

∂xα

]

× f 0dσ +
(

τ − 1

2

)
∂

∂t0

∫
Sdσ = 0. (26)

Note that the following relation holds:

∂2ψ

∂t2
0

= ∂

∂t0

(
∂ψ

∂t0

)
= ∂

∂t0

∫
Sdσ . (27)

Inserting Eq. (27) into Eq. (26), one obtains

∂ψ

∂t1
+

(
1

2
− τ

)
∂2

∂xα∂xβ

∫
vαvβ f 0dσ = 0. (28)

For the symmetric velocities, vα , in the nD space,
one can write

∫
vαvβ f 0dσ = ∫

vαvβ
ψ

σ
dσ = ψ

σ

∫
vαvβdσ =

ψ

σ
[ v2

0
d δαβ]σ , which yields∫

vαvβ f 0dσ = v2
0

d
ψδαβ, (29)

where d is the dimension of space, v0 is the magnitude of
the microscopic velocity of the constant speed model, and
δαβ is Dirac’s δ function. Combining Eqs. (28) and (29), one
can write

∂ψ

∂t1
+ v2

0

d

(
1

2
− τ

)
∂2ψ

∂xα∂xα

= 0. (30)

Combining Eqs. (23) and (24), one can write

∂ψ

∂t0
= −i	ψ. (31)

Note that ∂ψ

∂t = ∂ψ

∂t0
+ δ

∂ψ

∂t1
. Hence, combining Eqs. (30) and

(31), one obtains

∂ψ

∂t
+ 1

2

(
1

2
− τ

)
v2

0δt∇2ψ − 	ψ = 0. (32)
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Introducing a new term κ by setting τ = 1
2 + iκ , one can

recast Eq. (32) into the following form:

i
∂ψ

∂t
+

(
1

2
v2

0κδt

)
∇2ψ − 	ψ = 0, (33)

which, defining α = − 1
2v2

0κδt , can be rewritten in the follow-
ing canonical form:

i
∂ψ

∂t
+ α∇2ψ + 	ψ = 0. (34)

Hence, the complex valued relaxation time, τ , and the source
term, S = −i	 f eq, of the GBE, can be used to adjust
the coefficient of Laplacian, α, and the potential term, 	,
of the recovered time-dependent Schrodinger equation. The
efficiency and accuracy of the method is rigorously investi-
gated and verified by simulating some example problems, in
Sec. IV.

III. NUMERICAL IMPLEMENTATIONS

Despite the relative complexity of the derivations of Sec. II,
the implementation of the LBTD is simple. In this section,
the numerical method is summarized, and some notes and
clarifications are presented.

A. Summary of the implementation procedure

As the first step, the probability densities denoted by fk , for
direction of k ∈ {1, 2, 3, 4, 5, 6} and at all locations denoted
by the position vector of r, are initialized, using fk (r, 0) =
f eq
k , where f eq

k = 1
6ψ (r, 0) is the equilibrium probability den-

sity given by Eq. (7) with m = 6 for the six velocity hexagonal
and orthogonal lattices of the present work. The initial value
of ψ (r, 0) depends on the problem at hand, and it is known at
the beginning of each simulation.

The collision stage, in the present work, consists of
the following steps: (i) Evaluating the local values of the
wave function using the method of Ref. [23] and as de-
scribed in Sec. III D, ψ (r, t ) = ∑

f eq
k (r, t ) = ∑

fk (r, t ) +
1
2δt

∑
Sk , which, using Sk = −i	 f eq

k , can be simplified
to obtain ψ (r, t ) = ∑

fk (r, t )/(1 + 1
2 i	); (ii) evaluating the

equilibrium probability densities using f eq
k (r, t ) = 1

6ψ (r, t );
(iii) relaxing the probability densities, fk , toward f eq

k , to
evaluate the post collision probability densities, f̃k = fk −
( fk − f eq

k )/τ , where the relaxation time can be set to con-
trol the coefficient of the Laplacian term of the Schrodinger
equation.

In the streaming stage, the outgoing probabilities, f̃k , are
streamed on the links of a regular lattice to update the values
of the probability densities of their neighboring nodes. Note
that the bounce-back boundary condition of the conventional
LBM has been used to model the infinite wall potential, in the
present simulations.

Based on the above description, the implementation of the
present model is similar to that of the conventional lattice
Boltzmann models, and the only differences are the use of
complex valued probability densities and a new definition of
the equilibrium probability density function in the proposed
model.

FIG. 1. Hexagonal (a) and orthogonal (b) six velocity lattices for
the present 2D and 3D simulations.

B. Notes on complex valued properties

It is to be noted that, in the present kinetic model, the
conventional algebra of real variable and functions is replaced
by the algebra of complex valued quantities and functions.
The “complex valued probability” of the generalized model
can be viewed as the perturbations of the complex valued
equilibrium distribution function, for which a precise defi-
nition is provided. Moreover, the perturbations are governed
by the generalized Boltzmann equation (GBE). An attempt
to draw analogies between the conventional and complex
valued probabilities, thus, is not necessary, while it can be
misleading.

The following clarification regarding the “collision” and
“streaming” stages of the GBE are presented. The collision
stage, by definition, is the stage during which the complex val-
ued probabilities are updated, and the streaming stage is gov-
erned by a pure advection equation, using which the updated
“probabilities” are streamed on the links of a regular lattice.

C. Lattices and units

Figure 1(a) shows a hexagonal lattice [17–19,21,22], in
which the height-to-width ratio of a unit cell is equal to√

(3)
2 ≈ 0.86. For a square domain, the same column-to-row

ratio should be respected. Hence, Gn is defined as a hexag-
onal lattice with dimensions of n × 43 columns and n ×
50 rows. In this work, the G2, G3, and G4 lattices have been
used, in Sec. IV. The discrete velocities, vk = (vkx, vky), are
defined by: vkx = v cos[ (k−1)π

3 ] and vky = v sin[ (k−1)π
3 ] for

k ∈ {1, 2, 3, 4, 5, 6}.
For the 3D simulations of this work, the orthogonal lattice

shown in Fig. 1(b) is used, where the discrete velocities, of
the model are given by: v1−2 = (±1, 0, 0), v3−4 = (0,±1, 0),
and v5−6 = (0, 0,±1).

The unit of length in the lattice Boltzmann models is the
distance from each node to a neighboring node, and the unit
of time (also referred to as one time step or as one iteration)
is the time required for a virtual particle to travel from one
node to a neighboring node. In the following subsections, the
technical details of the LBTD method are presented.

D. Updating ψ using the method of Ref. [23]

Following the method of Guo et al. [23] and using Eq. (20),
one can write ψ = ∫

f dσ + 1
2δt (−i	ψ ), which yields the
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following result:

ψ = 1

1 + 1
2 i	δt

∫
f dσ . (35)

In this work, Eq. (35) has been used, after each update of the
probability density function, f , to evaluate the wave function
at the computational nodes.

Note that, in lattice units δt = 1, which leads to further
simplification of Eq. (35).

E. Imposing initial and boundary conditions

Knowing the initial states, ψ , the probability density func-
tion, f , can be initialized, as follows. Using Eq. (7) and
for the six velocity lattices, the following relation is used:
f (x, v, 0) = f eq(x, v, 0) = 1

6ψ (x, 0), to initialize the proba-
bility densities. To impose a Dirichlet boundary condition of
ψ (x, t ) = ψ0, the probability density is set equal to the equi-
librium density which corresponds to ψ0, using: f (x, v, t ) =
1
6ψ0. The potential term, 	, can be adjusted by setting the
source term Sk = −i	 f eq

k , as mentioned in Sec. II A.
It should be noted that the “bounce-back boundary con-

dition” of the lattice Boltzmann method can be used to
impose the infinite wall boundary condition, instead of using
the source term and employing large values of potential, 	.
The advantage of the bounce-back model is that it preserves
the total probability, and saves the need for a normalization
procedure. Recall that, due to the quantum tunneling effect, a
complete isolation of the structure is not possible, and there
will alway be a diffusion of “probable states,” even if large
potentials are employed to isolate the structure.

Finally, the perfectly matched layer (PML) absorbing
boundary condition, in time-domain methods, has been pro-
posed and successfully implemented [25,26], to reduce noisy
reflection of the wave function from the boundaries. In the lat-
tice Boltzmann method, the PML has also been implemented
to reduce noisy reflections of acoustic waves [27]. Hence, a
similar approach can possibly be used in the proposed LBTD
method. A comprehensive and detailed study on this matter
is beyond the scope of this work, while it is suggested as a
future work.

F. Data sampling and analysis in the time
and frequency domains

The solution of the Schrodinger equation can be split into
time and space-dependent functions [1]:

ψ (x, t ) =
N∑

n=1

cne−iωntξn(x). (36)

Hence, probing the ψ field at a given point of x = x0, yields
the following time-dependent function:

A(t ) = ψ (x0, t ) =
N∑

n=1

cne−iωntξn(x0), (37)

which can be used in the subsequent frequency analysis. The
choice of the probing point(s) and a preprocessing of the
time-domain data, as suggested by some researchers (e.g.,
Refs. [1,9]), can help improve the results.

1. Collecting and assembling the time-domain data

As mentioned in Ref. [9], to obtain a suitable time-domain
data, the entire computational domain can be used to generate
the desired time-dependent signal.

Using the linear property of the time-dependent
Schrodinger equation, the temporal data is prepared, as
follows: (i) after each time step and for all nodes i and j
of the computational domain, the corresponding values of
the wave function, ψ (i, j, t ) are stored; (ii) to each node
of the computational domain a unique random number
− 1

2 � w(i, j) � 1
2 is assigned; (iii) the time-domain signal

is now defined as the following linear combination of the
collected data:

B(t ) =
M∑

i=1

N∑
j=1

w(i, j)ψ (i, j, t ). (38)

The time-domain data, in the present work, is obtained us-
ing the above mentioned procedure of Ref. [9], and it has
been used in the subsequent spectral analysis, as described in
Sec. IV.

2. Determining the eigenfrequencies and eigenstates using
forward and inverse Fourier transforms

The standard procedure, in time-domain methods, in-
clude a numerical solution of the time-dependent Schrodinger
equation followed by a spectral analysis of the temporal data
[1], to detect the eigen frequencies of the device under study.
The corresponding eigenstates, next, are determined by per-
forming an online inverse Fourier transform of the frequency
data. To reduce the computational costs, fast Fourier trans-
forms can be used, if precisely 2N samples are collected [1].

3. The Hanning window method

Discontinuities in the time-domain signal result are sources
of errors which often appear as false noises in the frequency
domain (i.e., in the Fourier transform of the temporal signal).
The two obvious discontinuities of the time-domain data oc-
cur at the beginning and at the end of the simulation. The
time-domain signal can be improved using a weighting func-
tion, w(t ), which reduces the significance of data collected at
the initial and final stages of the simulation.

The Hanning window procedure, with a weighting function
of: w(t ) = 1

2 [1 − cos(2πt )], has been used in the present sim-
ulations. Here, t = i/T is a rescaled time, i denotes the current
time step, and T = Max(i) = 2N is the number of samples. As
mentioned in Sec. III F 1, the number of data samples should
be 2N , so that the fast Fourier transform (FFT) method can be
used in place of the standard Fourier transform. The rescaled
temporal signal can be rewritten as: ψ̃ (x, t ) = w(t )ψ (x, t ).

4. A recursive signal filtration (RSF)

The test signal should contain the eigenfrequencies which
are to be detected, since the Fourier transform can only reveal
the eigenfrequencies which are present in the given test signal
(state). Therefore, a white noise, i.e., a random collection of
quantum states, is the best choice for acquiring information
on the eigenstates of an unknown structure. However, a white
noise is also more prone to excessive noise than an orderly test
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signal, such as the stationary and coherent states of examples
1 and 2 (Secs. IV A and IV B). Using the LBTD method, it
is shown that a white noise can be used to detect the eigen
frequencies and evaluate the eigenstates of an unknown struc-
ture. In the present work, a recursive signal filtration (RSF)
method is proposed, to verify and improve the accuracy of the
computed eigenstate. The RSF procedure can be summarized
as follows:

Using the standard procedure, as mentioned in Ref. [1], a
random state (a white noise) is used as the initial condition and
a Fourier analysis is performed to detect the eigen frequencies.
The simulation is repeated, at one of the eigenfrequencies,
while an online inverse Fourier transform is performed, to
construct a secondary state.

In the previous works, it is assumed that the secondary state
is an eigenstate, while, in this work, the RSF comes into play
by introducing a verification and a correction procedure, as
follows:

Using Born’s interpretation of the wave function, the prob-
ability of finding a particle at (x, t ) is given by: ρ(x, t ) ≡
ψ (x, t ) ψ (x, t ). The verification now begins with repeating
the simulation using the secondary state as the initial con-
dition, while another online inverse Fourier transform is
performed to construct a tertiary state.

If the secondary state is an eigenstate, then it is an station-
ary state; and the following term which measures deviations
from being stationary is evaluated:

err(t ) =
∑

i

∑
j

∣∣ρt
i, j − ρ0

i, j

∣∣∑
i

∑
j

∣∣ρ0
i, j

∣∣ , (39)

where the probability densities denoted by ρt
i, j and ρ0

i, j pertain
to the current and initial states, respectively. If the error term
is negligible, then the secondary state is indeed an eigenstate,
or else, if the error is not negligible, then the simulation is
repeated, using the tertiary state as the initial condition, and
the above verification and correction steps are repeated.

Based on the results of this work, one or two iterations of
the RSF can greatly enhance the results, as shown in Fig. 11
of example 4 (Sec IV D).

IV. RESULTS AND DISCUSSIONS

The results reported in this section are obtained by
performing numerical simulations, using a home-made
C program and on a CPU with the following specifica-
tions: Processor: Intel Core i7-7500U CPU @ 2.70 GHz and
2.90 GHz with installed memory (RAM) of 16.0 GB.

The accuracy and efficiency of the proposed LBTD, in the
present section, has throughly been investigated. The well
known benchmark problems of two- and three-dimensional
(2D and 3D) harmonic oscillators (HO), for which analytical
solutions are available, are simulated. In addition to the above,
a modification of the 2D HO has been simulated, by adding a
circular infinite wall to the standard problem.

In this analysis, the following steps are taken: (i) the initial
condition is set using either a stationary state, or a coherent
state (generated by slightly dislocating an existing stationary
state), or a random state (a white noise), (ii) the standard
procedure of detecting the eigen frequencies and construct-
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FIG. 2. The probability density contours, calculated using
Eq. (43), for various quantum numbers of p and q in Eq. (42).

ing the eigenstates are followed, using a Fourier transform
of the time-domain data and another online inverse Fourier
transform of the frequency data, and, finally, (iii) a recursive
signal filtration (RSF) procedure is introduced and used to
verify and correct the computed eigenstates. (iv) the lattice
size and the simulation time (in minutes) are reported, for each
of the following examples, so that the computational costs of
the proposed model can be estimated.

A. Example 1: Stationary states as initial condition

The quantum harmonic oscillator is an important bench-
mark problem, since its exact solutions are known. For the
one-dimensional harmonic oscillator (1D HO) with potential
of φ(x) = 1

2 mω2x2, one particular class of stationary states is
given by

ψn(x) = 1√
2n n!

(
mω

π h̄

)1/4

e− mωx2

2h̄ Hn

(√
mω

h̄
x

)
, (40)

where Hn(x) is the Hermite polynomial of rank n, and m and ω

represent the mass and angular frequency of the wave packet,
respectively. Moreover, to simplify the relations, Planck units
are adopted, i.e., h̄ is set equal to unity. It can be shown that,
for the 2D harmonic oscillator (2D HO) with potential of

φ(x, y) = 1
2 mω2(x2 + y2), (41)

stationary solutions of the following form exists:

ψp,q(x, y) = ψp(x)ψq(y). (42)
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FIG. 3. A grid study and error analysis for various lattice sizes
and for quantum numbers of p = 0 and q = 3.
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FIG. 4. The time-domain data (top) and its fast Fourier transform
(bottom) for example 2.

For a square domain defined by: −5 � x, y � +5, the sim-
ulation is performed on hexagonal lattices G2, G3, and G4,
and the stationary solution given by Eq. (42) with m = 1 and
ω = 1 is imposed as the initial condition. For the spectral
analysis a total of 215 data points have been collected. Using
the hexagonal lattice, G4, with 173×200 nodes and for a
total of 32 768 iteration the execution time was 3 min on the
machine specified in Sec. IV.

According to Born’s interpretation [28] of the wave func-
tion, the probability density of finding a particle at a given
location and time, ρ, is given by

ρ = ψ2
1 + ψ2

2 . (43)

Figure 2, for various quantum numbers of (p, q), shows the
contour plots of the probability density, ρ. Additionally, using
Eq. (39), deviations of the probability densities from the initial
state can be evaluated. The results are shown in Fig. 3, where
the logarithm (in base 10) of the error, has been plotted versus
time. The results obtained for the the G2, G3, and G4 lattices
are denoted by b, c, and d . Using the G3 lattice, a white
noise initial condition, has also been simulated and the result,
denoted by a in the same figure, can be used as a basis of
comparison. As expected, for an stationary state the variations
of the probability densities, ρ, versus time is negligible.

B. Example 2: Coherent states as initial condition

In the second example, the 2D domain is defined by −5 �
x, y � +5, and the lattice Boltzmann simulation is performed
on the G3 lattice of Sec. III E.

Using the hexagonal lattice, G3, with 129×150 nodes and
for a total of 32 768 iteration the execution time was 2 min on
the machine specified in Sec. IV.
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FIG. 5. The probability density contours, calculated using
Eq. (43), for the first three eigenstates of example 2.
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FIG. 6. Deviations from stationary state in example 2.

The initial condition, for the wave function, is given by
Eq. (42) with a shifted x and y coordinates of x → x + 0.5 and
y → y + 1.5, respectively, and with the following settings:
m = 1, ω = 2, and (p, q) = (0, 0).

The potential function is defined by Eq. (41), inside the
box, while the bounce-back boundary condition of the conven-
tional lattice Boltzmann method is imposed at the boundaries
to model an infinite potential at the faces of the cube. Addi-
tionally, ψ = 0.0 + 0.0i is imposed, as a Dirichlet condition,
on the boundaries. Based on the simulation results, and as ex-
pected, the influence of the boundary condition on the results
is related to the strength of the potential field.

Figure 4 shows the magnitudes of the time-domain data
(top) and its Fourier transform (bottom) in the frequency do-
main. The time-domain data has been collected, at a point P
in the computational domain, and the Fourier transform of the
time-dependent signal is given by

f (k) =
∫ +∞

−∞
ψ (p, t ) e−2π i k t dt, (44)

As shown in Fig. 4 (bottom), the first four peaks in the trans-
formed (frequency domain) signal occur at k = 8, 16, 23, 31.
The corresponding eigenstates can be constructed by follow-
ing the procedures of Sec. III.

Figure 5, shows the contour plots of the probability density,
ρ, for the first three detected eigen frequencies which occur at
k = 8, 16, 23.

Using Eq. (39), deviations of the probability densities from
their initial values, are evaluated, and the result is shown, in
Fig. 6 (top). The oscillations of the error are due to the fact
that the initial coherent state resembles a classical harmonic
oscillator which periodically returns to its initial state.
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FIG. 7. The time-domain data (top) and its fast Fourier transform
(bottom) for example 3.
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FIG. 8. Deviations from stationary state in example 3.

Figure 6 (bottom), using the RSF procedure of Sec. III F 4,
shows that the computed eigenstate corresponding to k = 23
is indeed a stationary state for which the deviations of proba-
bility density can be neglected with a second-order accuracy.

C. Example 3: White noise initial condition

In the third numerical test, a white noise (a random state)
is used as the initial condition. The time-domain signal is
collected using the procedure of Sec. III F 1, and the same
procedures of the previous sections are followed to obtain the
eigen frequencies and eigenstates.

Using the hexagonal lattice, G4, with 173×200 nodes and
for a total of 32 768 iteration the execution time was 3.5 min
on the machine specified in Sec. IV.

The magnitude wave function is shown in Fig. 7 (top),
and the magnitude of its Fourier transform is shown in Fig. 7
(bottom). Moreover, results of the RSF procedure, shown in
Fig. 8 (bottom), clearly indicate that the secondary state is
indeed a stationary state.

Note that the initial state is a random state, yet an axis
of symmetry can be observed in the contour plots of the
probability densities, as shown in Fig. 9. Appearance of such
symmetries, for a random initial state and under a perfectly
symmetric boundary condition (for example, using a circular
wall or employing a strong potential field which does not
allow significant interactions with wall), can be the subject
of additional studies, as it may reveal useful information on
the dynamics of the quantum states governed by the time-
dependent Schrodinger equation.

D. Example 4: A modified 2D HO with inner wall

In the fourth example, the standard 2D HO is modified
by placing an infinite wall of circular shape and centered at
the origin. In the space between the inner wall and the outer
boundaries, a random distribution of the wave function (white
noise) is used, as the initial condition.
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FIG. 9. The probability density contours, calculated using
Eq. (43), for the first three eigenstates of example 3.
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FIG. 10. The time-domain data (top) and its fast Fourier trans-
form (bottom), in example 4.

Using the hexagonal lattice, G3, with 129×150 nodes and
for a total of 32 768 iteration the execution time was 2.2 min
on the machine specified in Sec. IV.

In this example, the “bounce-back” and a Dirichlet bound-
ary condition of ψ = 0 + 0i have been imposed at the inner
and outer boundaries of the domain. It should be noted that
the “bounce-back” boundary condition, can be used to model
an ideal infinite wall, in the sense that the bounce-back model
does not allow a passing of information through the wall, and
the system under study can be fully isolated. As shown in
Fig. 10 (top), the time-domain signal has a larger amplitude
in the middle than in the ends. This is because the Hanning
window method of Sec. III F 3 is used to reduce the noise due
to discontinuities in the initial and final portions of the signal.

Figure 10 (bottom), shows that the first three peaks in
the magnitude of the transformed (frequency domain) signal
occur at k = 61, 144, 155. Using the procedures of Sec. III,
the eigenstates corresponding to k = 144 is constructed, and
the result of the RSF iterations are shown in Fig. 11. The
deviations of the probability density, ρ, from its initial value,
ρ0, for the eigenstate corresponding to k = 144, are shown in
Fig. 12.

E. Example 5: 3D harmonic oscillator

In the fifth and final example, the present model is used
to simulate a 3D quantum harmonic oscillator bounded by a
cubical box with −2.5 � x, y, z � +2.5.

Using an orthogonal lattice of size 70×70×70, and for a
total of 32 768 iteration the execution time was 71 min on the
machine specified in Sec. IV.
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FIG. 11. The probability densities obtained for the modified 2D
HO potential with inner wall.
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FIG. 12. Deviations from stationary state in example 4.

It can be shown that, for the 3D harmonic oscillator (3D
HO) with potential of

φ(x, y, z) = 1
2 mω2(x2 + y2 + z2), (45)

stationary solutions of the following form exists:

ψp,q,s(x, y, z) = ψp(x) ψq(y) ψs(z), (46)

where ψγ (ξ ) is a stationary solution of the 1D harmonic
oscillator, given by Eq. (40).

The initial condition for the wave function is given by
Eq. (46) with a shifted x coordinate of x �→ x + 0.25 and
with the following parameter settings: m = 1, ω = 2, and
p = q = s = 0. The potential function is defined by Eq. (45),
inside the box, while the bounce-back boundary condition of
the conventional lattice Boltzmann method is imposed at the
boundaries to model an infinite potential at the faces of the
cube. Additionally, a Dirichlet condition of ψ = 0.0 + 0.0i is
imposed on the boundaries.

For the spectral analysis, a total of 215 data points have
been collected following the procedure of Sec. III F. The
bell shape of temporal signal is due to the application of
the Hanning window method described in Sec. III F 3. The
magnitude of the complex valued temporal signal is shown in
Fig. 13 (top).

Next, the Fourier transform of the time-domain data is
obtained. The magnitude of the transformed signal in the
frequency domain is shown in Fig. 13 (bottom), using which
the first four detected eigen frequencies occur at k = 35,

83, 130, 178. Following the procedure of Sec. III F 2, the
corresponding eigenstates are computed.
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FIG. 13. The time-domain data (top) and its fast Fourier trans-
form (bottom) for example 5.
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FIG. 14. Deviations from stationary state in example 5.

Using Eq. (39) and repeating the same procedures of
example 2, deviations of the probability densities from their
initial values, are evaluated, and the result is shown in Fig. 14
(top), The oscillations of the error, denoted by Fig. 14(a),
are due to the fact that the initial coherent state resembles a
classical harmonic oscillator which periodically returns to its
initial state. Next, using the RSF procedure of Sec. III F 4,
the accuracy of the eigenstate corresponding to k = 83 is
checked. The results of the first and second RSF iterations are
denoted by Figs. 14(b) and 14(c), respectively.

In Fig. 15, for the first four detected eigenstates, the con-
tour plots of the probability density (referred to as orbitals,
hereafter) are shown, in which the orbitals are symmetrically
distributed about the x axis.

Recall that the initial condition is imposed by shifting the
x coordinates in Eq. (46) according to x �→ x + 0.25. In other
words, the initial condition has been enforced by dislocating
an existing stationary solution along the x axis. Using the
existing symmetries, a dislocation of y �→ y + 0.25 yields a
degenerate state whose axis of symmetry is aligned with the
y axis.

The eigen frequencies and eigenstates can optimally be
detected if the initial state is chosen to be a random state
which is a superposition of a large number of eigenstates. To
detect all eigenstates of the structure, however, one may need
to repeat the simulation with different initial conditions, as
shown in this work and as reported by others [2]. Additionally,
the issue of noises which are the sources of false results in the
spectral analysis, have been addressed by researchers, and,
as a partial remedy, the removal of excessive noise using

FIG. 15. 3D contour plot of the probability densities for the 3D
harmonic oscillator of example 5.
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filtration proceduress, such as the Hanning window method
[1] or the RSF procedure of the present work, have been
suggested.

V. CONCLUSION

In the present work, using the generalized Boltzmann
equation (GBE) of Zadehgol [5] and Zadehgol and Khazaeli
[22], a lattice Boltzmann time-domain method is proposed, in
which the collision term and the relaxation time of the GBE
model can be identified and are not constructed on the basis
of an analogy.

It is shown that methods of implementation of the bound-
ary conditions and source terms of the LBM (with real valued
properties) can directly be applied to the present model (with
complex valued properties). The present model, additionally,

inherits the main features of the LBM, such as (i) simple
algorithms, (ii) easy handling of complex geometries, and
(iii) being suitable for parallel processing. Hence, from the
computational standpoint, it provides an efficient tool for the
quantum mechanic simulations and studies, using the existing
tools of the computational fluid dynamics (CFD).

Using the Chapman-Enskog analysis, it is shown that the
Schrodinger equation is a second-order approximation of the
GBE. Higher-order approximations of the GBE, thus, may
provide more details and information. Further study on this
matter is suggested.
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