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Drag and lift coefficients of ellipsoidal particles under rarefied flow conditions
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The capability to simulate a two-way coupled interaction between a rarefied gas and an arbitrary-shaped
colloidal particle is important for many practical applications, such as aerospace engineering, lung drug delivery,
and semiconductor manufacturing. By means of numerical simulations based on the direct-simulation Monte
Carlo (DSMC) method, we investigate the influence of the orientation of the particle and rarefaction on the drag
and lift coefficients, in the case of prolate and oblate ellipsoidal particles immersed in a uniform ambient flow.
This is done by modeling the solid particles using a cut-cell algorithm embedded within our DSMC solver. In
this approach, the surface of the particle is described by its analytical expression and the microscopic gas-solid
interactions are computed exactly using a ray-tracing technique. The measured drag and lift coefficients are used
to extend the correlations, based on the sine-squared drag law, available in the continuum regime to the rarefied
regime, focusing on the transitional and free-molecular regimes. The functional forms of the correlations for the
ellipsoidal particles are chosen as a generalization from the spherical case. We show that the fits over the data
from numerical simulations can be extended to regimes outside the simulated range of Kn. Our approach allows
to achieve a higher precision when compared with existing predictive models from the literature. Finally, we
underline the importance of this work in providing correlations for nonspherical particles that can be used for
point-particle Euler-Lagrangian simulations to address the problem of contamination from finite-size particles in
high-tech mechanical systems.
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I. INTRODUCTION

Multiphase flows including particulate suspensions in con-
ditions where the flow around the particles is rarefied are
important in many different natural, medical, and industrial
applications. Examples can be found in the formation of
cloud droplets and in ozone depletion in the stratosphere [1],
contamination from particle debris in high-tech mechanical
systems [2], and lung drug delivery [3]. In all these cases
the typical size of the particles is small when compared to
the mean free path of the surrounding gas molecules and
rarefaction effects are important in gas-surface interactions.

Numerous studies have been proposed to address the prob-
lem of shape influence on the transport of particles in the
continuum regime. From the pioneering theoretical work of
Oberbeck [4] and Jeffery [5], who first investigated the mo-
tion of an ellipsoid immersed in a fluid in the Stokes limit,
an increasingly growing effort has been dedicated to un-
derstand shape and orientation effects on the drag, lift, and
torque experienced by particles in different flow conditions
[6–14].

While the understanding of particle-flow interactions in
the continuum regime is consistently increasing through the
years, our knowledge on the impact of rarefaction on the
dynamics of the particles is still limited. From the numerical
point of view, limitations arise as Navier-Stokes solvers fail
due to the breakdown of the continuum assumption, while

from the experimental point of view it is difficult to create
ideal conditions to investigate the dynamics of very small
particles in low-pressure environments.

Typically, Eulerian-Lagrangian simulations are employed
in numerical studies related to the transport of nanosized par-
ticles in micromechanical devices [15–19]. In this approach,
the flow field is evaluated on Eulerian grids, while the solid
bodies are modeled as (spherical) point particles and evolved
in time in a Lagrangian fashion. Rarefaction effects are then
included through the phenomenological Cunningham correc-
tions [20,21] on the drag force experienced by the particles.
Although, in general, this approach is a reasonable approxi-
mation for the dynamics of micro- and nanometric particles
immersed in a gas, any effect related to their finite size,
shape, and orientation is neglected. Such effects are essential
in high-tech applications, where high accuracy is required in
the modeling approach, so that finite-size effects must often
be taken into account.

Different authors addressed, both analytically and nu-
merically, the interaction between rarefied gas flows and a
finite-size spherical particle. Epstein [22] first derived a drag
relation for a sphere translating in a gas at thermal equi-
librium in the free-molecular regime in the limit of low
velocities. This approach was later extended by Baines et al.
[23] to account for larger velocities. Gallis et al. [24,25]
proposed a formulation based on the use of the Green’s func-
tion to calculate drag and heat flux experienced by a sphere

2470-0045/2022/105(1)/015306(16) 015306-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4229-5375
https://orcid.org/0000-0002-8247-5776
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.015306&domain=pdf&date_stamp=2022-08-03
https://doi.org/10.1103/PhysRevE.105.015306


LIVI, DI STASO, CLERCX, AND TOSCHI PHYSICAL REVIEW E 105, 015306 (2022)

in the free-molecular regime for monatomic and diatomic
gases.

While the aforementioned analyses are focused on the
free-molecular regime, Phillips [26] provided an analytical
expression for the drag force on a sphere through an ap-
proximate solution of the Boltzmann equation which includes
the effects of intermolecular collisions. His approach, based
on the method of moments [27,28], is applicable to a large
range of Knudsen numbers, covering the slip and transi-
tion regimes (0.0865 � Kn � 3.36). The results from Phillips
show a good match with the experimental observations from
Millikan [29,30]. These approaches are, however, limited to
spherical particles and have not been extended, so far, to
particles with more complex shapes.

Some works are available in the literature that tackle the
problem of gas-solid interactions in the case of nonspheri-
cal particles from a theoretical perspective: Halbritter [31]
derived a formulation for the torque exerted by a rarefied
gas on an ellipsoidal particle at thermal equilibrium. Dah-
neke [32] extended the analytical formulation from Epstein
to particles with different shapes, including cylinders, and
prolate and oblate ellipsoids. These studies are again limited
to free-molecular flows.

Some phenomenological models have been proposed [33]
to describe the drag corrections experienced by nonspheri-
cal particles in the transition and slip flow regimes, such as
the equivalent sphere approximation (ESA) and the adjusted
sphere approximation (ASA). As it will be further explained
later, these approaches are based on the approximation of the
investigated particle with an appropriate spherical volume,
and rarefaction effects are included through the Cunningham
corrections. The main feature of the ASA model is that it
retains orientation effects, but it requires the knowledge of the
drag force on the body in the continuum and free-molecular
regimes, and this information is only available for a limited
number of shapes.

To numerically address rarefied gas flow problems in a
broad spectrum of Kn, ranging from slip to free-molecular
flows, the direct-simulation Monte Carlo (DSMC) method
[34,35] has proven to be a stable and accurate approach to
accurately model the Boltzmann equation [36,37]. We em-
ploy the DSMC method due to its versatility in including
solid particles with different shapes in the simulation domain,
combined with its capability to correctly describe rarefaction
effects and gas-surface interactions. Two main approaches
are usually applied to model the surface of the particle in
the DSMC framework: In one case, it is approximated by a
non-Cartesian body-fitted mesh, and every face on the meshed
surface coincides with a DSMC grid cell face on the gas do-
main [38]. In the second approach, the surface of the particle
is represented with its analytical expression and it is free to
move on the Cartesian DSMC grid.

The latter approach, first introduced in 1999 by LeBeau
[39], has been called the cut-cell method [40,41], as the
superimposition of the solid particle volume on the DSMC
Cartesian grid imposes that some of the DSMC grid cells
(i.e., the boundary cells at the gas-solid interface) are cut
by the solid surface, requiring to dynamically compute and
update the volume of such cells. The cut-cell method provides
two main advantages: it allows to describe the surface of the

particle analytically and, when the motion of the particle is
present, it overcomes the need of adaptive remeshing of the
simulation grid at every time step, as only the cut-cell volumes
have to be recomputed.

Examples of recent successful applications of the cut-cell
method to model gas-particle interactions can be found in
the literature. Jin et al. [42] proposed an efficient approach
to recalculate the cut-cell volume based on a polyhedral ap-
proximation of the solid volume fraction in each boundary
cell. They applied this approach to spherical particles as
well as to particles with more complex surfaces. Shrestha
et al. [43] applied the cut-cell algorithm to study the Brow-
nian diffusion of a spherical particle in the free-molecular
regime and the transport of an arbitrary-shaped particle
driven by the thermophoretic force. In their formulation
the surface of the particle is approximated by a triangu-
lated mesh. Baier et al. [44] investigated the thermophoretic
force experienced by spherical Janus particles in presence
of an external thermal gradient. Chinnappan et al. [45] ad-
dressed the transport dynamics of ellipsoidal particles in the
free-molecular gas flow regime. The aforementioned studies
are focused on the free-molecular regime and, up to our
knowledge, an extensive investigation of the drag and lift
correlations in the transitional regime is still missing in the
literature.

In this work we cover this gap by addressing the impact
of a finite Knudsen number (1 � Kn � 10) in the interac-
tions between a gas flow and ellipsoidal particles. This range
of Knudsen number is particularly relevant for modern in-
dustrial problems, as most of the gas flows are not in the
free-molecular regime, although still at very low pressure, and
the Knudsen number based on the particle size of the contam-
inant particles often exceeds unity. To efficiently investigate
gas-solid interactions at lower values of Knudsen number
(Kn < 1), where the DSMC simulations may become very
expensive, alternative techniques can be employed, such as the
method of moments [26,46] or appropriate lattice Boltzmann
models [47,48].

We propose a cut-cell algorithm which is able to describe
a spheroidal particle exactly, at any aspect ratio. Through
the use of a modified ray-sphere intersection approach, the
collision points between the gas molecules and the ellipsoidal
solid particle are obtained at the exact position on the surface
of the particle and the volume of the boundary cells (cut
cells) is computed through a Monte Carlo approach. This
approach differs from both the triangulated approximation
of the surface of the solid body proposed in [40,41,43,49]
and the polyhedral approximation of the cut cells proposed
in [42]. In particular, when compared with modern state-
of-the-art, multipurpose DSMC algorithms [40,49], in which
solid surfaces are approximated through a triangulated surface
mesh and cut-cell volume evaluated through a cut or split
algorithm [40], our approach allows to describe the surface
of spheroidal particles via their analytical representation, lim-
iting numerical approximations only to the evaluation of the
cut cells’ volume. This requires that surfaces can be rep-
resented mathematically, and for the more general case of
arbitrary-shaped surfaces a generalized approach such as the
one discussed in Appendix A or the one used in [40,49] is
required.

015306-2



DRAG AND LIFT COEFFICIENTS OF ELLIPSOIDAL … PHYSICAL REVIEW E 105, 015306 (2022)

U

z

x

y

Uz

Ux y

θ
Φ

FIG. 1. Sketch of an ellipsoidal particle immersed in a uniform
Stokes flow with velocity U for an arbitrary orientation. In the
body-centered reference, (x′, y′, z′), the ambient velocity U can be
decomposed in its components Ux′y′ , lying on the x′y′ plane forming
an angle � with respect to the x′ axis, and Uz′ , lying on the z′

axis. Since Uz′ is independent of the relative orientation between the
particle and the flow, orientation effects are described by the angle of
attack, �, without loss of generality.

We use this algorithm to investigate rarefaction and orien-
tation effects of an impinging uniform gas flow on different
ellipsoidal particles. This class of problems can be studied,
without loss of generality, by changing the angle of attack
at which the gas flow impinges on the simulated particles,
as sketched in Fig. 1. We first aim to verify the validity of
the sine-squared drag law in the presence of rarefaction. The
sine-squared correlation of the drag force experienced by an
arbitrary-shaped particle as a function of its orientation was
first proposed by Happel and Brenner [50] for Stokes flows in
the continuum regime, and later extended by Sanjeevi et al.
[13,14] to larger Reynolds numbers. Here we plan to investi-
gate and extend its validity in the case of rarefied flows.

We perform this analysis for different Knudsen numbers
ranging from the transitional to the free-molecular regime by
defining a suitable definition of the Knudsen number for ellip-
soidal particles. We first show that the sine-squared drag law
typical for the continuum regime is preserved for the whole
range of investigated Knudsen numbers, and then we use this
correlation to build a heuristic model which is able to predict
rarefaction and orientation effects on the hydrodynamic forces
acting on the ellipsoidal particles. Such a model can be used
to improve existing Euler-Lagrangian simulations of particle
transport in rarefied conditions, as it would allow to model
ellipsoidal particles and to include orientation effects in the
dynamics of the simulated particles.

The paper is structured as follows: In Sec. II we present
a detailed analysis and validation of the proposed numerical
scheme, showing its capability to recover the drag force ex-
erted by a uniform ambient flow on spherical and ellipsoidal
particles in different conditions. In Sec. III we introduce and
discuss the definition for the Knudsen number for ellipsoidal
particles based on the equivalent sphere, and we show the
validity of the sine-squared drag law in the investigated range
of Knudsen numbers. In Sec. IV we propose the predictive
model for the drag and lift coefficients of a prolate and oblate
ellipsoidal particle. We summarize and discuss our results
in Sec. V. Finally two Appendices are included to further
illustrate the details and performances of the algorithm.

II. NUMERICAL METHOD AND VALIDATION

A. Fluid-solid interactions and the cut-cell method

We approach the solution of the Boltzmann equation us-
ing the DSMC method featuring the no-time counter (NTC)
collision scheme, as first proposed by Bird [34]. In this frame-
work, we present an algorithm based on the cut-cell method
to describe the two-way coupling between the gas flow and
a spheroidal solid particle immersed in the DSMC compu-
tational domain. The surface of the particle immersed in the
gas domain is described by its analytical expression, and the
momentum exchange between the gas and the solid particle
is computed from the microscopic interactions between the
simulated gas molecules and the solid surface. In this way
we overcome the limitations of the alternative method used
to evaluate the force and the torque on the particle based on
the macroscopic stress tensor, which is often less accurate due
to the statistical fluctuations of the higher-order macroscopic
fields around the particle.

The collision points at which the DSMC molecules im-
pinge on the surface of the solid particle are evaluated exactly
using a ray-sphere intersection algorithm [51], extended to
include ellipsoidal particles. Details of the algorithm are pre-
sented in Appendix A. In very few words, it consists of
applying a transformation of the space coordinates that allows
to describe the ellipsoidal particle as a sphere with unit radius,
whose center coincides with the origin of a new translated
reference frame. The trajectories of the DSMC particles are
recomputed in the transformed reference frame and the colli-
sion points are obtained analytically through the evaluation of
the intersections between the new trajectories (lines) and the
scaled sphere. The collision point coordinates in the original
reference frame are obtained by applying the inverse transfor-
mation. A diffuse reflection scheme is then applied to reflect
the impinging molecules.

For each DSMC molecule i hitting the surface of the solid
particle at position xi, with initial momentum pi and postcol-
lision momentum p′

i, the total momentum transferred from
the gas to the solid particle within a single time step �t is
evaluated as

�p =
∑

i

(pi − p′
i ), (1)

from which the total force F and torque T, exerted on the rigid
body, can be directly obtained:

F =
∑

i

(
pi − p′

i

�t

)
, (2)

T =
∑

i

[
(xi − X) × (pi − p′

i )

�t

]
, (3)

where X denotes the center of mass of the solid particle.
While in this work we will focus on particles that are fixed in
space, Eqs. (2) and (3) can be used to update the solid particle
translational and angular velocities, position, and orientation.

To connect the physical representation of the simulated
particle with the Cartesian DSMC grid, the simulation grid
is divided into three regions: gas cells completely filled with
gas molecules, solid cells that are completely occupied by the
solid particle, and boundary cells (cut cells) that are partially
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FIG. 2. Sketch of the decomposition of the DSMC computational
grid in cells occupied only by the gas (white), cells completely
occupied by the solid particle (gray), and boundary cells (yellow)
partially occupied by both the gas and the solid. We use a Monte
Carlo approach to evaluate the gas and solid volume fractions of the
boundary cells.

covered by the solid particle and partially filled with gas,
as sketched in Fig. 2. In order to correctly evaluate the in-
termolecular collisions (and eventually the macroscopic flow
fields) within the boundary cells, the local fraction of the cell
volume filled with gas has to be calculated. We perform this
update by marking the cells close to the solid particle, so
that only the marked cells are candidates for being boundary
cells. The gas volume of the boundary cells is then evaluated
through a Monte Carlo approach: a set of Nt random points
is generated in the DSMC boundary cell (blue dots in Fig. 2)
and the gas fraction volume, Vg, is obtained as

Vg = Vc − Vs = Nt − Ns

Nt
Vc, (4)

where Ns represents the number of points that are generated
inside the solid volume and Vs is the volume fraction of a
DSMC cell occupied by the solid volume. The relative error
at which the solid volume fraction of the boundary cells is
computed can be expressed as [42]

εrel = Vp − ∑
all cells Vs

Vp, bound. cells
, (5)

where Vp is the real (analytic) volume of the solid particle
and Vp, bound. cells is the real volume of the solid fraction of
all boundary cells.

The scaling of the relative error in Eq. (5), with respect to
different resolutions of a spherical particle with radius R (in
cell units), is plotted in Fig. 3 for different values of the Monte
Carlo trials Nt . It is shown that, using a sufficiently large
number of Monte Carlo trials, the volume of the boundary
cells is recovered with an accuracy of at least ∼95% also for
particles with a radius that is smaller than the simulation grid
size. Since in this work we only address particles that are fixed
in space, the local volume evaluation can be performed only
once and we set Nt = 1 × 105 to ensure a very high precision
of the computation. In cases where the particle is allowed to
move, the volume computation must be performed at each
time step and a lower number of Nt would allow a faster
computation.
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FIG. 3. Relative error εrel, as defined in Eq. (5), as a function of
the radius of the particle, R (cell units), for different values of the
Monte Carlo trials Nt . The scaling of the error with respect to the
numerical resolution of the particle is second order. The error bars
are calculated as the standard deviation calculated on a sample of
100 independent measurements.

B. Drag force measurements validation

To validate the algorithm, we first perform simulations of
a rarefied argon gas flow impinging on a spherical particle
in the same conditions as [42]. The simulation setup is the
following: The radius of the particle is fixed at R = 0.25
μm and the gas temperature is set to T = 300 K. The gas
density ρ, flow velocity U0, and pressure P are varied accord-
ingly with the Knudsen number, defined as Kn = λ/R, and
the (particle-based) Reynolds number, Re = 2U0R/ν, is kept
constant and equal to 0.022 to match with the setup from [42].
The simulation box size L = 20R = 5 μm to avoid as much as
possible detrimental effects due to the vicinity of the particle
to the boundaries of the simulation box. Using 120 DSMC
cells per linear direction to discretize the domain is sufficient
to respect the rule-of-thumb criteria [34,52], ensuring high
accuracy for all the simulations. This discretization leads to
a particle radius of R = 6 (cells units). The number of parti-
cles per cell is set to Nc = 50, leading to roughly 8.6 × 107

computational particles. Free-streaming boundary conditions
are imposed along the flow direction and periodic boundary
conditions are applied along the transverse directions. With
this configuration we reach a very high accuracy for the inves-
tigated range of Kn and, to give an example, for Kn = 10 we
have that one computational DSMC particle represents four
physical argon atoms.

We validated the proposed algorithm by inspecting the drag
force, FD, experienced by the particles in such a setup for two
cases: spherical particles in collisional flows and ellipsoidal
particles in collisionless flows. In all the simulations presented
in this paper FD is averaged over N�t = 10 000 time steps
after an initial transient of 5000 time steps, which is enough
to reach the steady state in all investigated cases. The error
bars are calculated using the 95% confidence interval defined
as ε95 = 2σstd/

√
N�t , where σstd is the standard deviation on

the average value of FD.
The validation of the drag force experienced by a spherical

particle is presented in Fig. 4, where the drag force measured
with our DSMC code is compared with the DSMC results
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FIG. 4. The average drag force, 〈FD〉, on a spherical particle with
radius R = 0.25 μm is shown in the main plot as a function of the
Knudsen number. Our DSMC simulations (red squares) are com-
pared with the DSMC results from Jin et al. [42] (blue squares), and
with the analytical approximation from Phillips [26] (gray dashed
line) and from Takata et al. [53] (green pluses). In the inset, the
effects of varying the simulation box size L, leaving all other param-
eters unchanged, are reported for Kn = 10 (red squares) and Kn = 1
(blue squares). The error bars are based on ε95.

from Jin et al. [42], as well as with the analytical approxima-
tions from Takata et al. [53] (based on a direct solution of the
Boltzmann equation using a finite-difference approach), and
Phillips [26] (based on the method of moments developed by
Lees [27,28] and extensively described in [46]). The results
are normalized with respect to the prediction from Phillips,
given by

FPhil(R) = −6πμRU0 f (Kn), (6)

with f (Kn) representing the rarefaction corrections:

f (Kn) = 15 − 3c1Kn + c2(8 + πσ )
(
c2

1 + 2
)
Kn2

15 + 12c1Kn + 9
(
c2

1 + 1
)
Kn2 + 18c2

(
c2

1 + 2
)
Kn3

,

(7)

where c1 = 2−σ
σ

, c2 = 1
2−σ

, μ is the gas dynamic viscosity,
and σ is the momentum accommodation coefficient, with
range 0 � σ � 1. In our simulations σ = 1 (fully diffusive
surface) and thus c1 = c2 = 1.

As it can be seen from Fig. 4, simulation results with our
DSMC method are well aligned with the results available in
the literature obtained with similar approaches (see [42]). The
consistent small deviation between the values obtained with
DSMC solvers and those based on the approximations from
Phillips [26] and Takata et al. [53] are related to the limitations
of the different numerical approaches used in [26,53] to solve
the Boltzmann equation. Additionally, the inset shows that
setting L = 120 is sufficient to exclude detrimental effects due
to the finite size of the simulation box.

In the second part of this validation we focus on ellipsoidal
particles by comparing results from collisionless simulations
with the analytical expressions for the drag force on both
prolate and oblate ellipsoidal particles provided by Dahnekë
[32]. Dahnekë extended the theoretical approach from Ep-
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FIG. 5. Drag forces from collisionless DSMC simulations
(squares) at Kn = 10 for a prolate (top) and oblate (bottom) ellipsoid
with aspect ratio a/b = 2, for different orientations �, are compared
with predictions from Dahnekë [32] (gray dashed lines). For com-
pleteness, we also present simulation results when intermolecular
collisions are present (blue). The error bars are based on ε95.

stein, valid for small streaming velocities, to particles with
different shapes, assuming that the reflected gas molecules
do not interact with the incoming ones (collisionless limit).
We can achieve this in the DSMC simulations by artificially
switching off intermolecular collisions. In our simulations we
fix the volume of the ellipsoidal particles to the same value
as the one used for the spherical particle. The aspect ratio of
the ellipsoidal particles is fixed to a/b = 2, leading to a major
radius a = 0.39 μm for the prolate case and a = 0.315 μm
for the oblate case.

Similarly to the spherical case, the physical simulation box
size is set in relation to the major radius of the simulated
particles, so that L = 20a = 8 μm. In terms of DSMC cell
units, 120 cells per linear direction are again sufficient to en-
sure a high accuracy for all the simulated cases. The Reynolds
number is set to Re = 0.1. The agreement between DSMC
simulations and the analytical expressions from Dahnekë is
excellent, as presented in Fig. 5.

The cut-cell algorithm implemented and presented in this
study has been incorporated in the parallel DSMC solver val-
idated by Di Staso [54]. The intensive computations required
for the DSMC simulations presented in this work, in fact, can
become feasible only by taking advantage of parallel compu-
tation. This can be easily done for a DSMC algorithm, thanks
to the locality of the interactions between gas molecules, by
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enforcing a three-dimensional Cartesian processor grid on
which the DSMC simulation domain is decomposed. The
simulations presented in this work are executed on compu-
tational nodes with two AMD EPYC 7282 CPUs per node,
and the individual run wall clock time strongly depends on the
Knudsen number, ranging from 20 hours (Kn � 10) to several
days (Kn ∼ 1) on one node.

To conclude the characterization of the algorithm, an ex-
tensive convergence analysis of the mean value of the drag
force experienced by the particle, and its standard deviation,
is presented in Appendix B.

III. DRAG CORRELATIONS FOR ELLIPSOIDAL
PARTICLES AT FINITE KNUDSEN NUMBER

In this section we investigate rarefaction and orientation ef-
fects on the drag force acting on prolate and oblate ellipsoidal
particles, with the aim to provide the fundamental require-
ments for the predictive model presented in Sec. IV. Such
requirements are embodied by the necessity first to define an
expression for the Knudsen number for ellipsoidal particles
that accurately (and consistently) captures rarefaction effects
and, second to confirm the validity of the sine-squared drag
law, introduced by Happel and Brenner [50] for the continuum
regime, when rarefaction effects are present.

In relation to the definition of a single characteristic length
for ellipsoidal particles, a number of authors [11,13,14,55]
proposed to use the radius of the sphere with equivalent vol-
ume, Req, to define the Reynolds number. In this work we
follow the same approach, extending this choice also to the
Knudsen number, so that the relevant dimensionless numbers
read Re = 2U0Req/ν, and Kn = λ/Req, where ν = μ/ρ is the
kinematic viscosity of the gas.

In this section, we show that the proposed definition of
Kn is a good approximation to describe rarefaction effects for
ellipsoidal particles. First, it successfully reduces the number
of characteristic lengths to one (the radius of the equivalent
sphere). This aspect not only defines Kn in an unambiguous
way, but also makes this definition unrelated to the aspect
ratio of the particle and to its orientation. Additionally, the
relation between the drag force acting on the equivalent sphere
and the one acting on the ellipsoidal particles is preserved
independently of the specific value of Kn.

The necessity for rarefaction effects to be unrelated with a
specific aspect ratio or orientation of the particle is a well-
known result for the collisionless regime. A demonstration
can be found in the analysis proposed by Bird [34], who ex-
pressed the drag and lift coefficients of a thin plate (i.e., a flat
rectangular surface) immersed in a uniform gas flow as func-
tion of the molecular speed ratio, s = U0/( m

2kBT )1/2 [which
represents the ratio between the ambient flow velocity, U0, and
the most probable molecular speed cmp = (2kBT/m)1/2], the
angle of attack, �, and the temperature of the solid surface,
Twall. From these relations it can be shown that for small
freestream velocities (i.e., s � 1) the correlation (represented
by the sine-squared drag law) typical of the continuum limit
is recovered, also for the collisionless case. It represents a
clear indication that rarefaction effects are independent of
the relative orientation between the particle and the incoming
flow.
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FIG. 6. Drag (top) and lift (bottom) coefficients (solid lines) as
obtained by Bird [34] for a thin rectangular plate immersed in a
collisionless gas flow for different speed ratios s, as a function of
the angle of attack, �. The results are compared with the analytical
correlations (dashed lines) from the continuum regime [50] given by
Eqs. (9) and (10).

Using the linearity of velocity fields in creeping flows
(Re � 1), Happel and Brenner [50] show that, in the con-
tinuum regime, the drag force on an arbitrary-shaped particle
oriented at angle � with respect to the impinging flow can be
expressed as

FD(�) = FD,0◦ + (FD,90◦ − FD,0◦ ) sin2 �, (8)

where FD,0◦ and FD,90◦ are the drag forces at � = 0◦ and � =
90◦, respectively. It is useful to recall (see Fig. 1) that Eq. (8)
is a general expression valid for any arbitrary orientation of
the particle.

From Eq. (8), Happel and Brenner obtain the correlations
for the drag and lift coefficients, which read

CD(�) = CD,0◦ + (CD,90◦ − CD,0◦ ) sin2 �, (9)

CL(�) = (CD,90◦ − CD,0◦ ) sin � cos �. (10)

A confirmation of the validity of Eqs. (9) and (10) in the free-
molecular regime is illustrated in Fig. 6, where we present the
scaling of CD and CL for a thin rectangular plate, as proposed
by Bird, as a function of the angle of attack, �, for different
values of the speed ratio s. The results are then compared with
respect to the correlations from the continuum regime given
by Eqs. (9) and (10). It is shown that for small speed ratios the
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L

2a Φ = 45◦

U

FIG. 7. Snapshot of the velocity field around a prolate ellipsoidal
particle with aspect ratio a/b = 2 from a DSMC simulation. The plot
represents a cut on the xy plane, crossing the particle center. The
particle is immersed in an argon gas flow with freestream velocity
U (yellow arrows) and is oriented at � = 45◦ with respect to the
impinging gas flow. The simulation domain size is set such that L �
20a. In the case shown Kn = 10 and U = 99.7x̂ m/s.

correlations from the continuum regime indeed hold also in
the collisionless limit, highlighting that rarefaction effects do
not depend on the orientation of the solid body with respect to
the gas flow. Since the sine-squared drag law is valid in both
the continuum and the collisionless regimes, we expect it to be
valid in the whole range of Knudsen numbers independently
of the particle shape.

We verify this assumption by performing collisional
DSMC simulations at varying Kn = λ/Req and orientation �.
Like in Sec. II B, the volume of the equivalent sphere is fixed
to V = 6.5 × 10−20 m3, corresponding to Req = 2.5 μm. The
DSMC grid is set according to the requirements from [34,52],
so that we use a value of L = 140 for Kn = 1 and a value of
L = 120 for all other values of Kn (2, . . . , 10). A snapshot
from the DSMC simulation for Kn = 10 and � = 45◦ is pre-
sented in Fig. 7.

In Fig. 8, we compare the drag force on the ellipsoidal
particles with the one acting on the equivalent sphere at
the same Kn, as obtained by the prediction of Phillips from
Eq. (6). The � dependence in Eq. (8) is well captured and
rarefaction effects seem thus in good approximation inde-
pendent of the orientation of the particle also for finite Kn,
as the sine-squared drag law, obtained from the continuum
regime, is preserved. Moreover, the relation between the drag
force on the equivalent sphere and the one acting on the
ellipsoidal particles is maintained for the investigated range
of Kn, considering the presence of larger fluctuations at lower
Kn cases due to lower kinetic resolution (i.e., the number of
real particles described by a single computational particle).
In all the investigated cases, in fact, FPhil(Req) crosses the
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FIG. 8. Drag force from DSMC simulations for a prolate (top)
and oblate (bottom) ellipsoid as a function of the Knudsen number
Kn for different orientations �, normalized with respect to the Stokes
drag of a spherical particle. The results from the DSMC simulations
(squares) are compared with those for the sphere with equivalent
volume (dashed lines) given by Eq. (6) and with the theoretical
correlation (solid lines) obtained by inserting the values of FD,0◦ and
FD,90◦ from our DSMC simulations into Eq. (8). The error bars are
based on ε95.

curves obtained from the simulations for the drag force on the
ellipsoidal particle, and the intersection happens at � ∼ 41◦
and � ∼ 22◦ for the prolate and oblate cases, respectively.

The validity of the sine-squared drag law also in the pres-
ence of rarefaction is, per se, an important confirmation that
can be used to build a predictive model for the drag force on
ellipsoidal particles. While in this work we focus on simple
uniform flows, it is interesting to investigate whether such a
relation holds also in more complex situations, such as for
particles with more complex shape, in the vicinity of solid
walls or in cases where the Knudsen number varies across the
fluid domain. We plan to address this class of problems in
future studies.

IV. PREDICTIVE MODEL FOR THE DRAG
AND LIFT COEFFICIENTS

In this section we propose the derivation of a heuristic
model for the prediction of the drag and lift coefficients of pro-
late and oblate ellipsoidal particles. Such a model is based on
the validity of the sine-squared drag law also in the presence
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FIG. 9. Comparison between Eqs. (9) and (10) (dashed lines) and results from DSMC simulations (squares) for the drag (CD) and lift (CL)
coefficients of (a, b) a prolate and (c, d) an oblate ellipsoid for different orientations � and Kn. Both ellipsoids have aspect ratio a/b = 2. In
order to use Eqs. (9) and (10) in this context, we computed CD,0◦ and CD,90◦ directly from our DSMC simulations. The CD data are plotted in
semilog scale for a better readability.

of rarefaction and is aimed to extend the available correlations
from the continuum to the rarefied regime. For our collisional
DSMC simulations we maintain all the parameters the same
as in Sec. III.

Following the work of Sanjeevi et al. [13], we define the
drag and lift coefficients for an ellipsoidal particle as

CD = |FD|
1
2ρU 2

0 πR2
eq

, (11)

CL = |FL|
1
2ρU 2

0 πR2
eq

, (12)

where FL is the lift force acting on the particle, ρ is the density
of the gas, U0 is the gas freestream velocity. Since we are
investigating uniform flows in the Stokes regime, the pitching
torque is known to vanish in such conditions [56] due to the
absence of an external rotational field, and thus the analysis
of the pitching torque is not relevant in the scope of this
work.

We can directly apply Eqs. (9) and (10) to obtain the
analytical relations for the drag and lift coefficients, with
respect to the angle of attack, �, of the simulated ellipsoidal
particles. Here CD,0◦ and CD,90◦ can be obtained by measuring

the drag force experienced by the particles in our DSMC
simulations and the results are shown in Fig. 9. As expected
from the analysis presented in the previous section, simula-
tion results are in excellent agreement with the theoretical
predictions.

In the remainder of this section we will provide a heuristic
model for CD,0◦ and CD,90◦ that takes into account rarefaction
effects, in the attempt to include in Eqs. (9) and (10) a depen-
dence on the Knudsen number. Our starting assumption is that,
similarly to the spherical case, an equation for CD that includes
rarefaction effects for ellipsoidal particles can be written as
a product between CD in the continuum limit and a function
g(Kn) which represents a small perturbation with respect to
the spherical case:

CD,0◦ (Kn) = Ccont
D,0◦︸︷︷︸

continuum

× g0◦ (Kn)︸ ︷︷ ︸
rarefaction effects

, (13)

CD,90◦ (Kn) = Ccont
D,90◦︸ ︷︷ ︸

continuum

× g90◦ (Kn)︸ ︷︷ ︸
rarefaction effects

, (14)

where Ccont
D,0◦ and Ccont

D,90◦ are the drag coefficients in the contin-
uum regime, while g0◦ (Kn) and g90◦ (Kn) are model functions
to be evaluated. In order to use Eqs. (13) and (14), we first
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TABLE I. Values of CD,0◦ and CD,90◦ (three-digit accuracy) for
prolate and oblate ellipsoids with aspect ratio a/b = 2. Results are
obtained from the theoretical prediction given by Eqs. (16) and (17)
using the correction factors from Eqs. (18)–(21) and the expression
for Csph

D from Eq. (15).

Prolate Oblate

CD,0◦ 236 247
CD,90◦ 270 282

need to compute the values of Ccont
D,0◦ and Ccont

D,90◦ for the ellip-
soidal particles investigated in this work. This can be done
using the Schiller-Neumann [57] drag expression for the drag
coefficient of a spherical particle,

Csph
D = 24

Re
(1 + 0.15Re0.687), (15)

which has proven to be quite accurate up to a moderate
Reynolds number. We can then obtain Ccont

D,0◦ and Ccont
D,90◦ for

the simulated ellipsoidal particles using the heuristic relations
from Happel and Brenner [50]:

Ccont
D,0◦ = Csph

D K0◦ , (16)

Ccont
D,90◦ = Csph

D K90◦ . (17)

The correction factors K0◦ and K90◦ depend on the shape of
the particle and, for regular prolate and oblate ellipsoidal
particles in creeping flow conditions, the exact analytical ex-
pressions for the correction factors were derived by Oberbeck
[4] as a function of their major and minor axes a and b,
respectively:

K pr
0◦ = (4/3)(a/b)−1/3(1 − (a/b)2)

a/b − (2(a/b)2−1) ln
(

(a/b)+
√

(a/b)2−1
)

√
(a/b)2−1

, (18)

K pr
90◦ = (8/3)(a/b)−1/3((a/b)2 − 1)

a/b + (2(a/b)2−3) ln
(

(a/b)+
√

(a/b)2−1
)

√
(a/b)2−1

, (19)

Kob
0◦ = (8/3)(b/a)−1/3((b/a)2 − 1)

b/a − (3−2(b/a)2 ) cos−1(b/a)√
1−(b/a)2

, (20)

Kob
90◦ = (4/3)(b/a)−1/3(1 − (b/a)2)

b/a + (1−2(b/a)2 ) cos−1(b/a)√
1−(b/a)2

. (21)

Ouchene et al. [11] showed that for creeping flows, the set
of Eqs. (18)–(21) predicts the drag coefficients of prolate
ellipsoids with different aspect ratios with very high accuracy.
We then compute Ccont

D,0◦ and Ccont
D,90◦ by substituting Eq. (15) into

Eqs. (16) and (17), using the corrections given by Eqs. (18)–
(21). The results are shown in Table I, and can be used in
Eqs. (16) and (17) to obtain CD for the ellipsoidal particles
used in this work.

To address rarefaction effects, we propose the following
choice for the general expression of the functions g0◦ (Kn) and
g90◦ (Kn), where we assume that such effects on ellipsoidal

particles can be described as small variations with respect to
the function f (Kn) for the spherical case:

g0◦ (Kn) = f (Kn) + a0◦

b0◦ + c0◦Kn
, (22)

g90◦ (Kn) = f (Kn) + a90◦

b90◦ + c90◦Kn
, (23)

where a, b, and c are free parameters to be determined sepa-
rately for CD,0◦ and CD,90◦ .

We show that with the proposed choice of the g(Kn) func-
tions, it is sufficient to fit the model on a small set of Kn
to obtain a robust predictive model for rarefaction effects on
ellipsoidal particles. The simulation data are split into two
groups:

Knfit = 2, 5, 8, 10,

Kntest = 1, 3, 4, 6, 7, 9, 20.

We then perform a fit of CD,0◦ and CD,90◦ from simulation
data as a function of Kn, using only the Knfit set and the fit
functions given by Eqs. (13) and (14). The results of the fit are
shown in Fig. 10 and the obtained fit parameters are given in
Table II. Now Eqs. (22) and (23) are fully defined and we can
proceed with the test of the model.

Once the functions g(Kn) are determined for the needed
orientations, we can verify if the model succeeds in the
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FIG. 10. Fit of DSMC simulation data of CD,0◦ (red) and CD,90◦

(blue) using the functions in Eqs. (22) and (23), for a prolate ellipsoid
(top) and an oblate ellipsoid (bottom). Fitted curves (dashed lines)
represent the model functions given by Eqs. (13) and (14). The
resulting fit parameters are presented in Table II.
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TABLE II. Fit parameters obtained using Eqs. (13) and (14)
to fit CD,0◦ and CD,90◦ as obtained from DSMC simulations. These
parameters are used to define the functions g0◦ (Kn) and g90◦ (Kn),
for which a general expression is given in Eqs. (22) and (23).

Prolate Oblate

� = 0◦ � = 90◦ � = 0◦ � = 90◦

a −0.171 0.115 −0.219 0.223
b 1.023 2.492 3.762 1.523
c 1.482 1.603 2.916 1.126

prediction of CD at different values of Kn and �. In order to
do so we plug Eqs. (13) and (14) into Eq. (9) to obtain the
final model equation for CD(�, Kn):

CD(�, Kn) = Ccont
D,0◦g0◦ (Kn) + (

Ccont
D,90◦g90◦ (Kn

)
−Ccont

D,0◦g0◦ (Kn)) sin2 �. (24)

The comparison between Eq. (24) and the results from DSMC
simulation is performed on both the data sets Knfit and Kntest,
where the latter set has not been used during the fit process.
The results are shown in Fig. 11, where we can observe an
excellent agreement between the proposed model and the
simulations. Particularly relevant is the agreement between
the model and the data for Kntest, showing that the model
correctly predicts rarefaction effects on values of Kn that were

not included in the fitting process and it can be extended to the
regimes with Kn � 2 and Kn � 10.

In an analogous way, we investigate the capability of the
predictive model given by Eqs. (13) and (14) to address the lift
coefficient CL of the different ellipsoids. Following the same
approach we used for the evaluation of CD, we plug Eqs. (13)
and (14) into Eq. (10) to obtain the model equation for CL:

CL(�, Kn) = (
Ccont

D,90◦g90◦ (Kn) − Ccont
D,0◦g0◦ (Kn)

)
sin � cos �.

(25)

We can now compare the prediction from Eq. (25) with the
CL obtained from the DSMC simulations, again using the
same approach to separate the data into Knfit and Kntest. The
results of the comparison are shown in Fig. 12. The model
prediction is in reasonable agreement with the simulation
data, considering that CL � CD, leading to a lower signal-to-
noise ratio from the DSMC simulations for CL with respect
to CD.

In the last part of this paper, we compare the performances
of the predictive model proposed in this work with existing
phenomenological models available in the literature used to
predict the drag on nonspherical particles at different Knudsen
numbers, namely, the previously mentioned ESA and ASA,
as defined by Dahnekë [33]. The former consists in the direct
application of the Cunningham corrections [20] on the sphere
with equivalent volume of the investigated particle, so that any
information on the orientation is lost and this model offers a
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FIG. 11. Comparison between DSMC simulations (colored squares) and model predictions (colored dashed lines) of the drag coefficient
CD of (a, b) a prolate and (c, d) an oblate ellipsoid. The model predictions, given by Eq. (24), are then compared with (a, c) the fit set and (b,
d) the test set. In both cases the match is excellent.
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FIG. 12. Comparison between the lift coefficient CL from DSMC simulations (colored squares) and the predictive model (dashed lines) for
(a, b) a prolate and (c, d) an oblate ellipsoid. The model predictions, given by Eq. (25) are then compared with (a, c) the fit set and (b, d) the
test set.

good accuracy only for slightly nonspherical bodies. The latter
is a more sophisticated model where spheres with different
effective radii are used to match the rarefaction corrections
experienced by the particle under investigation at specific
orientations. Such corrections must have been previously de-
termined by evaluating the ratio between the continuum and
free molecular drag force acting on the particle.

The results of the comparison, limited to some of the values
in the Kntest set, are presented in Fig. 13, where we use the
results provided by [33] to compute the ASA prediction for
the spheroidal particles investigated in this work. The per-
formances of the proposed model in reproducing CD show a
general improvement with respect to the ASA model, and this
is particularly evident for the oblate case. This is due to the
larger departure from the spherical case of oblate ellipsoids,
as the ASA model appears to be less accurate the higher this
departure is.

The presented approach is proven to be successful in pre-
dicting rarefaction effects on the forces exerted on ellipsoidal
particles, and shows that it is possible to describe such effects
with a perturbative approach from the spherical case. Our re-
sults are, however, currently limited to the investigated aspect
ratio (a/b = 2) and for fully diffusive surfaces (σ = 1). In
our future works we plan to extend the predictive model to
a larger range of aspect ratios, including also effects from a
momentum accommodation coefficient σ lower than unity to
take into account the presence of specular reflections to model
more realistic gas-surface interactions.

V. CONCLUSIONS

In conclusion, we developed a two-way coupled algorithm
to address interactions, under rarefied conditions, between gas
flows and spheroidal particles based on momentum exchange
for our in-house DSMC numerical code. The surface of the
solid particle is defined by its analytical expression and the
interactions between the gas and the rigid body are computed
from a microscopic approach. The collision points at which
the computational molecules impinge on the solid surface are
obtained through a ray-tracing technique, allowing an exact
computation of the collision points of the gas molecules im-
pinging on the solid surface.

The algorithm features the cut-cell method to address the
DSMC grid cells that are partially covered by the solid vol-
ume. We use a Monte Carlo approach to evaluate the volume
of the boundary cells, showing that for an appropriate number
of trials, it is possible to recover the volume of the interested
cells with great accuracy.

The algorithm is validated by computing the drag force
on spherical and ellipsoidal particles immersed in a uniform
argon gas flow in different conditions. We show that the mea-
surements from our simulations are in good agreement with
different results available in the literature, especially when
compared with analogous DSMC methods. The accuracy scal-
ing of the mean value and of the standard deviation of the
drag force is investigated with respect to the spatial and kinetic
resolutions of the system in Appendix B.
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FIG. 13. Comparison of the CD predictions as obtained with the present model (green dashed line), and with the ASA (blue dotted line) and
ESA (gray dotted line) models as defined in [33] for different values of Kn from the Kntest for (a–c) a prolate and (d–f) an oblate ellipsoid with
internal aspect ratio a/b = 2. The predictions from the models are also compared with direct results from DSMC simulations (red squares).

We then address the impact of shape, orientation, and rar-
efaction on the drag force for a prolate and an oblate ellipsoid.
We first propose a suitable definition of the Knudsen number,
Kn, for ellipsoidal particles based on the radius of the sphere
of equivalent volume and then we show that the sine-squared
drag law typical of the continuum regime is valid also in the
presence of rarefaction. Orientation and rarefaction effects
are, in fact, not related, and it is possible to address them
separately.

Finally, we develop a heuristic model to predict the drag
and lift coefficients for ellipsoidal particles in a range of Kn
that includes the transition and the free-molecular regimes.
The predictive model is based on the assumption that rarefac-
tion effects on ellipsoidal particles can be represented as small
perturbations with respect to the spherical case. These pertur-
bations are obtained through a fit of our simulation data. The
model obtained with this procedure shows robust performance
in predicting drag and lift coefficients in the investigated range
of Kn, and we show that the model can be successfully applied
outside of the range of Kn used for its derivation. Moreover,
the model proposed in this work offers better predictions when
compared to phenomenological models such as the ESA and
the ASA, especially for the oblate ellipsoid case, where the
shape of the particle largely deviates from the spherical case.

We emphasize that the results from this work can be used to
improve the available models used in Euler-Lagrangian simu-
lations of particles in rarefied conditions, as the drag and lift
correlations can now be extended to the rarefied regimes. This
allows in principle to include shape and orientation effects in
point-particles simulations, greatly increasing the capability
to simulate suspensions of nonspherical particles in rarefied
gas flows, which are expected to follow different trajectories
with respect to the spherical case. Such a feature is of valuable

interest in modern high-tech applications, as it can help to
improve the state-of-the-art techniques typically employed
to address problems such as contamination from particles in
low-pressure environments.

While we show results for particles with aspect ratio a/b =
2 and with fully diffusive surface, in our future works we
plan to extend the proposed technique to ellipsoids with dif-
ferent complex aspect ratios, such as needles and disks, and to
include a study of the impact of different momentum accom-
modation coefficients, by taking into account the presence of
specular reflections at the gas-solid interface.
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APPENDIX A: DETAILS OF THE GAS-SURFACE
INTERACTION ALGORITHM

In this Appendix the details of the algorithm used in this
work for the detection of the collision points between the
DSMC molecules and surface of a solid generic ellipsoidal
object are further described.

Two Cartesian coordinate systems are employed: the in-
ertial frame, (x, y, z), attached to the computational domain,
and the body-centered frame, (x′, y′, z′), which is instead at-
tached to the center of mass of the particle and is aligned
along the principal direction of inertia of the particle. To
transform the inertial frame into the body-centered frame, first
we perform a negative translation of X = (X,Y, Z ), repre-
senting the coordinates of the center of mass of the particle.
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A sketch of the collision detection algorithm is shown in
Fig. 14.

The translation is followed by a rotation defined by the
matrix M:

M =
⎛
⎝q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q2

0 − q2
1 − q2

2 + q2
3

⎞
⎠, (A1)

where we use the four quaternion variables,

q0 = cos(θ/2) cos((� + �)/2), (A2)

q1 = sin(θ/2) cos((� − �)/2), (A3)

q2 = sin(θ/2) sin((� − �)/2), (A4)

q3 = cos(θ/2) sin((� + �)/2), (A5)

defined from the Euler angles (θ,�,�) sketched in Fig. 15. A
final transformation is then enforced to ensure that in the final
reference system (x′, y′, z′) any generic ellipsoidal particle is
described as a spherical particle with unitary radius. Such
stretch along the main axes is represented by the matrix S:

S =
⎛
⎝1/a 0 0

0 1/b 0
0 0 1/c

⎞
⎠, (A6)

where a, b, and c are the radii of the ellipsoidal particle.
The final transformation equation for a generic point x in the
inertial reference frame into its equivalent x′ in the stretched
body-centered frame thus reads

x′ = SM(x − X). (A7)

In the framework of the DSMC method, we apply Eq. (A7) to
transform the pre- and poststreaming positions x0 and xf of the

y

x

z

n̂

t̂1

t̂2
×

pi

pi Fi = pi−pi

Δt

Ti =(xi − X)×
pi−pi

Δt

FIG. 14. Sketch of the gas-solid interaction scheme. An imping-
ing gas molecule i (red sphere) with initial momentum pi hits the
surface of the solid particle (gray sphere) and undergoes a diffusive
reflection with postcollisional momentum p′

i, where the collision
point (red cross) is evaluated exactly in the body-centered reference
system (x′, y′, z′). Then, the reflections are computed in the reference
system formed by the normal and tangent unit vectors, (n̂, t̂1, t̂2),
with respect to the surface of the particle. Finally, the postcollisional
position and velocity are transformed back in the inertial reference
system.

impinging DSMC molecules in the body-centered stretched
reference system:

x′
0 = SM(x0 − X), (A8)

x′
f = SM(x f − X). (A9)

Then, the ray-sphere intersection algorithm simply consists
in the evaluation of the intersections between the unit radius
sphere centered in the origin (which represent the transformed
particle) and the parametric line, L(t ), passing from x′

0 and x′
f

with unitary direction v′, given by

L(t ) = x′
0 + tv′. (A10)

The intersection points are found by substituting the generic
point on the sphere with a generic point on the line L(t ) and
resolving for the free parameter t . The final quadratic equation
reads

(v′ · v′)t2 + 2(v · x′
0)t + (x′

0 · x′
0) = 1, (A11)

whose solutions, t1 and t2, allow to calculate the intersection
points by inserting them into Eq. (A10). To ensure the se-
lection of the correct collision points, only the values of t1
and t2 that satisfy the condition ||L(t ) − x0

′|| � ||xf
′ − x0

′||
are considered. If both points respect this condition, then the
point closer to x0

′ is chosen. The reflection scheme is then
applied in the reference system formed by the normal and
tangent unit vectors, with respect to the surface of the particle,
with origin in the collision point and given by (n̂, t̂1, t̂2). In this
way the collision routine is equivalent as the one employed for
a planar wall reported for example in [52]. The final position
and velocities after reflection are then transformed back in the
inertial reference frame.

It is possible to extend the algorithm to particles with
different shapes by employing a different ray-surface inter-
section algorithm and its relative coordinates transformation.
Some examples of such intersection algorithms for the most
common shapes, such as boxes, cones, and triangles, can be
found in [51]. Ultimately, a particle with a complex shape
can be described by an opportune combination of these known
shapes, and intersections can be found using the appropriate
ray-surface intersection scheme for each one of the con-
stituent basic shapes, separately. In the more general case, a
triangulation of the surface can be applied and then a ray-
triangle intersection scheme can be used.

APPENDIX B: ACCURACY SCALING OF THE
CUT-CELL ALGORITHM

In this Appendix, we aim to investigate the accuracy scal-
ing of the cut-cell algorithm proposed in this work with
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x y

z

u

v
Ψ

Ψ

w

z′

θ

θ

x′

y′
Φ

Φ

FIG. 15. Euler angles representation. Any rotation of the coordi-
nate system (x, y, z) (black) can be described by a precession rotation
around the axis z by an angle �, which leads to the auxiliary system
(u, v, z) (blue), followed by a nutation rotation of an angle θ around
the axis v to obtain the second auxiliary system (w, u, z′) (red), and
finally by a rotation of � around z′ to obtain the reference system
(x′, y′, z′) (green).

respect to spatial and kinetic resolution, separately. The for-
mer is related to the impact of different sizes of the particles
(in cell units) and is embodied by the parameters Lc/λ and
the particle radius R. The latter represents the number of real
particles described by a computational particle and is tuned
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∣ ∣ ∣
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〉

〈 F
D
〉 R

=
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〉
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R0

Collisional

Collisionless

Lc/λ

FIG. 16. Relative error (top) and standard deviation (bottom) of
the mean value of the drag force, 〈FD〉, for a spherical particle at
Kn = 10, as a function of the spatial resolution of the solid particle
R. Results from collisional (blue) and collisionless (green) DSMC
simulations are included. The relative error is computed with respect
to the value of 〈FD〉 measured at R = 8.

via the number of particles per cell, Nc. This kind of analysis
is, to our knowledge, not available in the literature, and it is
important to understand the impact of different parameters,
such as the resolution of the solid particle and the number of
particles per cell, on the accuracy of the DSMC simulations.

In the first analysis, we compare the relative error on the
mean value and the standard deviation of the drag force on a
spherical particle at Kn = 10 for different values of the par-
ticle radius, R (in cells units). This is done by fixing the total
number of DSMC molecules and by fixing the simulation time
step, to ensure that the number of collisions per time step is
unchanged between different resolutions. We do so to isolate
the effects induced by varying the simulation grid size on the
overall simulation accuracy. The ratio between the simulation
box size and the particle radius is fixed to L/R = 20, so that
varying the resolution of the particles is equivalent to varying
the value of the DSMC spatial resolution given by Lc/λ. By
imposing the same time step between different simulations
we finally ensure that the number of collisions per time step
between the DSMC molecules and the solid particle is the
same for all the simulations, leading to a constant standard
deviation.

The results are shown in Fig. 16, where we observe that
when intermolecular collisions are present, the relative error
on the mean value of the drag force exhibits a second-
order scaling with respect to the spatial resolution for small

10 20 40 80 160
Nc
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Rel. Error
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〉

N
−1/2
c

Std

FIG. 17. Relative error (top) and standard deviation (bottom)
of the mean value of the drag force, 〈FD〉, for a spherical particle
at Kn = 10, as a function of the kinetic resolution, given by the
number of particles per cell, Nc. In this analysis the ratio between
the simulation box size and the radius of the particle is L/R = 20
and the radius of the particle is set to R = 4. The relative error is
computed with respect to the value of 〈FD〉 measured at Nc = 160.
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values of R, while it deviates from the scaling law for larger
values of R. This deviation is related to the approaching
of the DSMC resolution limits in resolving stochastic inter-
molecular collisions as, in this setup, the number of particles
per cell, Nc, decreases for increasing R as a consequence
of keeping the total number of particles unchanged. Once
intermolecular collisions are switched off, in fact, the error
is drastically reduced and it shows a consistent third-order
convergence with respect to spatial resolution. Interestingly,
the algorithm offers a remarkable good accuracy also for
cases where the radius of the particle is of the order of one

DSMC cell, allowing to correctly resolve the drag for particles
with a small curvature with respect to the DSMC spatial grid
resolution.

We checked also the accuracy scaling with respect to the
kinetic resolution. This is done by fixing the particle radius
to R = 4 (and thus Lc/λ = 0.032) and by varying the number
of particles per cell, Nc. Results are shown in Fig. 17, where
it can be observed that the scaling of both the mean value of
the drag force and of its standard deviation are in agreement
with the typical results of a DSMC simulation, with the former
scaling linearly with Nc and the latter scaling as N−1/2

c .
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