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We demonstrate that the multiphase Shan-Chen lattice Boltzmann method (LBM) yields a curvature dependent
surface tension o as computed from three-dimensional hydrostatic droplets and bubbles simulations. Such
curvature dependence is routinely characterized, at first order, by the so-called Tolman length §. LBM allows
one to precisely compute o at the surface of tension R; and determine the Tolman length from the coefficient
of the first order correction. The corresponding values of § display universality for different equations of
state, following a power-law scaling near the critical temperature. The Tolman length has been studied so far
mainly via computationally demanding Molecular Dynamics simulations or by means of Density Functional
Theory approaches playing a pivotal role in extending Classical Nucleation Theory. The present results open
a hydrodynamic-compliant mesoscale arena, in which the fundamental role of the Tolman length, alongside
real-world applications to cavitation phenomena, can be effectively tackled. All the results can be independently

reproduced through the “idea.deploy” framework.
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I. INTRODUCTION

Defining the position of the interface in a multiphase mix-
ture is not a straightforward task. Given a bubble or a droplet,
the average density profile changes smoothly and not as a
stepwise function, so that the exact position of a surface
separating the two phases is an elusive concept. On the other
hand, for closed interfaces, the curvature appears explicitly in
the free energy as conjugated to a curvature coefficient, i.e.,
the curvature plays the role of a control parameter [1,2]. In
this context, the introduction of an arbitrary dividing surface,
ideally separating the gas and the liquid phases, is found to be
necessary [1-3]. The arbitrariness of the location R of such an
interface does not impact on the value of the free energy, i.e.,
the free energy is stationary with respect to variations of R.
This, in turn, reflects on the definition of a generalized surface
tension o [R], which assumes the shape of a convex function
reaching a minimum at R; (see Fig. 1), identifying the surface
of tension. At the latter position the Laplace law applies in the
usual form [1-4]. It is possible to show [3] that the stationarity
of the free energy at the surface of tension R; yields

By considering any other value of R # R; in (1), such as the
equimolar radius R, commonly used in LBM simulations, one
obtains the so-called generalized Laplace law which explicitly
depends on the derivative of o[R]. The locus of the minima
of o[R] identifies a physical, i.e., nonarbitrary, dependence of
the surface tension o (R) on the droplet (or bubble) size at Rq,
o, = 0[Ry] = o (R;). Such a dependence was first examined
in the seminal paper by Tolman [5] (see [6,7] for reviews), and
can be expressed as a power-law expansion in the curvature,
i.e., the inverse radius, which at second order reads [4,8—10]
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The flat interface value oy appears at the leading order, the first
order coefficient § defines the Tolman length [cf. Fig. 1(a)],
and k and k are called curvature and Gaussian-rigidity coeffi-
cients, respectively. The present work mainly focuses on the
analysis of § since, as shown in the results, the higher order
coefficients k and k are small enough to make higher order
terms negligible in the present setting.

In Tolman’s seminal work [5] § was defined on thermo-

20(R;] & dolR] 20 (R,) ; . . o
AP = = + IR =2 () dynamic grounds, starting from Gibbs theory of capillarity
s R=R; $ [1]. Such an approach, further developed in [11-13], served as
the foundation for studying the behavior of § near the critical
temperature [4,14,15]. Several works based on the density
functional theory (DFT) [9,10,16,17] have led to expres-
*Corresponding author: lulli@sustech.edu.cn sions for the coefficients §, k, and k, for realistic multiphase
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FIG. 1. Panel (a): sketch of the generalized surface tension o [R]
normalized to the flat-interface value oy, as a function of the droplet
curvature R;! and of the normalized arbitrary dividing surface R/R;.
The Tolman length § is given by the slope of the locus of the minima
of o [R] in the flat interface limit R;' — 0. Panel (b), top: data for the
generalized surface tension o [R] with the minima determining the
surface of tension R,. Middle part: density field n of a droplet with
an enhancement of the underlying lattice structure with the discrete
velocities reported in red and blue for |&,|?> = 1, 2, respectively. The
points shading and size correspond to the magnitude of i at the
interface with F the local force as in Eq. (8). In the bottom projection
of the density field » we indicate the positions for the inner P,
and outer P, bulk pressures together with the liquid »; and gas n,
densities for a droplet.

[21] and for particles interacting via Lennard-Jones (LJ) po-
tentials [22-24]. The Tolman length was recently investigated
in experimental settings, linked to hydrophobic interactions
relevant for protein folding [25]; 6 was measured in nucleation
experiments [26] and its role was analyzed both in confined
geometries [27] and in colloidal liquids [28]. Corrections to
the zero-curvature value oy have important physical conse-
quences, most notably regarding Classical Nucleation Theory
(CNT). The latter states that, using the so-called capillary
approximation, the nucleation rate depends exponentially on
0o [29]. Hence such rates are extremely sensitive to curvature
corrections. The latter have been successfully used to extend
CNT [30,31] and for the analysis of experimental data [26,28],
eventually allowing one to solve previous CNT controversial
results [32].

In this work, we study the Tolman length using a three-
dimensional multiphase [33,34] lattice Boltzmann method
(LBM) [35,36] in the hydrostatic limit. We estimate § by
directly computing o [R] [see Fig. 1(b)] from a lattice formula-
tion of the pressure tensor [37] following a procedure reported
in [3], which we detail below. Considering the past literature
it appears that, so far, the different approaches for modeling
and studying the Tolman length have been mainly concerned
either with the microscopic scales, i.e., MD simulations, or
with continuum DFT descriptions. Indeed, a mesoscale per-
spective has been considered in the MC simulations of the
Ising model [21,38—40], which, however, do not naturally
extend to nonequilibrium settings. Here we present a first step
for a mesoscale modeling of the Tolman length which embeds
momentum conservation, i.e., hydrodynamics, thus allowing
one to consider nonequilibrium effects, which are paramount
in nonhomogeneous cavitation and nucleation, and to fill the
mesoscopic gap separating MD simulations and DFT theories.

The paper is organized as follows: in Sec. II we describe the
fundamentals of the LBM formulation adopted in this work,
highlighting the existence of a lattice pressure tensor for the
Shan-Chen model solving the mechanic equilibrium condition
for a flat interface to machine precision, i.e., constant value of
the normal component of the pressure tensor; in Sec. III we
detail the method used to evaluate the position of the surface
of tension R; differing from the equimolar surface R, [1,3]
typically used in the context LBM simulations; in Sec. IV we
report the results for the estimation of the Tolman length §
and its temperature dependence and in Sec. V we draw some
conclusions.

II. LATTICE BOLTZMANN METHOD

The lattice Boltzmann method (LBM) allows one to simu-
late the Navier-Stokes dynamics of a multiphase mixture by
means of a forced Boltzmann transport equation acting on
a discretized phase space [35,36]: the single-particle distri-
bution function f(x, &, ¢) takes values on the nodes {x} of a
three-dimensional lattice at discrete times ¢. The key advan-
tage of LBM lies in a remarkably fast convergence to the
hydrodynamic limit by employing only a few velocity vec-
tors {£;} connecting each lattice point to a set of neighboring
nodes, withi = 0, ..., 18. Hence one defines the populations
as the single-particle distribution function evaluated for a
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given &, i.e., fi(x,t) = f(x, &;, t). The first two moments of
the discretized distribution define the density n = ), f; and
the momentum density nu = ), &, f;, respectively. The lattice
transport equation reads

fix+ &, 1+ 1) — filx, 1) = Qi(x, 1) + Fi(x,1), (3)

where F; is the forcing term [41] and €2; is the local colli-
sion operator conserving mass and momentum, i.e., Zi Q=
> ;& = 0, and the locality of €2; renders the approach par-
ticularly amenable to parallel implementations [35,36], such
as the architecture-independent GPU-CPU implementation
used for the results reported in this paper which can be found
on the “idea.deploy” GitHub repository [42-50]. The left-
hand side of (3) represents the populations streaming, while
on the right-hand side it is composed by the Bhatnagar-Gross-
Krook (BGK) [51] collision operator

1
Qu(x, 1) = ——[fix,0) - £, 1)] 4)

and by the Guo [41] forcing term

1
Fi(x,1) = (1 - Z)wi

1 1
x [C—zé,-“ + (68 - c?S““’)ufch)}Fa, 5)
where repeated Greek indices imply summation. We use this
term to implement in the LBM the force F; responsible for
the phase separation. The equilibrium populations fi(eq) are
obtained as a second-order approximation of the Maxwell

distribution

(eq) (eq)\2 (eq) (eq)
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fi(eq) — u),n|:1 +
and the equilibrium fluid velocity is computed according to

Guo prescription [41]

1
n(x,t)

1 o
. ()

Since its inception, LBM has witnessed the development of
different approaches for multiphase flows [35,36] lying at the
foundation of the most modern and successful application of
LBM. In this paper we delve deeper in one specific approach,
namely the Shan-Chen (SC) model [33,34], and show that it
correctly captures a curvature dependent surface tension. The
main feature of the SC model, allowing for the existence of
stable gradients of the density n(x, t), is a force computed on
the lattice nodes

u‘z‘eq)(x, 1) =

18
D Efix D+
i=0

18
Frx) = =G y(x) Y W(IE D v(x+E)E  (8)

a=1

where ¥ (x,1) = ¥ (n(x, t)) is the so-called pseudopotential,
a local function of the density n, implicitly depending on
space and time, ¢, = 1/+/3 is the speed of sound, G is the
(self-) coupling constant which is related to the temperature,
& are the discrete forcing directions such that their squared
lengths are |&,]> = 1,2, and W(1) = 1/6 and W(2) = 1/12
are the weights ensuring fourth order lattice force isotropy

[52,53]. The set of the forcing vectors &, coincide with that
of the lattice velocities &; after excluding the “rest” direction
& = (0,0, 0). The SC force is related to a lattice pressure
tensor [37,54,55] that reads

2 18
P () = 28 + Sy (x) Do WP+ 8

©))
We remark that the tensor in Eq. (9) is such that the
flat-interface mechanical equilibrium condition, i.e., constant
normal component Py(x) = po throughout the interface, is
obeyed on the lattice with a value of pg that is constant to
machine precision. By performing the Taylor expansion of
Eq. (9) one obtains, at the leading order, the bulk pressure

2
P(n) = nc + %wz(m, (10)

where e; = 1 for the values of the weights used in this work.
Equation (10) allows for phase coexistence when the cou-
pling is below the critical value G < G, which is determined
by the vanishing of the first and second derivatives in n,
i.e., dP/dn =0 and d*P/dn® = 0. The SC model has been
steadily developed during the past 30 years allowing one to
perform the most diverse simulations: from heterogeneous
cavitation [56] to emulsions rheology [57], all while handling
complex boundary and load conditions, allowing for a direct
comparison with microfluidics experiments [58]. The abil-
ity to model the Tolman length in LBM opens fundamental
research avenues for the study of nucleation and cavitation
phenomena in the mesoscale regime, offering at the same
time great computational efficiency and a direct bridge to
experiments.

III. METHOD

As outlined in Sec. I, the free energy needs to be indepen-
dent on the choice of the position for the arbitrary dividing
spherical surface R. Such a stationarity condition yields the
generalized Laplace law [1-3,14]

ap =228 Tdo 11

with o[R] the generalized surface tension and its notional
derivative [do /dR] = o/[R] and AP = Py, — Py, with Py
and P, the values of the bulk pressure in the center of the bub-
ble (or droplet) and far away from the interface, respectively
(see Fig. 1). At the minimum of o [R], Eq. (11) reduces to the
usual Laplace law, and the condition o'[R]|g=g, = O defines
the position of the surface of tension R;. Hence, by direct
comparison to Eqgs. (2) and (11), it follows that at second order
in R;! the latter reads

204(Ry) 209 (1 _ @)

Ry, Ry R,

In order to estimate the Tolman length we simulate droplets
and bubbles at different temperature (i.e., coupling G) and
compute the deviations from the Laplace law using the surface
of tension radius Ry to estimate the bubble (or droplet) size.
We now discuss how to estimate R, from the simulations gen-
eralizing the arguments presented in [3] to an arbitrary spatial

(12)
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dimension d. Let us start from the mechanic equilibrium con-
dition 9,P*” = 0 and consider the following pressure tensor
decomposition

P"" = Py&"Y — (Px — Pr)g"”, (13)

where Py and Py are the (locally) normal and tangential com-
ponents to the bubble (or droplet) interface, respectively. The
projector along the tangential direction is defined as g"” =
S — n*nY, where n* is the normal vector to the interface,
which is given by the direction of the largest gradient. It
follows that the normal vector for a droplet interface has the
opposite orientation with respect to the one of a bubble, so
that the latter yields a negative curvature. Hence the mechanic
equilibrium condition reads

0, P"" = n"n"9,Py +n"9,n"(Px — Pr) =0, (14)

which can be reexpressed in polar coordinates as

d— Dy’
f[PN(V) — Pr(r)] =0,

'L +
n — r
dr' Y

where we considered that n"9,n* = (d — 1)n"/r, where d is
the number of spatial dimensions and r is the value of the
radial coordinate. Finally, without loss of generality, we can
select the normal (or radial) direction to be parallel to the x
axis, i.e., n* = e¥, yielding

d—1

r

d
EPN(”) + [Pn(r) — Pr(r)] = 0. 15)
Now, it is possible to obtain a sequence of identities that are
satisfied by the mechanic equilibrium condition. As a first
step one can multiply Eq. (15) by 7" so that, after reshuffling
derivatives, one obtains

%[r”PN(")] =r""'[(n = (d — 1)Px(r) + (d — DPr(r)].
(16)
Next, it is possible to take the integral of both sides between
Rin and Ry, i.e., from the position of the inner bulk phase to
the position of the outer bulk phase, thus obtaining
Rll

out

Pout - RinnPin

Rou
_ / dr [ = (d — D)Pe(r) + (d — DPr(r)],
Rin
(17)

where we have identified the value of the normal com-
ponent in the bulk with the value of the scalar pressure,
Py = Py ou- Now, let us define the pressure-jump function
Py(r;R) = P, — (P — Pow)0(r — R), where 8(r — R) is the
Heaviside function. The integral of nr"~'Py(r; R) between R,
and R,y reads

- PinRjnn + R”(Pin - Pout)-

(18)
We now subtract Eq. (18) from Eq. (17) and obtain an integral
expression for the pressure jump AP = P, — Poy across the

out

ROH[
n/ dr " 'Pi(r;R) = Py R"
R

in

interface
n ROU[
AP = —
R" Rin
d—1
Rl‘l

dr r"~'[Py(r;R) — Pu(r)]

ROU[
f dr P — Pre)l. (19)
Rin

Finally, we set n = d — 1, thus eliminating the normal com-
ponent of the pressure tensor Py, and equate to the generalized
Laplace law [cf. Eq. (11)] yielding

d—1 (R o
AP = Ri-1 /Rin dr r* “[Py(r;R) — Pr(r)]
. (d — 1)o[R] do
=" =% [E] (20)

It is possible to extract the expressions for o[R] and [do /dR]
[3] obtaining ford = 3

o= [ ar (Y B - moL
=) r R A T(r)l,

do 2 [T 4 ) -
[d_R} = _1?/0 rr(r—R)[Py(r;R) — Pr(r)], (22)
where we took the limits R;, — 0 and Ry, — 00. We eval-
uate Eq. (21) by means of the SC lattice pressure tensor in
Eq. (9), integrating along the x axis so that Py = P** and
Pr = P> = P%, Once o [R] is evaluated we obtain the value of
R, by interpolating the position of the minimum. We wish to
stress that in the derivation of Eq. (21) the only hypothesis that
has been used is that of mechanic equilibrium. It is possible
to calculate an analytical expression for o[R]/oy: recasting
Eq. (11) as R>’AP = d[R*c[R]]/dR, we integrate from Ry to
R and obtain [3] the expression ZXl = &)y + 2 which
in [21] is referred to as “universai,” i.e., not depeﬁding on
temperature or on the droplet (or bubble) size, mirroring that
o [R] depends on the arbitrary value of R.

IV. RESULTS

The simulations source code can be found on GitHub
[42-50]. A Jupyter notebook [49] is available from the
“idea.deploy” framework to reproduce the results reported
in this paper. We simulate three-dimensional droplets and
bubbles in a cubic system of linear size L with periodic
boundary conditions using the D3QI19 discrete velocity
set with ¢? =1/3 [3536] (see Fig. 1). We adopt two
possible definitions for the pseudopotential function,
namely ¢ =exp(—1/n) and ¥ =1 —exp(—n) [34,53].
The range of dimensionless coupling constants G/G, — 1 €
{0.029, 0.033, 0.038, 0.045, 0.056, 0.070, 0.079, 0.091,
0.119,0.159,0.215,0.293}, where G.c? = —2.463 and
G(.cf = —1.333 for Y = exp(—1/n) and ¥ = 1 — exp(—n),
respectively. The value of L is chosen to be an odd number
so that the center of mass of the system exactly falls on the
coordinates of a node. The simulated system sizes are L €
{41, 43, 47, 51, 55, 61,67,77, 87,103, 123, 157, 213, 335}.
The radial density field n(r) is initialized to the following
profile:

n(r, R) = 1(nin + now) — 3 (in — now) tanh(r — R),  (23)
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where the inner n;, and outer ny, densities are initialized
to the equilibrium values of the gas n, and liquid n; for a
flat interface [37], for bubbles and droplets accordingly. The
initial value of the radius is set to maintain a fixed aspect
ratio for all simulations as R = L/4. The radial coordinate
r is computed taking the center of the system as the ori-
gin. The values P, and P, are computed in the middle of
the system (|L/2], |L/2], |[L/2]) and at the farthest corner
(L—1,L—1,L—1), respectively. The outcome of the sim-
ulations is analyzed only if all the coordinates of the center
of mass lie within a distance of 1073 from the center of the
domain. We use two convergence criteria for the simulations,
both comparing quantities at a time distance §t = 2'': (i)
we consider the relative variation of the AP with respect
to the previous configuration, and when the latter is such
that |AP(t) — AP(t + 6t)|/AP(t) < 1073 the simulation is
considered as converged; (ii) we consider the magnitude du
of the spatial average of the difference between the com-
ponents of two velocity fields, Su =LY > |[u*(x,t +
8t) — u“(x, t)|, so that the simulation is considered as con-
verged when §u < 107!2. Meeting only one of the two criteria
is enough to finalize the simulation. The set of simulations for
the flat interface has been performed on a two-dimensional
domain using the D2Q9 discrete velocity set with ¢? = 1/3
[35,36] and the forcing weights are obtained by the pro-
jection of the three-dimensional case, i.e., W(1) = 1/3 and
W(2) = 1/12. The domain sizes are L, = 100, L, = 4 for all
simulations and the density profile is initialized according to

n(x, xo, w)

1
= E(n’ + ng)

1 h w
— E(m — ng)tan |:x — (xo — 3):|

+ %(n; - ng){ tanh |:x - <xo + %)] + 1}, 24)

where x is the center of the strip and w = L, /2 its width.

We report in Fig. 2 the value for the surface tension oy in
the flat interface limit. Full symbols represent the interpolation
of the droplets and bubbles data for o(R;) = R, - AP/2 in
the limit R;' — 0. Such values of o are used in Fig. 4 as
normalization constants. Empty circles represent the results
obtained from the flat-interface simulations by numerically
computing the integral

L
o= [ datps() - Prco @5)
L./2
where Px(x) = P™(x) and Pr(x) = P> (x) have been obtained
from the lattice pressure tensor (9) using the two-dimensional
values of the weights W(1) =1/3 and W(2) = 1/12. The
scaling with respect to the dimensionless coupling G/G, — 1
matches the mean-field case with exponent u = 3/2 [14,59].
Different choices for the pseudopotential function, yielding
different equations of state, result in the same scaling law
and the same prefactor, thus implying that the results belong
to the mean-field universality class. In particular, this result
allows one to describe both sets of data in terms of a single
reduced-coupling scale G/G. — 1.

’
’
o
JRe
&
il
10724 7
S 4
P
/@'
(o
//U O Flat Interface
s 2 ® ¢Y=ecxp(—1/n)
R A =1—exp(—n)
e —— x(G)G.— 1), =3/2
101
G/G.—1
FIG. 2. Value for the surface tension as a function

of the dimensionless coupling G/G.— 1€ {0.029,0.033,
0.038, 0.045, 0.056, 0.070, 0.079, 0.091, 0.119, 0.159, 0.215, 0.293}.
Triangles and filled circles represent the data obtained from the
interpolation of R, - AP/2 in the limit R;' — 0, for two different
pseudopotential functions ¥ [cf. Fig. 4(a)]. Empty circles indicate
the value numerically computed from the flat-interface simulations.
The dashed line represents a power-law scaling with the mean-field
exponent u = 3/2 [14].

Figure 3(a) displays the values for o[R] [see Eq. (21)]
obtained from the simulation data, superposing to the ex-
pected integrated result for o [R]/o;, for bubbles and droplets
of different sizes, with different equations of state P(n) (10)
and at different temperatures. Hence, based on the derivation
in [3] and using the SC lattice pressure tensor [37], we obtain
a result that is compliant with the thermodynamics of curved
interfaces [1,3] allowing us to estimate R;. Notice that most
of MD works rely on the use of the equimolar radius R,,
implying in three dimensions the cancellation of the second
order curvature corrections in o (R) [8], with the exception of
[22] that applies the so-called mechanical definition of § for a
flat interface. In order to find the value of R, the authors of [21]
estimate the minimum of o[R] from the statistical average
of an excess free energy normalized to the area of spherical
volumes of varying size by means of MC simulations, with the
need to keep in check finite-size corrections to the statistics.
Both MD and MC have in common the necessity of averaging
quantities over thermal fluctuations, which however is not
required in the present LBM simulations.

In Fig. 3(b) we report the data points (R;', AP) and
compare to the Laplace law, considering bubbles as having
negative curvature. The slope of the dashed lines is given by
20y and deviations from the flat interface limit appear with
opposite sign for bubbles and droplets. Next, we analyze the
corrections: in Fig. 4(a) we show the data for the surface
tension at the surface of tension estimated from AP and
R, i.e., 04(Ry) = AP - R,/2,' normalized by the flat interface

'The values of o, = o'[R,] estimated from the minimum of o [R]
match those obtained from AP with a relative error of order 1073.
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FIG. 3. Panel (a): surface tension at an arbitrary dividing surface
o [R] normalized by the minimum (Ry, o,) for all simulations: data
collapse on a master curve (see text for details) independently on
the droplet and bubble size, coupling constant, and equation of state.
Panel (b): dashed lines indicate the Laplace law using the values of
oy reported in Fig. 2, while the points represent the simulations data.
Bubbles and droplets have opposite corrections with respect to the
dashed lines. Colors correspond to the value of the dimensionless
coupling G/G, — 1 € {0.070, 0.119, 0.159, 0.215, 0.293} from dark
red to blue.

value oy, i.e., we analyze the yz projection of Fig. 1(a) for
different temperatures. We first determine the value of oy by
interpolating the data for oy(R;) as a function of R;l in the
limit R;! — 0. Such values match those computed from flat
interface simulations (see Fig. 2). Then we fit the corrections
which are well approximated by linear functions [see Eq. (12)]
reported in dashed lines. We estimate the Tolman length from
the lines’ slope, which is equal to —24. In Fig. 4(b) we report
the values of § as a function of the dimensionless coupling
G/G, — 1: data for different i lie on the same curve, which
is well approximated by a power law with exponent A = —1.
It is possible to compute this value of the exponent from
the expression A = —v — § [4] when inserting the mean-field
values of the exponents 8 = 1/2, v = 1/2, which characterize
the critical behavior of the order parameter (liquid-gas density
difference) and of the correlation length, respectively [59].
The latter expression for A has been derived by Blokhuis

0.2 bubbles

—0.05 0.00 0.05 0.10 0.15 0.20

Rfl
®) —_— % (G/G.—1 A=—1
101 A
\\.
\\\
v
,\\y
o N, o
.\\
*\
~
{\
@
SN
107 e
10!
G/G.—1
FIG. 4. Panel (a): surface tension at the surface of

tension computed from the simulations by means of the
Laplace law o,(R;) = AP-R;/2. Colors correspond to
different values of the dimensionless coupling G/G.—1 €
{0.029, 0.033, 0.038, 0.045, 0.056, 0.070, 0.079, 0.091, 0.119,
0.159, 0.215, 0.293} from red to blue. Panel (b): results for the
Tolman length § estimated by the fits in panel (a) as a function of
the dimensionless coupling G/G,. — 1: data for different choices of
Y fall onto a universal curve which is well approximated by a power
law with exponent A ~ —1.

and Bedeaux in [4] from the expansion in R~! of AP for a
spherical surface, which they could match with the expansions
for o [R] and o'[R] obtained from thermodynamic arguments
in [8]. In particular, they found that the flat-interface defi-
nition [5] § = z, — z;, where z, and z; are the positions of
the equimolar surface and of the surface of tension, respec-
tively, needs to be modified into §' = § + A, obtained as the
infinite radius limit of the curvature expansion. While it is
known that § has a zero mean-field exponent, it is A [4]
that yields the singular behavior. Such a modified expres-
sion for the Tolman length of a flat surface has also been
used in MD studies [60]. Theoretical mean-field works report
a negative sign for § leveraging, however, the flat-interface
definition § = z, — z,, which can be modified as discussed
above [4] thus possibly changing the sign [3]. Lattice-gas
results [21] as well as a recent molecular simulation [20]
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FIG. 5. Panel (a): curvature dependence of the alternative
definition of the Tolman length S.(R) = (R, — Ry), reporting in
black diamonds the extrapolated value in flat interface limit ;! — 0
for different values of the dimensionless coupling G/G. — 1 €
{0.029, 0.033, 0.038, 0.045, 0.056, 0.070, 0.079, 0.091, 0.119,
0.159, 0.215, 0.293} with colors ranging from red to blue. Panel (b):
scaling of the flat interface limit value against G/G,. — 1. Panel (c):
quantitative comparison against the definition from Eq. (12).

report a positive sign as we find in the present work. Indeed,
any further quantitative comparison between LBM and MD
would require a direct mapping between the pseudopoten-
tial function ¥, defining the lattice SC force, and the pair

interaction potential used in MD, which however is a rather
delicate task. Indeed, in recent years, there has been some
progress in mapping MD onto equivalent lattice Boltzmann
schemes [61], although it has been limited to the single-phase
case.

We report now a detailed comparison of the definition
of the Tolman length adopted so far against another possi-
ble choice Si(RS) = £(R, — Ry), with the plus and minus
signs for droplets and bubbles, respectively, adopted in [21].
The equimolar radius R, is defined by solving the equa-
tion M = 47 R nin/3 + (V — 47 R3/3) now, where M is the
total mass of the system of volume V = L3. This equation
is equivalent to the request of vanishing adsorbance [3] as
a function of the arbitrary dividing surface. In Fig. 5(a) we
report the size dependence of Si(R‘y) for different values
of the coupling G reporting in black diamonds the extrap-
olated value in the flat interface limit R;!. In Fig. 5(b)
the latter are plotted against the dimensionless coupling
G/G. — 1 on a log-log scale showing the same scaling re-
lation obtained for the alternative definition §. Finally, in
Fig. 5(c), we report a quantitative comparison between the two
different definitions.

V. CONCLUSIONS

In conclusion, we demonstrate the ability of the multiphase
Shan-Chen LBM to capture relevant features of the curvature
corrections to the surface tension: we find a temperature-
dependent Tolman length § displaying a power-law behavior
near the critical point. Furthermore, § shows a universal
scaling for different equations of state. The advantage of
this approach is manifold: (i) the thermodynamic proper-
ties of the interfaces are emergent, as in MD, but from an
underlying simplified lattice dynamics, (ii) the intrinsic hydro-
dynamic compliance of LBM is unprecedented in the previous
simulation literature, opening another direction in which to
study systematically the role of curvature corrections in more
complex hydrodynamic regimes, and (iii) the contained com-
putational cost allows one to explore a broad parameter space.
Future work will probe the possibility of using more refined
versions of the Shan-Chen model and tune the different cur-
vature coefficients similarly to what has been previously done
with the surface tension [53] and disjoining pressure [62], as
well as refining mathematical control of the model. Finally,
we shall consider hydrodynamic fluctuations compliant with
thermodynamics by extending to the SC multiphase model the
works [54,63] which leverage the multirelaxation time colli-
sional operator. By doing so, we would be able to study the
effects of the Tolman length on the homogeneous nucleation
rates along the lines of [20,32]. The simulations source code
and a Jupyter notebook to reproduce all the results and figures
can be found on the “idea.deploy” GitHub repository [42].
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