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In a recent paper, Lucco Castello et al. [arXiv:2107.03537] performed systematic extractions of classi-
cal one-component plasma bridge functions from molecular dynamics simulations and provided an accurate
parametrization that was incorporated in their isomorph-based empirically modified hypernetted chain approach
for Yukawa one-component plasmas. Here the extraction technique and parametrization strategy are described
in detail, while the deficiencies of earlier efforts are discussed. The structural and thermodynamic predictions of
the updated version of the integral equation theory approach are compared with extensive available simulation
results revealing a truly unprecedented level of accuracy in the entire dense liquid region of the Yukawa phase
diagram.

DOI: 10.1103/PhysRevE.105.015208

I. INTRODUCTION

The physics of liquid state many-body systems that are
composed of charged particles has evolved to a significant
area of modern statistical mechanics. Such systems include
ionic liquids and electrolyte solutions, dense astrophysical
matter, and nonideal plasmas as well as complex (dusty)
plasmas and colloidal suspensions [1,2]. Strongly coupled
Coulomb liquids are characterized by a ratio of the average
potential energy to the thermal energy that exceeds or is of the
order of unity. The simplest model of Coulomb interacting
liquids is the spatially homogeneous classical one-component
plasma that consists of identical classical point charges which
are embedded in a uniform inert background that guarantees
that the overall charge neutrality is preserved [2,3]. In spite of
the fact that this represents a substantial idealization, the one-
component plasma has offered great insights to the behavior
of naturally occurring systems and has been widely lauded as
one of the most important model systems in physics [1–3].

One of the most fundamental problems in statistical me-
chanics of liquids concerns the accurate computation of
thermodynamic properties and spatial density-density corre-
lations with the sole knowledge of the interaction potential
without resorting to computer simulations. The integral equa-
tion theory of liquids, which elegantly emerges from density
expansions in the grand canonical ensemble with the aid
of functional analysis and diagrammatic analysis [4–7], has
been justifiably deduced to be the most appropriate frame-
work to attack this problem [8]. It consists of two formally
exact equations that contain three unknown functions; an
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additional equation that describes the so-called bridge func-
tion is required for self-consistent closure of this formalism
[4–7]. However, the formal diagrammatic expansion of the
bridge function, which is a very complicated functional of
the interaction potential, has proven to converge very slowly
[4,7]—a rather anticipated fact given the impossibility of
formally closing any many-body problem in the absence of
small parameters. Consequently, a large number of approx-
imation schemes has been developed, whose effectiveness
varies depending mainly on the potential softness and can
only be reliably evaluated a posteriori through a systematic
comparison with “exact” simulation results [4,9].

The computation of bridge functions with structural input
from computer simulations presents the only viable alterna-
tive to the seemingly endless parade of approximations of
integral equation theory. In spite of the rather demanding
design of the bridge function extraction simulations, the heavy
computational cost and the necessity for meticulous uncer-
tainty propagation analysis, “exact” bridge functions have
been computed with structural input from Monte Carlo or
molecular dynamics (MD) simulations for numerous liquid
systems, which include established model interactions such
as hard spheres [10–13] and their binary mixtures [11,13],
Lennard-Jones interactions [14–17], inverse power law inter-
actions [18], one-component plasmas [19–21], and Yukawa
one-component plasmas [22] as well as more realistic model
interactions such as hard spheroids [23], liquid metal interi-
onic potentials [24], model 2-2 electrolytes [25], molten salts
[26], Lennard-Jones dipolar fluids [27], and even the extended
simple point charge (SPC/E) site-site model of water [28].
Unfortunately, the state of affairs is quite discouraging, since
many bridge function extraction investigations concern the
intermediate and long range exclusively, contain uncontrolled
uncertainties and are restricted to a single or to few ther-
modynamic states. In fact, bridge function parametrizations
are available only for hard spheres (intermediate and long
range) [29], soft spheres (full range) [18], and one-component
plasmas (entire range) [20,21]. The bridge functions of hard
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spheres, one-component plasmas, and Lennard-Jones sys-
tems are the most well studied, which is indicative of the
importance of the respective interactions. In particular, the
one-component plasma bridge functions were among the first
to be extracted [19] and to be parameterized [20]. Nev-
ertheless, there are persistent problems with the available
extractions and parametrizations.

In a recent Letter [30], we computed the bridge functions of
classical one-component plasmas at 17 thermodynamic states,
spanning the whole dense liquid region, by utilizing radial dis-
tribution functions extracted from accurate standard canonical
MD simulations in combination with cavity distribution func-
tions extracted from long specially designed canonical MD
simulations featuring tagged particle pairs. With this input,
we constructed a very accurate closed-form bridge function
parametrization that covers the full nontrivial range. This
analytic description was embedded into the isomorph-based
empirically modified hypernetted chain approximation [31]
that was then applied to Yukawa one-component plasmas
leading to an unprecedent agreement with simulations.

In the present work, the devised bridge function extrac-
tion scheme is presented in full detail from the design of
simulations to the propagation of uncertainties. Emphasis is
put on peculiarities that stem from the long-range nature of
Coulomb interactions and are not present in other liquids. The
adopted bridge function parametrization strategy is expanded
on, and the deficiencies of existing bridge function extractions
and parametrizations are discussed in depth. Moreover, the
updated version of the isomorph-based empirically modified
hypernetted chain approximation is presented and numerically
solved in the entire dense liquid region of the Yukawa phase
diagram. A systematic comparison is carried out with the
original version and with available simulations in terms of
radial distribution functions and excess internal energies.

II. INTEGRAL EQUATION THEORY AND BRIDGE
FUNCTION EXTRACTION METHODS

In case of a one-component pair-interacting isotropic sys-
tem, the integral equation theory of liquids comprises the
Ornstein-Zernike (OZ) integral equation and the formally ex-
act nonlinear closure condition [4–7,9], which read as

h(r) = c(r) + n
∫

c(r′)h(|r − r′|)d3r′, (1)

g(r) = exp [−βu(r) + h(r) − c(r) + B(r)], (2)

with g(r) the radial distribution function, h(r) = g(r) − 1 the
total correlation function, c(r) the direct correlation func-
tion, and B(r) the bridge function. Some auxiliary static
two-particle correlation functions of importance are the static
structure factor S(k) = 1 + nH̃ (k) where H̃ (k) denotes the
Fourier transform of the total correlation function, the indirect
correlation function γ (r) = h(r) − c(r), the mean force po-
tential βw(r) = − ln [g(r)], the screening potential βH (r) =
βu(r) − βw(r), and the cavity distribution function y(r) =
g(r) exp [βu(r)]. It is evident that the screening potential is
equal to the logarithm of the cavity distribution function,
βH (r) = ln [y(r)], thus, in what follows, these terms will be
used indiscriminately.

The integral equation theory set of equations requires a
formally exact expression for the bridge function in order to
be closed in a self-consistent manner [4–7]. Two equivalent
virial-type series representations have been derived within the
diagrammatic analysis framework, where the bridge functions
are graphically represented by highly connected diagrams,
which contain neither nodal points nor articulation points
and their root points do not form articulation pairs [4,7].
More specifically, an exact B[u] functional relation is avail-
able, known as f -bond expansion owing to the involvement
of Mayer functions f (r) = exp [−βu(r)] − 1, which reads
as B[ f ] = ∑∞

i=2 di(r; T )ni where the coefficients di(r; T ) are
given by a number of multidimensional integrals whose
kernels are products of Mayer functions. In addition, the
operation of topological reduction leads to an exact B[h]
functional relation, known as h-bond expansion owing to the
involvement of total correlation functions, which reads as
B[h] = ∑∞

i=2 bi(r; n, T )ni where the coefficients bi(r; n, T )
are given by a number of multidimensional integrals whose
kernels are now products of total correlation functions [5]. In
spite of numerous commendable efforts [32–35], it has proven
to be rather hopeless to compute bridge functions through
their definition, since both the original and the resummation
series converge very slowly even at moderate densities, since
the contributing diagram number exponentially increases with
the density order and since the integrand complexity as well as
integration order steadily increase with the density order. As
a consequence, most theoretical attempts have either focused
on the formulation of phenomenological closures, which ap-
proximate the exact nonlocal functional of the total correlation
function B[h] with a local function of the indirect correlation
function B(h − c), or focused on optimizing thermodynamic
state mappings to a reference system based on the approxi-
mate quasiuniversality of bridge functions [9].

The bridge function is the collective term employed for
highly connected irreducible diagrams and, thus, constitutes
a rather abstract object of diagrammatic analysis. Unsurpris-
ingly, it does not possess a microscopic representation in
terms of the ensemble average of a function that depends on
the instantaneous particle positions, and it does not possess
a physical interpretation in terms of a probability density.
These imply that bridge functions cannot be directly extracted
from computer simulations. Nevertheless, bridge functions
can be indirectly extracted by exploiting the fact that radial
distribution and cavity distribution functions can be directly
extracted from computer simulations and by taking advantage
of the two exact equations of integral equation theory. This
still remains a cumbersome task, but it is much less formidable
than the computation through the formal definition and it is
rather feasible with modern computational resources. Part of
the complexity stems from the fact that two simulation meth-
ods need to be simultaneously employed to indirectly extract
bridge functions in the full range [14,22].

The Ornstein-Zernike inversion method is based on the fact
that the radial distribution function can be directly extracted
from computer simulations, being equal to the probability
density of finding a particle at a distance from a reference
particle relative to the probability density for an ideal gas
[7]. The discretization of this definition leads to the histogram
method. With knowledge of the radial distribution function,
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the direct correlation function can be computed from the OZ
equation, and the bridge function can then be computed from
the closure condition,

B(r) = ln [g(r)] − g(r) + βu(r) + c(r) + 1. (3)

The OZ inversion method is rather straightforward and re-
quires input from standard equilibrium simulations. However,
the omnipresent uncertainties in the extraction of the ra-
dial distribution function propagate largely augmented to the
computation of the bridge function, which necessitates very
accurate simulations with a large number of particles and
statistically independent configurations [22]. Furthermore, the
OZ inversion method cannot be employed for the reliable
computation of bridge functions within the entire range. The
extraction of the radial distribution functions with the his-
togram method unavoidably leads to poorly collected statistics
at short distances that lie within the so-called correlation void,
which can be loosely defined as argr{g(r) � 1} or argr{g(r) �
0}. This issue does not bear any consequences for the radial
distribution function (which is practically zero) or the direct
correlation function [which cannot be affected by uncertain-
ties in the infinitesimally small g(r) values], but is crucial for
the bridge function courtesy of the presence of the logarithmic
term in the closure condition [22].

The cavity distribution method is based on the fact that
the cavity distribution function can be directly extracted from
computer simulations, being equal to the radial distribution
function for a tagged particle pair whose mutual interaction is
suppressed that are dissolved at infinite dilution in a system
where all other pair interactions remain the same [4,6]. The
cavity distribution function remains continuous even if the
interaction potential is discontinuous or diverges and acquires
large but finite values near the origin r = 0 [7,22]. In other
words, by merging the radial distribution function and the
interaction potential in its definition, the cavity distribution
function eliminates their inherent pathologies close to the con-
tact point. With knowledge of the direct correlation function
from the OZ inversion method, the bridge function can be
computed from the closure condition that reads as

B(r) � ln [y(r)] + c(r) + 1 (4)

within the correlation void where g(r) � 0. However, the
cavity distribution function increases by many orders of mag-
nitude from the edge of the correlation void up to the origin
r = 0, which implies that uniform sample statistics are rather
impossible to acquire for noninteracting tagged particles [22].
Hence, the major challenge in the implementation of this
method is associated with the design of an interaction poten-
tial for the tagged pair that homogenizes the statistics within
the entire correlation void. The artificial statistical bias that
characterizes the simulated system of N − 2 standard particles
and two tagged particles is known and can then be removed,
so that the statistical weights that correspond to the static
correlations of the physical system of N standard particles are
ultimately extracted. Overall, we have [14,22]

y(r) = C exp [βψ (r)]g12
sim(r), (5)

where g12
sim(r) is the radial distribution function of the tagged

pair that is extracted with the histogram method, βψ (r) is the
tagged pair interaction potential and C is a proportionality

constant that is determined by the cavity distribution func-
tion continuity. It should be emphasized that only the tagged
particles yield useful statistics; thus specially designed cavity
simulations can feature a rather small number of particles but
should feature a very large number of statistically independent
configurations [22]. Note also that, due to the large cavity
values within the correlation void, it is customary to work with
logarithms. The definition of ysim(r) = exp [βψ (r)]g12

sim(r)
leads to

B(r) � ln [ysim(r)] + ln C + c(r) + 1. (6)

Finally, a simple methodology was recently proposed that
streamlines the design of the externally controlled tagged
pair potential so that near-uniform tagged pair statistics are
acquired in the correlation void [22]. It is based on the de-
composing the tagged potential into windowing and biasing
components. The windowing part constrains the tagged pair
in overlapping subintervals of the correlation void without
affecting dynamics within each confinement range and can be
realized by trial and error, while the biasing part ensures statis-
tical uniformity within each window and can be successively
optimized with input from cavity simulations of increasing
duration.

III. THE OCP BRIDGE FUNCTION EXTRACTION
FROM MD SIMULATIONS

One-component plasmas (OCPs) are model systems which
consist of classical point particles that are immersed in a rigid
charge neutralizing background and interact via the Coulomb
pair potential u(r) = (Q2/r) with Q the particle charge [1–3].
The presence of this inert neutralizing background guarantees
the existence and uniqueness of the thermodynamic limit and
the stability of the classical OCP [2]. The thermodynamic
states of the classical OCP are fully specified by a single
dimensionless parameter, since the nonideal Helmholtz free
energy depends on a specific density (n) and temperature (T )
combination [36]: the coupling parameter � = βQ2/d where
d = [4πn/3]−1/3 is the Wigner-Seitz radius and β = 1/(kBT )
the thermodynamic beta [2,3]. The OCP undergoes a liquid-
to-bcc phase transition at �m � 171.8 [37] and its structural
correlations undergo a crossover from monotonic decay to
exponentially damped oscillatory decay at �K � 1.12 [38].
Analysis of the poles of the Fourier transformed total corre-
lation function has revealed that at the crossover point two
imaginary poles coalesce to generate a conjugate pair of com-
plex poles, i.e., �K is the so-called Kirkwood point [38]. For
� < �K, the hypernetted chain (HNC) approach which drops
the bridge function contribution is known to yield excellent
results [39].

In this section, we shall indirectly extract the OCP bridge
functions of 17 thermodynamic states that are uniformly dis-
tributed between the crystallization point and the Kirkwood
point. To be more specific, the OCP states of interest are
� = 10, 20, 30, . . . , 160, 170. This investigation covers the
entire stable OCP phase diagram range of interest, since the
effect of the bridge functions is greatly diminished below
the Kirkwood point. In the following, reduced units x =
r/d and q = kd will be mainly employed for the real and
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FIG. 1. Grid errors in the computation of OCP bridge functions at the state points (a) � = 160, (b) � = 120, (c) � = 80, and
(d) � = 40 with input from accurate standard MD simulations. Determination for five different histogram bin widths: �r/d = 0.0004,

0.001, 0.002, 0.004, 0.01. For the probed bin widths, regardless of the coupling parameter, the global extremum magnitude increases as
the bin width increases. However, it is evident that a near-optimal bin width emerges below which the OCP bridge functions overlap. Unless
the chosen bin widths are large, i.e., �r/d � 0.01, the grid errors are rather small. Note also that, as the coupling parameter increases, the
bridge function dependence on the bin width becomes noticeably stronger.

reciprocal space, which lead to the interaction potential
βu(x) = �/x or βũ(q) = 4π�/q2.

A. Intermediate and long-range extraction

The standard canonical (NVT) MD simulations are carried
out with the LAMMPS software [40]. The long-range nature
of Coulomb interactions is handled with the Ewald decom-
position [41] that is implemented with the particle-particle
particle-mesh (PPPM) technique [42,43]. Simulations feature
220 time steps for equilibration, 223 time steps for statistics
and 27 time-step-saving period which ensures that statistically
independent configurations are only postprocessed [44]. This
leads to M = 216(= 65 536) for the number of uncorrelated
configurations. The simulated particle number is N = 54 872
yielding L/d = 60 for the length of the primitive cell of the
periodic cubic box. Note that N, M are chosen so that the
OZ inversion method leads to accurate bridge functions for
r/d � 1.25.

The radial distribution functions are subject to statistical
errors owing to the finite simulation duration, grid errors due
to the finite histogram bin width, size errors due to the finite
particle number, and tail errors due to the finite simulation
box length [12,22]. These uncertainties propagate augmented
from the radial distribution function to the bridge function in
the course of the OZ inversion method. Similar to Ref. [22],
statistical errors will be quantified, grid errors will be mini-
mized and size errors will be corrected, while tail errors are
negligible.

Statistical errors are quantified with the application of a
block-averaging procedure which divides the data set of M
uncorrelated configurations into Nb blocks each containing Ng

configurations. In order to ensure acquisition of sufficiently
smooth block radial distribution functions that lead to the
computation of meaningful block bridge functions, Ng should
be large. In order to ensure availability of a large sample of
block bridge functions so that statistical deviations can be
accurately calculated, Nb should also be large. Exhaustive
empirical testing of various Nb, Ng combinations confirmed
the earlier conclusion that Nb = Ng = 256 is the near-optimal
choice [22].

Grid errors can be made negligible compared to the sta-
tistical errors by controlling the bin width of the histograms
that are employed for the extraction of the radial distribution
function. The exact value is determined by an empirical anal-
ysis of the dependence of the bridge function on the bin width
[12]. It has been shown that, as the bin width decreases, the
bridge function becomes independent of its value [22]. The
near-optimal value corresponds to the largest bin width for
which convergence is observed, since further bin width reduc-
tion would not affect the average bridge function but would
increase the average bridge function fluctuations due to the
statistical error increase [22]. For all the OCP state points of
interest, the near-optimal bin width is close to �r/d = 0.002.
Figure 1 features characteristic examples for four OCP states.

Finite-size errors are compensated for by applying the
Lebowitz-Percus expression, which corrects (up to second
order) for the effect of particle number fluctuations that
are suppressed in the canonical ensemble [45,46]. Since all
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FIG. 2. Finite-size errors in the computation of OCP bridge func-
tion at the state point � = 160 with input from accurate standard
MD simulations. Results with and without the simplified Lebowitz-
Percus correction. The correction slightly affects the oscillatory
decay region and mainly manifests itself at the asymptotic limit
which now properly converges to zero.

the OCP thermodynamic states of interest lie between the
Kirkwood point and the crystallization point, the simplified
version of the Lebowitz-Percus correction can be employed
that neglects the first- and second-order coupling param-
eter derivative of the radial distribution function [22]. It
simply reads as gc(x) = [1 + (χT/N )]gMD(x) where gc(x) is
the corrected radial distribution function, gMD(x) the NVT-
MD extracted radial distribution function, χT the reduced
isothermal compressibility [22,47]. Given the availability of
an accurate OCP internal energy equation of state [37], the
χT quantity is calculated from the internal energy expression
after performing the necessary thermodynamic integrations
and differentiations and is not extracted from the hypervirial
route [22]. The magnitude of the Lebowitz-Percus correction
is very small, but it has an aperiodic character [22]. As a
consequence, it has an observable effect on the extracted
bridge functions, mainly at the largest coupling parameters,
as deduced from Fig. 2. More specifically, it allows to restore
the correct asymptotic behavior of the bridge function.

Moreover, it is necessary to ensure that the compressibility
sum rule is exactly satisfied by the static structure factor. For
the quantum and the classical OCP, the compressibility sum
rule reads as S(q → 0) = q2/(3� + μTq2) where μT = 1/χT

is the reduced inverse isothermal compressibility [2]. Two
different methodologies have been devised to impose the ex-
act long wavelength limit of the structure factor: (1) a Padé
approximant strategy, where the structure factor is assigned
the form

S(q) =

⎧⎪⎨⎪⎩
q2 + σ1q4

3� + μTq2 + σ2q4
, q � qmin

fit

SMD(q), q � qmin
fit ,

where SMD(q) is the structure factor that results from the
extracted radial distribution function (after correcting for the
finite-size errors), σ1, σ2 are the unknown Padé coefficients
that are adjusted by fitting the two S(q) branches within the
range q ∈ [qmin

fit , qmax
fit ] and qmin

fit , qmax
fit are free parameters that

are determined in a trial-and-error fashion after inspecting
the bridge function convergence, and (2) a switching function

TABLE I. Padé approximant strategy for the enforcement of the
exact long-wavelength limit of the OCP structure factor. Specifi-
cation of the σ1, σ2 coefficients present in the Padé approximant
which artificially extends the compressibility sum rule to larger wave
numbers. The σ1, σ2 values are determined by least-square fitting the
approximant to the MD data within the interval [1.0,2.4]. The bridge
functions are insensitive to small perturbations of the endpoints of
the selected interval. Results for the 17 OCP state points of interest.

� σ1 σ2 � σ1 σ2

170 0.001243 2.281 80 0.001044 1.032
160 0.001223 2.142 70 0.001059 0.895
150 0.001248 2.004 60 0.000965 0.759
140 0.001297 1.868 50 0.000893 0.624
130 0.001233 1.726 40 0.000858 0.492
120 0.001145 1.584 30 0.000749 0.361
110 0.001152 1.446 20 0.000666 0.233
100 0.001111 1.307 10 0.000307 0.111
90 0.001091 1.169 — — —

strategy, where the structure factor is assigned the form

S(q) = L(q)SMD(q) + [1 − L(q)]
q2

3� + μTq2
,

L(q) = 1
2 {1 + erf[α1(q − α2)]},

where L(q) is a sigmoid switching function with erf (·) the
error function, α1, α2 are free parameters that are determined
in a trial-and-error fashion after inspecting the bridge function
convergence. It should be confirmed that the values of the
free parameters for the aforementioned two strategies do not
introduce any bias in the extracted bridge functions. Hence,
extensive parametric scans were carried out over various
(qmin

fit , qmax
fit ) and (α1, α2) combinations. It was deduced that

the bridge functions are nearly insensitive to the (qmin
fit , qmax

fit )
parameters provided that qmin

fit ∈ [0.8, 1.1] and qmax
fit − qmin

fit ∈
[1.0, 1.8], that the bridge functions are nearly insensitive to
the (α1, α2) parameters provided that α1 ∈ [6.0, 10] and α2 ∈
[0.6, 0.8], that for both strategies bridge functions become
less sensitive to the free parameters as the coupling strength
decreases and that both strategies result to identical bridge
functions for the optimal free parameters. In what follows, the
Padé approximant strategy has been preferred for enforcement
of the exact structure factor long wavelength limit with qmin

fit =
1.0 and qmax

fit = 2.4. For all state points of interest, the fitted
σ1, σ2 Padé coefficients can be found in Table I. See Fig. 3(a)
for an illustration of the importance of the compressibility
sum rule in the extraction of bridge functions and Fig. 3(b)
for the bridge function dependence on (qmin

fit , qmax
fit ) during a

parametric scan.
Furthermore, due to the long-range nature of Coulomb

interactions, respectable numerical errors are introduced dur-
ing the inverse Fourier transform that intervenes in the
computation of the real-space direct correlation function
c(x). These numerical errors have a strong impact on the
bridge function and can be avoided by utilizing the long-
range decomposition technique proposed by Ng [48]. In
particular, a c(x) = cs(x) + cl (x) decomposition of the di-
rect correlation function is assumed, where cs(x) is the
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q
q
q
q
q

FIG. 3. Importance of the exact structure factor long wavelength limit in the extraction of OCP bridge functions. (a) The OCP bridge
function at the state point � = 160 with and without imposing the compressibility sum rule with the Padé approximant strategy. The respective
bridge functions are displaced by ∼3.5 in the entire reliable extraction interval. (b) Parametric scan of the sensitivity of the OCP bridge function
at the state point � = 160 to the upper endpoint qmax

fit of the interval [qmin
fit , qmax

fit ] utilized to fit the σ1, σ2 coefficients of the Padé approximant
strategy. The lower endpoint is kept constant qmin

fit = 1.3 while the upper endpoint varies, i.e., qmax
fit = 2.3, 2.5, 2.7, 3.1, 3.3. The (negative)

bridge function is insensitive to qmax
fit for values within 2.3 − 2.7, but is displaced upwards in the intermediate range and downwards in the long

range as qmax
fit increases beyond 2.7.

short-range part and cl (x) = −βul (x) is the long-range part
in view of the exact asymptotic condition c(x) = −βu(x)
[4]. The function −βul (x) = −(�/x)erf (αx) with α = 1.08
well approaches the direct correlation function in an extended
range and possesses an analytical Fourier transform βũl (q) =
(4π�/q2) exp [−q2/(4α2)]. Hence, only the inverse Fourier
transform of the finite short-ranged small-magnitude cs(x)
function needs to be computed numerically, which leads to
a drastic reduction of the associated systematic errors [48].
See Fig. 4 for an illustration of the importance of the long-
range decomposition in the determination of the OCP bridge
function.

Taking the above OCP peculiarities and the uncertainty
analysis into consideration, the computation of the OCP
bridge functions with the OZ inversion method and input
from standard NVT MD simulations proceeds in the follow-
ing steps: (1) The radial distribution function is extracted
from MD simulations using the histogram method with a
small constant �r/d = 0.002 bin width so that grid errors

are minimized. (2) The reduced isothermal compressibility
is computed from the internal energy equation of state and
the Lebowitz-Percus correction is applied in order to dispose
of finite-size errors. (3) Fast Fourier transforms (FFT) are
employed to compute the static structure factor S(q) = 1 +
nH̃ (q). (4) The Padé approximant strategy with qmin

fit = 1.0
and qmax

fit = 2.4 is utilized to ensure that the compressibility
sum rule is satisfied exactly. (5) The Fourier transform of the
direct correlation function C̃(q) is computed from the Fourier
transformed OZ equation, C̃(q) = [S(q) − 1]/[nS(q)], and
the direct correlation function c(x) is computed by applying
the inverse FFT together with the long-range decomposi-
tion technique. (6) The average bridge function is computed
from the exact nonlinear closure equation that can be ex-
plicitly solved in terms of the bridge function, i.e., B(x) =
ln[g(x)] − g(x) + c(x) + βu(x) + 1. (7) For the quantification
of the statistical errors, the above steps are also applied to all
block radial distribution functions 〈gi(x)〉Ng that lead to the
block bridge functions Bi(x) = B[〈gi(x)〉Ng ]. The Nb samples

FIG. 4. Importance of the long-range decomposition of the direct correlation function in the extraction of OCP bridge functions. (a) The
OCP bridge function at the state point � = 160 with and without employing Ng’s technique of long-range decomposition. The respective
bridge functions are displaced by ∼5.0 in the entire reliable extraction interval. (b) The OCP direct correlation function at the state point
� = 160 with and without employing Ng’s technique of long-range decomposition. The respective direct correlation functions are displaced
by ∼5.0 in the entire reliable extraction interval. This displacement directly propagates to the respective bridge functions via the nonlinear
closure equation. It is also evident that the long-range decomposition allows the direct correlation function to obtain its exact asymptotic limit
c(x) = −βu(x).
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FIG. 5. (a) Main and zoomed-in inset: Color plots that feature the OCP bridge functions in the intermediate and long range 1.5 � x � 5
for all 17 state points of interest, as computed from the OZ inversion method with input from accurate standard MD simulations. (b) Color
plots that feature the OCP direct correlation functions (main) and OCP radial distribution functions (inset) in the entire range 0 � x � 5 for all
17 state points of interest, as computed from the OZ inversion method with input from accurate standard MD simulations.

of Bi(x) are employed in the well-known statistical formula
for the standard deviation of the mean of the bridge function
σ [B(x)],

σ [B(x)] =
√√√√ 1

Nb(Nb − 1)

Nb∑
i=1

{Bi(x) − B[〈g(x)〉M]}2,

where we have B(x) = B[〈g(x)〉M] for the average bridge
function that is computed from the average radial distribution
g(x) = 〈g(x)〉M prior to the block separation. The statisti-
cal error is quantified, at each point, with the near-optimal
combination Nb = Ng = 256. The selected error bars for the
statistical uncertainties correspond to 95% confidence inter-
vals.

The extracted bridge functions B(x) within the range 1.5 �
x � 5.0, for all 17 OCP state points of interest, are illus-
trated in Fig. 5(a). The OZ inversion method yields very
reliable results for x � 1.25, but the narrow interval 1.25 �
x � 1.50 is not included, since the necessary rescaling due
to large local magnitude of the bridge function would render
the oscillatory pattern invisible. The inset features a magni-
fication of the oscillatory decay behavior that characterizes
the bridge function for x � 1.8. From the inset, regardless
of the coupling parameter, it is evident that the OCP bridge
function exhibits a number of alternating local minima and
local maxima. It also turns positive at multiple periodic in-
tervals of a roughly 0.3d extent, until it becomes effectively
zero. This bridge function behavior is certainly a reflection
of the radial distribution function behavior. Therefore, it is
expected to emerge for all coupling parameters beyond the
Kirkwood point, even including the metastable (supercooled)
liquid states. On the other hand, an exponentially decaying
bridge function behavior should be expected for coupling
parameters below the Kirkwood point, although, at this point,
this remains a conjecture. A review of the literature suggests
that this periodic sign switching constitutes an omnipresent
bridge function feature for dense liquids not only for the
OCP but also for hard spheres [12,13], Lennard-Jones systems
[14,15], soft spheres [18], and Yukawa systems [22]. This
salient feature cannot be captured by the powerful variational
modified hypernetted chain (VMHNC) approach that is based
on the ansatz of bridge function quasiuniversality [49–51],

since it employs analytic Percus-Yevick bridge functions
which are manifestly nonpositive [52]. It should be pointed
out that the OCP bridge function has a smooth predictable
pattern with respect to the coupling parameter � within the
intermediate monotonic range as well as the long oscilla-
tory decaying range. As the coupling parameter increases,
the absolute value of the intermediate-range bridge function
and the oscillation amplitude of the long-range bridge func-
tion also monotonically increase. On the other hand, both
the monotonic-to-oscillatory transition point and the oscilla-
tory peak and trough positions are nearly independent of the
coupling parameter. These clear trends suggest that a simple
extrapolation- and interpolation-friendly OCP bridge function
parametrization should be viable.

The extracted direct correlation functions c(x) within the
range 0 � x � 5.0, for all 17 OCP state points of interest,
are illustrated in Fig. 5(b). It is worth pointing out that
the OCP direct correlation function also has a smooth pre-
dictable pattern with respect to the coupling parameter within
the entire range and that the family of the c(x; �) curves
is nonintersecting. It should also be noted that the direct
correlation function acquires values very close to its exact
asymptotic limit already from x ∼ 1.6–1.8 (close to the foot
of the curve where the slope changes abruptly) and that the
transition point is slightly displaced towards the origin as
the coupling parameter decreases. This was also observed
for the YOCP [22] and justifies the satisfactory performance
of the soft mean spherical approximation (SMSA) for the OCP
[53,54]. It motivated us to fit the short-range direct correla-
tion function with the polynomial c(x; �) = a(�) + b(�)x2 +
c(�)x3 + d (�)x5, as suggested by the analytic SMSA OCP
solution [53]. The SMSA-inspired fitting function proved to
be very accurate for all 17 OCP state points with mean
absolute relative errors always below 0.1%. Furthermore,
the coefficients a(�), b(�), c(�), d (�) turned out to have a
monotonic dependence on the coupling parameter, and they
could be easily fitted as functions of �. Other types of poly-
nomial fits were also tested, but proved to be less accurate than
the SMSA suggestion. For completeness, the extracted radial
distribution functions g(x) within the range 0 � x � 5.0, for
all 17 OCP state points of interest, are illustrated in the inset
of Fig. 5(b). The well-known monotonic increases of the
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FIG. 6. The OCP bridge functions in the intermediate and long range 1.5 � x � 5 for the state points (a) � = 170, (b) � = 130, (c)
� = 90, (d) � = 50. Main: The OCP bridge functions as computed from the OZ inversion method with input from our accurate standard MD
simulations vs the OCP bridge functions as calculated from the Iyetomi et al. [20] parametrization. Zoomed-in inset: The OCP bridge functions
as computed from the OZ inversion method with input from our accurate standard MD simulations together with error bars that stem from the
statistical uncertainties and correspond to 95% confidence intervals.

correlation void extent, of the alternating peak and trough
magnitudes and of the first coordination cell sharpness with
increasing coupling parameter can be easily observed.

Finally, the extracted bridge functions B(x) within the
range 1.5 � x � 5.0 are compared to the OCP bridge function
parametrization of Iyetomi et al. [20] (see details in the Ap-
pendix) in Fig. 6. It can be observed that (1) the largest relative
deviations occur in the region of the first bridge function max-
imum, whose magnitude and width are grossly overestimated
by the Iyetomi parametrization; (2) rather respectable rela-
tive deviations occur in the range of secondary maxima and
minima, which are omitted in the Iyetomi parametrization;
(3) small relative deviations are also present in the monotonic
bridge function range; and (4) the relative deviations decrease
in a systematic manner as the coupling parameter decreases.
The observed deviations in the monotonic and first maximum
region as well as the decrease of deviations with decreasing
coupling parameters can be explained by the large grid errors
that accompany the Iyetomi et al. bridge function extraction
which stem from the use of large �r/d = 0.04 histogram bin
widths [20]; compare also with Fig. 1. The deviations in the
secondary extrema region stem from the fact that the Iyetomi
parametrization is constructed by a high-order polynomial
that is multiplied by an exponential decaying function. The re-
sulting curve features a single maximum that is followed by a
prompt decay to zero. In other words, Iyetomi et al. purposely
avoided to include the description of the secondary maxima
in order to avoid overcomplicated expressions. The statistical
errors have been quantified in the inset of Fig. 6. They are
rather negligible, much smaller than the deviations from the
Iyetomi parametrization and rather uniformly spread in the
depicted region. The error bars also monotonically decrease

as the coupling decreases. A systematic comparison with the
Iyetomi parametrization and a comprehensive presentation of
the overall uncertainties can be found in the Supplemental
Material [55].

B. Short-range extraction

The specially designed canonical (NVT) MD simula-
tions are also carried out with the LAMMPS software
[40] and the Ewald sum is implemented with the PPPM
method. The simulated particle number is N = 1000, con-
sisting of 998 standard particles and two tagged particles,
which leads to a L/d = 16 cubic simulation box length.
The tagged particle correlation statistics are collected with
histogram bins of �r/d = 0.002 width. The short range is
split into four overlapping windows—I1 = [0.0, 0.4], I2 =
[0.2, 0.6], I3 = [0.4, 1.0], I4 = [0.8, 1.4] (in r/d units)—
and the intermediate and long range essentially define
a fifth overlapping window, I5 = [1.25,∞). Short-cavity
simulations feature 219 time steps for equilibration, a 27

time-step-saving period, and 219 time steps for statistics re-
gardless of the coupling parameters, which lead to Ms =
212(= 4096) for the number of the statistically independent
particle configurations. Long-cavity simulations feature 220

time steps for equilibration, a configuration-saving period
of 27 time steps, 231 time steps for statistics when � > 30
and 232 time steps for statistics when � � 30, which yield
the following numbers of statistically independent parti-
cle configurations: Ml = 224(= 16, 777, 216) when � > 30
and Ml = 225(= 33, 554, 432) when � = 30, 20, 10. Finally,
the windowing component of the tagged pair interac-
tion potential for the nth overlapping interval In = [bn, cn]

015208-8



BRIDGE FUNCTIONS OF CLASSICAL ONE-COMPONENT … PHYSICAL REVIEW E 105, 015208 (2022)

FIG. 7. Finite-size and Ewald sum implementation errors in the
computation of the logarithm of the OCP cavity distribution function
ln [y(x)] within the correlation void. Results for two particle numbers
(N = 1000, 2197), for two relative errors in the force computations
(10−4, 10−5) and for two Ewald sum implementation techniques
(the traditional Ewald method of N3/2 scaling as well as the PPPM
method of N log N scaling) at the � = 160 state point. It is evi-
dent that N = 1000 particles and a force accuracy of 10−4 in the
PPPM method lead to negligible errors in the screening potential
computation.

is βχn(x) = 100{erf[20(a1 − x)] + erf[20(x − a2)]}, where
a1 = bn − 0.1 when n > 1, a1 = −0.5 when n = 1 and a2 =
cn + 0.1, ∀n.

The short-range bridge function B(x) = ln [ysim(x)] +
ln C + c(x) + 1 is subject to uncertainties in the screening
potential extraction from the long-cavity MD simulations,
to uncertainties in the direct correlation function extrac-
tion from the standard MD simulations and to uncertainties
in the matching constant determination [22]. Assuming
that these uncertainty sources are statistically independent,
the total bridge function uncertainties can be computed
from σ 2[B(x)] = σ 2[ln ysim(x)] + σ 2[c(x)] + σ 2[ln C]. In a
similar fashion to Ref. [22], it has been verified that
σ [ln ysim(x)] � σ [c(x)], σ [ln C] ∀x � 1.25, which leads to
σ [B(x)] � σ [ln ysim(x)] ∀x � 1.25. It has also been verified
that finite-size errors and Ewald sum implementation er-
rors are negligible; see Fig. 7. Thus, the short-range bridge
functions are essentially subject only to statistical uncertain-
ties in the extraction of the screening potential. The latter
uncertainties are quantified by applying a block-averaging
procedure where the number of Nb blocks is much smaller
than the number of Ng configurations per block, as a con-
sequence of the fact that useful correlation statistics stem
only from the tagged particle pair. In particular, the combina-
tion (Nb, Ng) = (25, 219) when � > 30 and the combination
(Nb, Ng) = (25, 220) when � = 30, 20, 10, turned out to be
the near-optimal choices [22].

In the short-cavity simulations, that are dedicated to the
determination of the biasing component of the tagged pair
potential so that uniform statistics can be acquired within
the entire correlation void, the initial strategy focused on the
application of the methodology developed in Ref. [22]. This
methodology generates a truncated Gaussian series represen-
tation of increasing complexity that is obtained in an iterative
manner. Although it has led to uniform statistics within few
iterations for disparate pair interaction potentials (Yukawa,

Lennard-Jones, exponentially repulsive, inverse power law of
variable softness, and hard spheres), the methodology proved
to be quite computationally demanding for the OCP. As a
consequence, an alternative strategy is followed that takes ad-
vantage of the availability of an analytic parametrization of the
screening potential βHO(x), which was constructed by Ogata
[21] on the basis of MC simulations (see the Appendix for de-
tails). In particular, at each windowing interval and state point;
a short-cavity simulation is performed with the biasing com-
ponent βφn(x) = βHO(x), the radial distribution of the tagged
pair particles g12

sim is extracted, its logarithm is interpolated
with the linear function dn

0 + dn
1 x and the improved biasing

component can, thus, be updated as βφn(x) = βHO(x) + dn
0 +

dn
1 x. This strategy requires only one short-cavity simulation

to generate high-quality uniform statistics (in contrast to the
original strategy that requires three), but it is system-specific.
This is anticipated, since the original strategy assumes a
noninteracting tagged pair for the initial guess while the alter-
native strategy utilizes a very accurate readily available first
guess. The values of the dn

0 , dn
1 coefficients for the four win-

dows and for the 17 OCP state points of interest are provided
in Table II. It should be noted that, in the treatment of the
tagged particle pair interaction by the LAMMPS software,
only the short-range real-space component of the Coulomb
interaction (�/x)erfc(αsx) (with erfc the complementary error
function and αs the Ewald sum splitting parameter) can be
replaced by the designed interaction ψ (x). This leads to an
additional pair interaction term that can be absorbed in either
the connecting formula between the target and simulated sys-
tem or the definition of the biasing component. Adopting the
latter possibility, this ultimately yields the biasing component
βφn(x) = βHO(x) + dn

0 + dn
1 x + (�/x)erf (αsx). For this rea-

son, the employed values of the Ewald sum splitting parameter
αs are featured in the last column of Table II.

In the long-cavity simulations, that are dedicated to the de-
termination of the logarithm of the cavity distribution function
and thus of the short-range bridge function, the aforemen-
tioned biasing component is utilized. Then, the sequential
matching procedure is applied, followed in the overlapping
extent of consecutive windows starting from I5

⋂
I4 and

proceeding up to I2
⋂

I1, and leads to very accurate propor-
tionality constants ln Ci that are provided in Table III. (1)
The Widom expansion for the cavity distribution function
y(x) reveals that it can be expressed as a x2 infinite series
whose coefficients alternate in sign [56]. Therefore, it can
be expected that the short-range screening potential is also
well approximated by an even polynomial of the general form
ln [y(x)] = ∑l

i=0 y2ix2i. In fact, least-square fitting reveals that
the first three polynomial terms (l = 2) suffice for an excellent
agreement with the short range ln [y(x)] data. The coefficients
y0, y2, y4 are provided in Table IV together with the mean
absolute relative errors of the fit that are extremely low for
all 17 OCP state points of interest. (2) Jancovici’s theoretical
result for the second-order Widom OCP coefficient reads as
yth

2 = −�/4 [57]. The fitted MD simulation results and the
exact theoretical results for the second Widom coefficient
are very close, within ∼2%, for all coupling parameters; see
Table IV. This serves as an independent confirmation of the
accuracy of the short-range bridge function extraction proce-
dure. It is worth to emphasize that Jancovici’s y2 result could
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TABLE II. Values of the dn
0 and dn

1 coefficients present in the biasing component of the tagged pair potential for the overlapping windows
I1, I2, I3, and I4, as determined from the short-cavity simulations and then employed in the long-cavity simulations; the “0” subscript
corresponds to the constant term, the “1” subscript corresponds to the linear term, and the superscripts “1–4” specify the overlapping window.
Results for all 17 OCP state points of interest. The respective values of the Ewald splitting parameter αs are also provided.

� d1
0 d1

1 d2
0 d2

1 d3
0 d3

1 d4
0 d4

1 αs

170 9.2128 −0.0877 6.1937 +3.5241 −1.3107 +8.9430 −5.3940 +8.6347 0.4632
160 10.232 −1.3998 7.6685 +2.6468 +2.1695 +5.8998 −2.4830 +7.3717 0.4632
150 9.5835 −1.5325 7.1782 +1.2989 +0.0302 +7.5069 −4.0295 +7.6492 0.4650
140 9.2107 −0.2462 6.7411 +2.5474 +0.3386 +6.9836 −4.4816 +8.1610 0.4568
130 9.6468 −1.9939 6.7408 +2.6068 +0.9334 +6.3139 −3.5504 +7.4433 0.4569
120 9.4212 −1.0091 7.2295 +1.5578 +1.3830 +5.9210 −3.6982 +7.5858 0.4575
110 9.5927 −1.6088 7.4653 +1.2137 +2.7367 +4.4134 −3.1008 +7.1095 0.4559
100 9.4448 −1.0458 7.0443 +2.4022 +1.8630 +5.6496 −1.7073 +5.9338 0.4577
90 9.4561 −0.9844 7.7185 +0.6584 +2.6952 +4.7028 −0.6456 +5.0851 0.4570
80 9.6144 −1.4034 8.3187 −0.5255 +4.0379 +2.9926 +0.5337 +4.2342 0.4475
70 9.6208 −0.7962 7.9356 +0.2386 +3.6957 +3.6274 +0.0548 +4.7159 0.4465
60 9.6515 −1.1721 8.2530 −0.2686 +4.6930 +2.4704 +1.8648 +3.2985 0.4464
50 9.2518 +0.0579 6.9076 +2.6810 +1.9595 +5.5792 −1.0721 +5.6315 0.4401
40 9.8287 −2.0023 8.4183 −0.4184 +5.3728 +1.6568 +3.0018 +2.4565 0.4409
30 9.7423 −1.5448 8.5569 −0.6829 +6.4510 +0.2333 +4.3324 +1.3006 0.4352
20 0.0000 0.0000 8.7061 −1.0834 +7.0266 −0.4753 +5.3838 +0.4122 0.4368
10 0.0000 0.0000 8.9069 −1.5666 +6.7065 +0.1510 +6.2936 −0.3329 0.4171

have been imposed on the simulation results, in the sense that
y2 = yth

2 could have been assumed with the least-square fitting
only concerning the zeroth- and fourth-order Widom OCP
coefficients. Such a strategy was avoided, since it might result
in uncontrolled errors in the determination of y0 and y4. In any
case, the screening potential simulation data are preferred over

the Widom series representation during the computation of
the short-range bridge function. (3) The zeroth-order Widom
OCP coefficient y0 has been the subject of numerous investi-
gations, because it essentially controls the enhancement factor
of the pycnonuclear reactions in dense astrophysical plasmas
due to screening effects [58,59]. Importantly, the screening

TABLE III. Results of the long-cavity simulation matching procedure for all 17 OCP state points of interest. The matching in the
overlapping interval I5

⋂
I4 = [1.25, 1.4] leads to the constant ln C4, the matching in the overlapping interval I4

⋂
I3 = [0.8, 1.0] leads to

the constant ln C3, the matching in the overlapping interval I3
⋂

I2 = [0.4, 0.6] leads to the constant ln C2, and the matching in the overlapping
interval I2

⋂
I1 = [0.2, 0.4] leads to the constant ln C1. In each matching stage, the a priori knowledge of the logarithm of the cavity

distribution function in the outermost interval facilitates its determination in the inner interval, starting from the intermediate- and long-range
region I5 where the screening potential ln [y(x)] is available from the OZ inversion method. More specifically, the proportionality constant
is determined by the least-square fitting of ln [yIn (x)/ysim(x)] = ln Cn−1 ∀x ∈ In

⋂
In−1 that allows for the determination of yIn−1 (x) from

ln [yIn−1 (x)/ysim(x)] = ln Cn−1 ∀x ∈ In−1. The very low mean absolute relative deviations of eln Cn (< 0.02%) confirm the theoretical expectation
that the ratio ln [y(x)/ysim(x)] is constant.

� ln C4 eln C4 ln C3 eln C3 ln C2 eln C2 ln C1 eln C1

170 111.268 0.01% 104.425 0.02% 97.561 0.02% 94.037 0.01%
160 114.639 0.01% 108.545 0.02% 101.716 0.02% 98.711 0.01%
150 120.327 0.01% 114.011 0.02% 107.810 0.02% 104.386 0.01%
140 125.815 0.01% 120.263 0.01% 114.075 0.01% 110.898 0.01%
130 130.423 0.01% 125.156 0.01% 119.176 0.01% 116.222 0.01%
120 135.026 0.01% 129.905 0.01% 124.266 0.01% 121.248 0.01%
110 139.836 0.01% 134.928 0.01% 129.538 0.01% 126.679 0.01%
100 144.386 0.01% 139.554 0.01% 134.346 0.01% 131.660 0.01%
90 149.089 0.01% 144.520 0.01% 139.744 0.01% 136.922 0.01%
80 154.257 0.00% 150.290 0.01% 145.708 0.01% 142.971 0.01%
70 158.845 0.00% 155.057 0.01% 150.845 0.01% 147.958 0.01%
60 163.324 0.00% 159.871 0.01% 155.834 0.01% 153.167 0.01%
50 168.502 0.01% 165.455 0.01% 161.199 0.01% 158.653 0.01%
40 172.590 0.00% 169.817 0.01% 166.095 0.01% 163.788 0.01%
30 177.323 0.00% 174.878 0.01% 171.264 0.01% 169.066 0.01%
20 181.781 0.00% 179.588 0.01% 176.190 0.01% 83.176 0.01%
10 186.396 0.00% 184.337 0.00% 181.347 0.01% 88.358 0.01%
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TABLE IV. First-to-fifth columns: Results for the Widom series representation of the screening potential ln [y(x)] = y0 + y2x2 + y4x4 +
O[x6] [56] for all 17 OCP state points of interest. The very low mean absolute relative deviations of εln y < 0.092% between the MD extracted
ln [y(x)] and the fitted truncated Widom series reveal that the first three terms suffice for an accurate short-range representation. Note that the
monotonic dependence of the y0, y2, y4 coefficients on the coupling parameter. Sixth and seventh columns: Comparison of the second-order
Widom coefficient stemming from the fitted MD simulation result y2 with the exact theoretical result of Jancovici for the OCP yth

2 = −�/4 [57].
The low mean absolute relative deviations between these quantities (< 2.11%) are indicative of the accuracy of the indirect bridge function
extraction procedure that is adopted for the short range.

� y0 y2 y4 εln y yth
2 εy2

170 182.306 −41.611 4.932 0.030% −42.5 2.092%
160 171.642 −39.157 4.636 0.031% −40.0 2.107%
150 160.989 −36.722 4.348 0.032% −37.5 2.075%
140 150.334 −34.284 4.056 0.031% −35.0 2.046%
130 139.663 −31.825 3.757 0.031% −32.5 2.077%
120 128.983 −29.367 3.461 0.031% −30.0 2.110%
110 118.311 −26.932 3.173 0.032% −27.5 2.065%
100 107.638 −24.486 2.880 0.032% −25.0 2.056%
90 96.948 −22.034 2.585 0.033% −22.5 2.071%
80 86.263 −19.610 2.304 0.035% −20.0 1.950%
70 75.552 −17.145 2.005 0.034% −17.5 2.029%
60 64.838 −14.699 1.714 0.035% −15.0 2.007%
50 54.119 −12.260 1.426 0.034% −12.5 1.920%
40 43.371 −9.811 1.136 0.039% −10.0 1.890%
30 32.596 −7.358 0.846 0.038% −7.5 1.893%
20 21.780 −4.922 0.568 0.052% −5.0 1.560%
10 10.881 −2.461 0.284 0.075% −2.5 1.560%

enhancement factor depends on y0 in an exponential manner,
which implies that an accurate y0 determination is highly
desirable [60]. Salpeter and Van Horn calculated y0 based
on the ion sphere model and obtained values that are more
appropriate in the infinite coupling parameter limit [61,62].
Jancovici then computed y0 by exploiting the fact that the
screening potential can be expressed through the free-energy
change upon fixing the positions of a particle pair in the ap-
propriate configuration to form an interaction-site molecule,
considering the limit r → 0 which leads to an extreme case
of binary ionic mixture with N − 1 particles of charge Q
and one particle of charge 2Q, assuming the validity of the
linear mixing rule for the free energy of this extreme binary
ionic mixture and employing an accurate OCP equation of
state [57]. His original estimate was subsequently refined by
Rosenfeld, who employed a more accurate OCP equation of
state [63]. Ichimaru and collaborators computed y0 on the
basis of extra long MC simulations that were extrapolated
in the short-range domain within the assumption that the
fourth-order Widom coefficient can be approximated by zero
[20,64,65]. An alternative extrapolation method was later pro-
vided by Rosenfeld that was based on the same MC data but
that dropped the oversimplifying y4 = 0 assumption [63,66].
Later Ogata directly computed y0 on the basis of importance
sampling MC simulations [21]. A comparison of the Salpeter
ion sphere expression, refined Jancovici expression, Ichimaru
expression, Rosenfeld expression and Ogata expression with
our fitted simulation data for y0 is provided in Table V.
The near-excellent agreement with the independent thermo-
dynamic expression of Jancovici further increases confidence
to the accuracy of the short-range bridge function procedure.
The larger deviations from the Ichimaru expression compared
to the deviations from the Rosenfeld expression suggest that

the omission of the fourth-order Widom coefficient leads to
respectable inaccuracies in the OCP screening potential.

The extracted bridge functions B(x) and extracted screen-
ing potentials ln [y(x)] in the range 0 � x � 1.5, for all 17
OCP state points of interest, are illustrated in Fig. 8. Both
the OCP bridge function and OCP screening potential have
a smooth predictable pattern with respect to the coupling pa-
rameter within the short range and the families of the B(x; �)
as well as the ln [y(x; �)] curves are again nonintersecting.
Taking into account the monotonic polynomial expression
for the direct correlation function below its asymptotic limit,
the monotonic small argument polynomial expansion of the
screening potential and the nonlinear closure equation in the
short range B(x) = ln [y(x)] + c(x) + 1, it is no surprise that
the short-range bridge function has a monotonic polynomial
form. It should also be pointed out that, regardless of the
coupling parameter, the global extremum of both correlation
functions is always obtained at the origin x = 0, that the slope
of the logarithm cavity appears to be zero at the origin (in ac-
cordance with the Widom expansion) and that the slope of the
bridge function appears to be zero at the origin (although the
contact region is somewhat obscured by large local extraction
uncertainties).

Finally, the extracted bridge functions B(x) and extracted
screening potentials ln [y(x)] within the short range 0 � x �
1.5 are compared to the OCP bridge function parametriza-
tion of Iyetomi et al. [20] and the OCP screening potential
parametrization of Ogata [21] for four state points in Fig. 9
(main, inset). The following can be observed: (1) Regard-
less of the thermodynamic state, the bridge function and
screening potential deviations between the simulation results
and the parametrizations always increase towards the origin.
(2) The absolute deviations between the simulation results and
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TABLE V. Comparison of the zeroth-order Widom coefficient stemming from the fitted MD simulation result y0 with the results of
the Salpeter ion sphere expression [62], refined Jancovici expression [63], Ichimaru expression [64], Rosenfeld expression [66], and Ogata
expression [21]. The respective mean absolute relative deviations between the MD result and the analytic expression outcome are also reported.
The MD results agree very well with the refined Jancovici and Rosenfeld expressions and exhibit the largest deviations from the Ichimaru and
Ogata expressions. As expected, their deviations from the Salpeter ion sphere expression monotonically increase as the coupling parameter
decreases.

� y0 yISM
0 εISM yJan

0 εJan yIch
0 εIch yRos

0 εRos yOga
0 εOga

170 182.306 179.69 1.43% 182.445 0.08% 186.168 2.12% 182.948 0.35% 184.233 1.06%
160 171.642 169.12 1.47% 171.794 0.09% 175.325 2.15% 172.283 0.37% 173.487 1.07%
150 160.989 158.55 1.51% 161.140 0.09% 164.475 2.17% 161.611 0.39% 162.735 1.08%
140 150.334 147.98 1.57% 150.482 0.10% 153.618 2.18% 150.932 0.40% 151.977 1.09%
130 139.663 137.41 1.61% 139.819 0.11% 142.752 2.21% 140.246 0.42% 141.212 1.11%
120 128.983 126.84 1.66% 129.152 0.13% 131.877 2.24% 129.552 0.44% 130.440 1.13%
110 118.311 116.27 1.73% 118.480 0.14% 120.993 2.27% 118.849 0.45% 119.660 1.14%
100 107.638 105.70 1.80% 107.801 0.15% 110.099 2.29% 108.137 0.46% 108.871 1.15%
90 96.948 95.13 1.88% 97.115 0.17% 99.193 2.32% 97.416 0.48% 98.073 1.16%
80 86.263 84.56 1.97% 86.421 0.18% 88.275 2.33% 86.683 0.49% 87.265 1.16%
70 75.552 73.99 2.07% 75.717 0.22% 77.342 2.37% 75.937 0.51% 76.445 1.18%
60 64.838 63.42 2.19% 65.001 0.25% 66.394 2.40% 65.177 0.52% 65.611 1.19%
50 54.119 52.85 2.34% 54.268 0.28% 55.427 2.42% 54.401 0.52% 54.761 1.19%
40 43.371 42.28 2.52% 43.515 0.33% 44.437 2.46% 43.605 0.54% 43.893 1.20%
30 32.596 31.71 2.72% 32.733 0.42% 33.420 2.53% 32.784 0.58% 33.001 1.24%
20 21.780 21.14 2.94% 21.906 0.58% 22.365 2.69% 21.930 0.69% 22.077 1.36%
10 10.881 10.57 2.86% 10.994 1.04% 11.254 3.43% 11.027 1.34% 11.104 2.05%

the respective parametrizations are nearly constant for all ther-
modynamic states. However, owing to the bridge function and
screening potential magnitude decrease as the coupling pa-
rameter decreases, the absolute relative deviations increase as
the coupling parameter decreases. (3) The statistical errors are
much smaller than the deviations from the Iyetomi and Ogata
parametrizations. They are rather uniformly spread with the
exception of the neighborhood of the origin, where they sub-
stantially increase (see the emergence of spiky features and
local loss of smoothness). (4) The statistical errors are nearly
independent of the state point, which again implies that their
relative value increases as the coupling parameter decreases.
A more systematic comparison with the Iyetomi parametriza-
tion and a comprehensive presentation of the overall uncer-
tainties can be found in the Supplemental Material [55].

Tabulated full-range OCP bridge functions for the 17 ther-
modynamic states of interest have been made freely available
online [67]. To be more specific, bridge function data are
provided for the average as well as the standard deviation of
the average in the interval 0.01 < x � 5 that are discretized
by reduced distance steps of δr/d = 0.01. Therefore, given
the �r/d = 0.002 bin width employed in the histograms for
the extraction of the radial distribution function (interme-
diate and long range) and for the extraction of the cavity
distribution function (short range), the bridge function data
have been down-sampled by five. It is pointed out that the
starting reduced distance x varies depending on the thermody-
namic state, since some close-to-the-origin distances that are
judged to be poorly sampled have been removed from the data
set.

FIG. 8. (a) Color plots that feature the OCP bridge functions in the short range 0 � x � 1.5 for all 17 state points of interest, as computed
from the cavity distribution method with input from specially designed long-cavity MD simulations. (b) Color plots that feature the logarithm
of the OCP cavity distribution function in the short range 0 � x � 1.5 for all 17 state points of interest, as computed from the cavity distribution
method with input from specially designed long-cavity MD simulations.
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FIG. 9. Main: The OCP bridge functions in the short range 0 � x � 1.5 for the state points (a) � = 170, (b) � = 130, (c) � = 90, (d)
� = 50, as computed from the cavity distribution method with input from specially designed long-cavity MD simulations vs the OCP bridge
functions as calculated from the Iyetomi et al. parametrization [20]. The small error bars, which originate from the statistical uncertainties,
correspond to 95% confidence intervals. Inset: The OCP screening potentials in the short range 0 � x � 1.5 for the state points (a) � = 170, (b)
� = 130, (c) � = 90, (d) � = 50, as computed from the cavity distribution method with input from specially designed long-cavity MD
simulations vs the OCP screening potentials as calculated from the Ogata parametrization [21].

C. Extrapolation at the origin

The magnitude of the bridge function at the origin, apart
from its relation to the zeroth-order Widom coefficient y0,
has played a significant role in the development of integral
equation theory approximations and in the assessment of their
accuracy [68,69]. In addition, there exists a phenomenological
freezing criterion that is based on the constant magnitude of
B(0) which has been conjectured to be nearly independent of
the interaction potential [70]. For these reasons, the magnitude
of the OCP bridge function at the origin deserves a meticulous
analysis.

Due to the finiteness of the bin width that is employed in
the histogram method and owing to the effective bin position
that lies at the center of each bin in the limit of infinitesi-
mal widths, the bridge function is not accessible at distances
shorter than �r/2 = 0.001d . In practice, our nonaccessibility
range depends on the coupling parameter and extends up to
larger distances, since the shortest distances are not sampled
uniformly and, thus, host large statistical errors. In absence of
a rigorous small-argument expansion for the bridge function,
an extrapolation based on its functional behavior at very short
distances should lead to values whose accuracy level would
be impossible to evaluate. Here a simple technique will be
followed for the computation of the contact value of the OCP
bridge function B(0), which is based on the Widom series
representation of the screening potential and on the so-called
zero separation theorems [70–72]. This technique has already
been applied to the YOCP [22], but it will be briefly repeated
in what follows, due to the well-known subtleties that are

involved in the inclusion of the uniform charge neutralizing
background to the OCP Hamiltonian.

Setting r = 0 to the OZ equation and to the exact closure
equation, employing g(0) = 0 which is valid for pair inter-
actions that are divergent at the origin, substituting for the
logarithm of the cavity distribution function via the Widom
series representation ln [y(r)]|r=0 = y0 and combining the
above, we get the expression

B(0) = y0 − n
∫

c(r)h(r) d3r.

We proceed by adding and subtracting the asymptotic limit of
the direct correlation function −βu(r) within the c(r) factor
and utilizing the definition of the OCP reduced excess internal
energy uex = (1/2)nβ

∫
u(r)h(r) d3r. Then we substitute for

h(r) = g(r) − 1 and we employ the statistical relation for
the OCP reduced inverse isothermal compressibility μT =
1 − n

∫
[c(r) + βu(r)] d3r. Utilizing reduced units and spher-

ical coordinates for the remaining integral −n
∫

[c(r) +
βu(r)]g(r) d3r, we obtain

B(0) = y0 − μT + 2uex + 1−3
∫ ∞

0
x2g(x)[c(x) + βu(x)]dx.

Introducing the δ = 3
∫ ∞

0 x2g(x)[c(x) + βu(x)]dx compact
notation for brevity, where the quantity δ possesses the small-
est value among the nontrivial contributions regardless of the
coupling parameter, we end up with

B(0) = y0 − μT + 2uex − δ + 1.
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TABLE VI. First-to-sixth columns: The extrapolated value of the bridge function at the origin Bzsep(0), as calculated from the zero-
separation expression Bzsep(0) = y0 − μT + 2uex − δ + 1, together with all four nontrivial contributions to its magnitude for the 17 OCP
state points of interest. The reduced excess internal energy uex and the reduced inverse isothermal compressibility μT are calculated from
the OCP equation of state of Ref. [37], the zeroth-order Widom coefficient y0 is computed by least-square fitting input from the specially
designed long-cavity MD simulations. and the integral residual term δ is computed with input from the accurate standard MD simulations. The
contribution of the integral residual term δ to Bzsep(0) is the smallest for all 17 state points, as expected by the fact that the direct correlation
function approaches its asymptotic limit already around x ∼ 1.6–1.8 and the fact that the correlation void g(x) � 0 begins around x ∼ 0.8–1.3,
which imply that the integrand factor g(x)[c(x) + βu(x)] is nonzero only within a fraction of the first coordination cell 1.05 � x � 1.7. Seventh
and eighth columns: The extrapolated value of the bridge function at the origin Bfit (0), as calculated by least-square fitting the monotonic
short-range bridge function with a polynomial and singling out the constant term, together with the absolute relative deviations between
Bzsep(0) and Bfit (0) for the 17 OCP state points of interest. Ninth and tenth columns: The extrapolated value of the bridge function at the origin
BIye(0), as calculated by setting x = 0 to the Iyetomi et al. [20] parametrization, together with the absolute relative deviations between Bzsep(0)
and BIye(0) for 17 OCP state points of interest.

� Bzsep(0) y0 μT uex δ Bfit (0) efit BIye(0) eIye

170 −47.074 182.31 −65.858 −149.96 −3.6870 −46.993 0.17% −44.580 5.30%
160 −44.028 171.64 −61.885 −141.03 −3.5104 −43.969 0.13% −41.274 6.25%
150 −40.961 160.99 −57.912 −132.11 −3.3481 −40.950 0.03% −38.024 7.17%
140 −37.907 150.33 −53.940 −123.18 −3.1804 −37.938 0.08% −34.831 8.11%
130 −34.909 139.66 −49.970 −114.26 −2.9762 −34.933 0.07% −31.699 9.20%
120 −31.904 128.98 −46.001 −105.34 −2.7953 −31.938 0.11% −28.631 10.3%
110 −28.907 118.31 −42.034 −96.429 −2.6055 −28.955 0.17% −25.630 11.3%
100 −25.926 107.64 −38.068 −87.521 −2.4097 −25.987 0.23% −22.702 12.4%
90 −22.978 96.948 −34.105 −78.618 −2.2067 −23.036 0.25% −19.850 13.6%
80 −20.032 86.263 −30.144 −69.723 −2.0075 −20.107 0.38% −17.081 14.7%
70 −17.142 75.552 −26.187 −60.837 −1.7923 −17.206 0.38% −14.400 16.0%
60 −14.285 64.838 −22.233 −51.961 −1.5653 −14.341 0.39% −11.817 17.3%
50 −11.465 54.119 −18.285 −43.099 −1.3288 −11.523 0.50% −9.3411 18.5%
40 −8.7142 43.371 −14.344 −34.256 −1.0821 −8.7676 0.61% −6.9847 19.8%
30 −6.0611 32.596 −10.412 −25.440 −0.81086 −6.1026 0.68% −4.7641 21.4%
20 −3.5479 21.780 −6.4981 −16.671 −0.51539 −3.5774 0.83% −2.7009 23.9%
10 −1.3188 10.881 −2.6193 −7.9972 −0.17532 −1.3090 0.75% −0.8230 37.6%

The four nontrivial contributions to B(0) can be easily deter-
mined from readily available input, namely, by performing
thermodynamic integrations and differentiations of very ac-
curate OCP equations of state (uex, μT) [37], by fitting the
Widom series representation of the logarithm of the cavity
distribution function to the output of our specially designed
long-cavity MD simulations (y0) and by employing the ex-
tracted radial distribution functions and direct correlation
functions from our accurate standard MD simulations (δ).
It is noted that tail corrections in the δ evaluation should
be completely negligible given the short-range nature of
the c(x) + βu(x) factor of the integrand. It should also be
pointed out that the above zero-separation technique for-
mally still constitutes an extrapolation method due to the
manner in which y0 is determined. Extrapolations could be
completely avoided by using another type of specially de-
signed simulations that are based on the insertion of test
particles in order to extract the exact ln [y(r)]|r=0 = y0 value
at the origin [73]. However, as concluded in Sec. III B,
the extrapolated y0 values are accurate enough so that an
additional series of simulations is considered to be redun-
dant. This is a fortunate conclusion, since particle insertion
methods can become grossly inefficient at strong coupling
[74].

The contact bridge function values that result from our
extrapolation method are provided in Table VI together
with the four nontrivial contributions. In addition, the B(0)

values that result from the extrapolation of a polynomial
fit of our short-range bridge function and the B(0) values
that emerge from the Iyetomi et al. parametrization are also
provided.

IV. THE OCP BRIDGE FUNCTION PARAMETRIZATION

A transparent strategy has been developed for the acquisi-
tion of an accurate analytical representation for the extracted
OCP bridge functions. Initially, the oscillatory decaying be-
havior of the bridge function within the intermediate- and
long-range intervals is fitted with a combination of ex-
ponential decays and cosines or sines. Subsequently, the
monotonic behavior of the bridge function within the short-
and intermediate-range intervals is fitted with a high-order
polynomial. Afterwards, as a consequence of the deliberate
relatively extended overlap of the above two fitting ranges,
the two distinct fitting functions can be smoothly combined
into a unique fitting function that remains accurate in the
entire range. This is simply accomplished with the aid of
a sigmoid switching function that is bounded within [0,1].
Finally, this procedure should be repeated for the 17 OCP
state points of interest leading to data sets for the numerous
coefficients involved. The OCP bridge function parametriza-
tion is completed by seeking for the preferably monotonic
fits that capture the coupling parameter dependence of these
coefficients.
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A. Intermediate- and long-range parametrization

The intermediate- and long-range OCP bridge function is
fitted in the interval 1.4 � x � 3.0 with the function

BIL(x, �) = l0(�) exp [−l1(�)(x − x0) − ζ1x2]

×{cos [l2(�)(x − x0)]+l3(�) exp [−ζ2(x−x0)]}.
(7)

This fitting expression is inspired by a parametrization that
accurately describes the long-range bridge functions of dense
hard sphere systems [29]. In the above; the coefficients
x0, ζ1, ζ2 are constant with x0 = 1.44, ζ1 = 0.3, ζ2 = 3.5
(recall the observation that the oscillatory peak and trough
positions of the bridge functions are nearly independent of the
coupling parameter), whereas the coefficients l0, l1, l2, l3 are
functions of the coupling parameter that are given by

l0(�) = �{0.25264 − 0.31615 ln (�) + 0.13135[ln (�)]2

− 0.023044[ln (�)]3 + 0.0014666[ln (�)]4}, (8)

l1(�) = �1/6{−12.665 + 20.802 ln (�) − 9.6296[ln (�)]2

+ 1.7889[ln (�)]3 − 0.11810[ln (�)]4}, (9)

l2(�) = �1/6{15.285 − 14.076 ln (�) + 5.7558[ln (�)]2

− 1.0188[ln (�)]3 + 0.06551[ln (�)]4}, (10)

l3(�) =�1/6{35.330 − 40.727 ln (�) + 16.690[ln (�)]2

− 2.8905[ln (�)]3 + 0.18243[ln (�)]4}. (11)

These fitting expressions are exclusively of the type
li(�)/�s = ∑4

j=0 l j
i (ln �) j and inspired by the Iyetomi et al.

OCP bridge function parametrization [20]. In general, the
presence of ln (�) factors is typical in the parametrization
of different OCP properties such as the excess internal en-
ergy [3,39,54] or radial distribution function [75] and even
emerges in exact low �-expansions of the excess internal
energy beyond the Debye-Hückel term [76–78]. The mean
absolute relative errors of the l0(�), l1(�), l2(�), and l3(�)
fits are 2.36%, 1.98%, 0.33%, and 3.49%, respectively. Note
that the mean absolute relative errors of the BIL(x, �) fits for
each coupling parameter cannot be reliably estimated due to
the BIL(x, �) zero crossings.

It can be easily proven that the l0(�), l1(�), l2(�), and l3(�)
fits are monotonic functions of the coupling parameter, which
implies that the BIL(x, �) parametrization can be interpolated
without loss of accuracy and can even be extrapolated with a
reasonable loss of accuracy. Since the fitting interval has been
contained within 1.4 � x � 3.0, the BIL(x, �) parametrization
can only reliably describe the first oscillation, i.e., the first
three zero crossings that contain the first two extrema, but not
the secondary oscillations that follow beyond x = 3. Efforts
to extend the BIL(x, �) parametrization led to nonmonotonic
li(�) coefficients and were, thus, discarded. This is most prob-
ably a consequence of the statistical errors which, in spite of
their small magnitude, might obscure the real bridge function
dependence on the coupling parameter at the long range,
where its magnitude is naturally very small. Nevertheless,
the inclusion of the entire first oscillation in our parametriza-

tion constitutes a significant improvement over the Iyetomi
parametrization that decays exponentially to zero beyond the
first extremum.

B. Intermediate- and short-range parametrization

The intermediate- and short-range bridge function is fitted
in the interval 0.2 � x � 1.8 with a fifth-order polynomial

BIS(x, �) = s0(�) + s2(�)x2 + s3(�)x3 + s4(�)x4 + s5(�)x5.

(12)

This fitting expression stems from the short-range version
of the exact closure equation B(x) = ln [y(x)] + c(x) + 1, the
truncated Widom series representation of the screening po-
tential ln [y(x)] = y0 + y2x2 + y4x4 and the analytical SMSA
OCP solution for the direct correlation function c(x) = c0 +
c2x2 + c3x3 + c5x5 [53]. Taking into account the documented
success of the Widom and SMSA expressions, the BIS(x, �)
parametrization is expected to be very accurate. In fact, the
mean absolute relative error of the above fit varies within
0.12%–1.99% depending on the coupling parameter and its
average value is merely 0.32%. It should be noted that the
absence of a linear term is consistent with the empirical ob-
servation that the bridge function slope is very close to unity
at the origin. Alternative polynomial fits which featured a
linear term, lacked a cubic term or included higher order terms
were attempted that proved to be less accurate. All unknown
coefficients s0, s2, s3, s4, s5 have a strong dependence on the
coupling parameter that is described by

s0(�) = �{0.076912 − 0.10465 ln (�)

+ 0.0056629[ln (�)]2 + 0.00025656[ln (�)]3}, (13)

s2(�) = �{0.068045 − 0.036952 ln (�)

+ 0.048818[ln (�)]2 − 0.0048985[ln (�)]3}, (14)

s3(�) =�{−0.30231 + 0.30457 ln (�)

− 0.11424[ln (�)]2 + 0.0095993[ln (�)]3}, (15)

s4(�) =�{0.25111 − 0.26800 ln (�)

+ 0.082268[ln (�)]2 − 0.0064960[ln (�)]3}, (16)

s5(�) = �{−0.061894 + 0.066811 ln (�)

− 0.019140[ln (�)]2 + 0.0014743[ln (�)]3}. (17)

These fitting expressions are again exclusively of the type
si(�)/� = ∑3

j=0 s j
i (ln �) j . The average absolute relative er-

rors of the s0(�), s2(�), s3(�), s4(�), and s5(�) fits are 0.13%,
0.28%, 0.70%, 4.49%, and 3.74%, respectively.

It can be proven that the s0(�), s2(�), s3(�), s4(�), and
s5(�) fits are monotonic functions of the coupling parameter,
which suggests that also the BIS(x, �) parametrization can be
interpolated without loss of accuracy and can be extrapolated
(even in the supercooled regime) with a reasonable loss of
accuracy. It is worth pointing out that the lower endpoint of
the fitting interval is selected to be rather high in an effort to
avoid the statistical errors that characterize the neighborhood
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FIG. 10. The sigmoid switching function f (x), that is defined in
Eq. (19), as a function of the reduced distance x. The blue line traces
values within the fitting interval of the intermediate and short range
alone [ f (x) is nearly constant], the green line traces values within
the fitting interval of the intermediate and long range alone [ f (x) is
constant], the magenta line traces values within the overlap of the
two fitting intervals [ f (x) is rapidly changing].

of the origin, especially for the lowest coupling parameters
probed.

C. Full range parametrization

The intermediate- and long-range and intermediate- and
short-range OCP bridge function parametrizations are uni-
fied with the introduction of a switching function in a single
parametrization that is strictly valid in the interval x � 3.0,

but can be employed in the entire range of distances. Overall,
we have

B(x, �) = [1 − f (x)]BIS(x, �) + f (x)BIL(x, �), (18)

f (x) = 1
2 {1 + erf[ζ3(x − x1)]}, (19)

where x1, ζ3 have the constant values x1 = 1.5, ζ3 = 5.0
that are determined by minimizing the deviations of the
parametrization from the extracted data and where f (x) de-
notes the sigmoid switching function that is expressed with
the aid of an error function.

The switching function f (x) is illustrated in Fig. 10. It
is apparent that the largest extent of the interval where this
sigmoid function transitions from its lower asymptotic limit
of zero to its upper asymptotic limit of unity (1.3 � x � 1.7)
belongs to the overlapping fitting range (1.4 � x � 1.8). This
ensures that B(x, �) properly converges to BIS(x, �) at short
distances and to BIL(x, �) at long distances, but also that
B(x, �) is an accurate representation of the extracted bridge
function at intermediate distances.

A comparison between the full range parametrization and
the indirectly extracted bridge function is featured in Fig. 11
for four OCP states. It is confirmed that the sigmoid switch-
ing function strategy enables a smooth continuous passage
from the monotonic short-range behavior to the oscillatory
decaying long-range behavior. The full range parametrization
is characterized by a high level of accuracy, regardless of
coupling parameter. The largest deviations are always ob-
served in the near-asymptotic interval x � 3.0 that lies outside
the fitting range. Therein, the parameterized OCP bridge

FIG. 11. The indirectly extracted OCP bridge functions stemming from combining the OZ inversion method with input from our accurate
standard MD simulations and the cavity distribution method with input from our specially designed long-cavity MD simulations (blue circles,
down-sampled) and as analytically parameterized by the set of Eqs. (7), (12), and (18) (red solid lines). Results for the state points (a)
� = 170, (b) � = 130, (c) � = 90, and (d) � = 50. Main: The OCP bridge functions in the entire nontrivial interval 0 � x � 5.0, where only
the monotonic behavior of the short range is discernible. Inset: Zoom-in on the OCP bridge functions in the intermediate- and long-range
interval 1.5 � x � 5.0, where only the oscillatory decaying behavior is discernible.
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function undergoes a very weak stretched oscillation before
reaching its zero asymptotic limit, whereas the indirectly ex-
tracted OCP bridge function undergoes multiple progressively
damped oscillations before reaching its zero asymptotic limit.
These two oscillation patterns not only differ in terms of mag-
nitude, but also in terms of wavelength. Taking into account
that the neglected secondary oscillations are more prominent
close to the crystallization point and that the relative errors in
the bridge function extraction are larger close to the Kirkwood
point, it can be expected that the parametrization is more
accurate for intermediate coupling parameters. Finally, for
completeness, we note that the parametrization is deliberately
constructed in such a manner so that the bridge function
correctly tends to zero everywhere at the weak coupling limit
� � 1. This is straightforward to confirm, since li(� → 0) =
0 and si(� → 0) = 0. A more systematic comparison, for
all 17 OCP thermodynamic states of interest, between the
indirectly extracted bridge function and our proposed bridge
function parametrization can be found in the Supplemental
Material [55].

V. APPLICATION TO YUKAWA
ONE-COMPONENT PLASMAS

It is straightforward that the improved OCP bridge function
parametrization can be combined with the OZ equation and
the exact nonlinear closure equation in an integral equa-
tion theory approach that will be remarkably successful
for strongly coupled OCP liquids. It is worth emphasiz-
ing that empirical approaches based on bridge function
parametrizations should be much more accurate than empir-
ical approaches based on direct radial distribution function
parametrizations [75] in terms of thermodynamic and struc-
tural quantities. This is an immediate consequence of the weak
sensitivity of the radial distribution function on the bridge
function, which implies that small bridge function extrac-
tion errors and fitting errors barely propagate to the level of
radial distribution functions and thermodynamic quantities.
In addition, radial distribution function or structure factor
parametrizations are far more complicated than bridge func-
tion parametrizations [75,79–81]. In what follows, it will be
shown that the improved OCP bridge function parametriza-
tion can constitute the basis of an empirical approach that is
remarkably accurate not only for strongly coupled Coulomb
liquids, but also for the more extended family of strongly
coupled Yukawa liquids.

A. Isomorph-based empirically modified hypernetted
chain approach

Yukawa one-component plasmas (YOCP) are model sys-
tems that consist of classical point particles which are
immersed in a charge neutralizing background. In contrast
to the OCP, the uniform background medium is not rigid but
polarizable. As a consequence, the charged particles interact
via the screened Coulomb (Yukawa) pair potential u(r) =
(Q2/r) exp(−r/λ) where λ is the linear screening length.
The thermodynamic state points of the YOCP are specified
in terms of two independent dimensionless variables, the
standard coupling parameter � = (βQ2)/d and the screening

parameter κ = d/λ [82–85]. In the rigid background limit
λ → ∞ or κ → 0, the Yukawa potential collapses to the bare
Coulomb potential and the YOCP collapses to the OCP. The
YOCP is an important model system of statistical mechanics,
since it explores the full range of potential softness from the
long-range Coulomb interactions of the OCP for κ = 0 to the
ultra-short-range interactions of the hard sphere system for
κ → ∞. The YOCP also has important practical implications
due to its relevance to complex plasmas [84,85], colloidal
suspensions [86,87], ultracold neutral plasmas [88,89], and
warm dense matter [90,91].

It has recently been demonstrated that strongly coupled
YOCP liquids belong to the broad class of R-simple sys-
tems [92]. Such systems are the subject of isomorph theory
[93–96] and their rigorous definition concerns the relation
U (Ra ) < U (Rb) ⇒ U (μRa ) < U (μRb), where U (R) is the
total potential energy, R = (r1, . . . , rN ) is the particle config-
uration, Ra and Rb are two equal density configurations and μ

denotes a positive constant [97]. The definition states that the
ordering of the total potential energies of two configurations
that are consistent with the same density is maintained when
both these two configurations are uniformly scaled to the
same different density. It is exact only for systems whose
constituents interact via Euler-homogeneous potentials (plus
constant), such as inverse power-law systems. For all other
R-simple systems, the definition should be understood to con-
cern the most physically relevant configurations [97], which
reflects the approximate nature of the isomorph theory and
its consequences. The practical identification of R-simple sys-
tems concerns the existence of strong correlations between
their virial (W ) and potential energy (U ) constant-volume
thermal equilibrium fluctuations [98]. The Pearson coefficient
RWU is employed to quantify the strength of W -U correlations,
with RWU � 0.9 corresponding to R-simple systems, a crite-
rion that allows for a straightforward characterization from
canonical (NVT) computer simulations.

R-simple systems possess isomorphic lines or just iso-
morphs; i.e., phase diagram curves of constant excess entropy,
along which a large set of structural and dynamic properties
are approximately invariant when expressed in properly re-
duced units where the length is normalized to the mean-cubic
interparticle distance � = n−1/3, the energy is normalized
to the thermal energy 1/β and the time is normalized to
n−1/3√βm [93–96]. The invariant properties include the radial
distribution function [93] (but not the direct correlation func-
tion), the incoherent intermediate scattering function [96], the
transport coefficients [99], and several high-order structure
measures [100]. Very recently, a systematic computational
investigation revealed that the bridge function belongs to this
list of approximately isomorph invariant quantities [22].

The isomorph-based empirically modified hypernetted
chain (IEMHNC) approximation is an integral equation theory
approach that is based on the isomorph invariance of the
reduced unit bridge functions of R-simple systems [31]. This
approximate invariance property leads to a self-consistent clo-
sure to the exact relations of integral equation theory provided
that two external inputs are available: the closed-form descrip-
tion of the isomorphic curves on the thermodynamic phase
diagram and a bridge function parametrization valid along
any phase diagram line that has a unique intersection point

015208-17



F. LUCCO CASTELLO AND P. TOLIAS PHYSICAL REVIEW E 105, 015208 (2022)

with any isomorphic curve [31]. Thus, the available isentropic
correspondence can map the bridge function from the initial
thermodynamic line to the entire phase diagram.

The YOCP exhibits exceptionally strong W -U correlations
(RWU > 0.99) for a quite extended part of the fluid phase
covering the entire dense liquid region of the phase diagram
[22,92]. Different methods have been employed to trace out
the YOCP isomorphic lines that correspond to different re-
duced excess entropies and it has been demonstrated that all
YOCP isomorphs can be accurately parameterized by [22,92]

�iso(�, κ ) = �e−ακ [1 + ακ + (1/2)(ακ )2] = const, (20)

where α = �/d = (4π/3)1/3 denotes the ratio of the cubic
mean interparticle distance � over the Wigner-Seitz radius d .
We note that this closed-form expression was originally pro-
posed as an empirical description of the YOCP crystallization
line as determined by MD simulations [101,102]. This is con-
sistent with the finding that, to the first order, the isomorphic
lines are nearly parallel to the crystallization line [103,104].
Given the approximate isomorph invariance property and the
configurational adiabat mapping of Eq. (20), the OCP bridge
functions constitute the basis for the construction of YOCP
bridge functions via

BYOCP(x, �, κ ) = BOCP[x, �ISO(�, κ )]. (21)

Overall, the IEMHNC approach for YOCP liquids consists
of Eqs. (1) and (2), Eqs. (20) and (21), and the OCP bridge
function parametrization.

The IEMHNC approach has been successfully applied to
dense stable Yukawa liquids [31,52,105], metastable Yukawa
liquids [106] and dense bi-Yukawa liquids [107] employing
the Iyetomi et al. parametrization of the OCP bridge function
[20]. It should be pointed out that these investigations pro-
ceeded the computational demonstration that YOCP bridge
functions are approximately isomorph invariant quantities
[22], thus the bridge function isomorph invariance is referred
to as an ansatz therein. A comprehensive benchmarking with
available computer simulations of dense YOCP liquids has
revealed that this version of the IEMHNC approach has a
remarkable accuracy with predictions of structural properties
within 2% inside the first coordination cell and predictions
of thermodynamic properties within 0.5% [31,52]. In addi-
tion, a systematic comparison with different advanced integral
equation theory approximations has demonstrated that the
performance of the original version of the IEMHNC approach
is comparable to that of the VMHNC approach [51] but with
a 10–80 times less computational cost depending on the state
point [52]. In Sec. V B we shall explore the performance of
an alternative version of the IEMHNC approach for dense
YOCP liquids, which employs our improved OCP bridge
function parametrization as a building block instead of the
Iyetomi parametrization. A possible improved agreement with
computer simulations of dense YOCP liquids would serve as
additional evidence for the superiority of our parametrization.

B. Structural and thermodynamic properties

Our version of the IEMHNC approach for YOCP liquids
consists of the OZ equation and the nonlinear closure equa-
tion [see Eqs. (1) and (2)] of the YOCP isomorph mapping

and the approximate reduced-unit isomorph invariance prop-
erty of bridge functions [see Eqs. (20) and (21)], as well as
of our improved OCP bridge function parametrization [see
Eqs. (7), (12), and (18)]. The numerical solution of this set of
equations is achieved with a well-established algorithm that is
based on Picard iterations in Fourier space [31,52].

A graphical comparison between the radial distribution
functions resulting from our IEMHNC approach with the
“exact” radial distribution functions extracted from MD sim-
ulations is illustrated in Fig. 12 for 16 different YOCP state
points (four different screening parameters). The IEMHNC
results are nearly indistinguishable from the MD simula-
tions within the first coordination cell, especially for κ =
1.0, 1.5, 2.0. Deviations are discernible for κ = 4.0 and the
two larger coupling parameters investigated, which is most
probably a consequence of the isomorph invariance prop-
erty, which becomes more approximate as the interaction
softness decreases. In addition, small deviations are visible
in the neighborhood of the second maximum of the radial
distribution function only for the largest coupling parameter
probed, regardless of screening length. This is most probably
a consequence of the OCP bridge function parametrization,
whose fitting range did not include the second coordination
cell.

The MD simulations, the original IEMHNC approach and
the updated IEMHNC approach lead to radial distribution
functions which are so close, that a simple graphical in-
spection cannot lead to any safe conclusion regarding which
version of the IEMHNC approach is superior. For quantitative
comparison, we shall resort to some key functional properties
of the radial distribution function that have been extracted in
a systematic Langevin Dynamics investigation of the weakly
screened YOCP [108]. This simulation study probed three
values of the screening parameter (κ = 0, 1, 2) and numer-
ous values of the coupling parameter between unity and the
crystallization value. The functional characteristics extracted
from these simulations include the edge of the correlation void
[estimated as the position where g(r) = 0.5], the magnitude as
well as the position of the first maximum, the first nonzero
minimum, and the second maximum. Extensive tabulations
of the radial distribution function characteristics as obtained
from these simulations as well as the original and updated
versions of the IEMHNC approach are provided in the sup-
plementary material [55].

The main conclusions drawn from this comparison are the
following. In the OCP case, the updated IEMHNC approach
strongly improves the predictions of the original IEMHNC
approach regarding the edge of the correlation void, the mag-
nitude and position of the first maximum and the magnitude
and position of the first nonzero minimum. On the other hand,
the second maximum predictions of the two IEMHNC ver-
sions are comparable, with the updated version being more
accurate for the position and the original version more accu-
rate for the magnitude. Note also that the updated IEMHNC
version yields more accurate radial distribution functions not
only on average but also distinctly for all 31 OCP states
investigated. The above strongly confirm the superiority of
our OCP bridge function parametrization over the Iyetomi
parametrization. In the YOCP case, regardless of screen-
ing parameter, the updated IEMHNC approach again greatly
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FIG. 12. The YOCP radial distribution functions resulting from MD simulations (discrete symbols) and from the version of the IEMHNC
integral equation theory approach that utilizes our improved OCP bridge function parametrization (solid lines). Results for four screening
parameters κ = 1.0 (a), κ = 1.5 (b), κ = 2.0 (c), κ = 4.0 (d) and for four coupling parameters whose isomorphic OCP state points have
�OCP = 160 (purple, stars), �OCP = 120 (magenta, circles), �OCP = 80 (light gray, diamonds), and �OCP = 40 (cyan, squares). The IEMHNC
results are nearly indistinguishable from the MD simulations. Note that the MD results were down-sampled in order to improve visibility.

improves the original IEMHNC approach predictions for the
edge of the correlation void as well as for the magnitude and
position of the first maximum and first nonzero minimum.
Moreover, the IEMHNC accuracy level is observed to be
nearly constant for any screening parameter, independently
confirming the isomorph invariance property of bridge func-
tions. Overall, the radial distribution functions as computed
by the updated IEMHNC version are characterized by a truly
unprecedent agreement with the “exact” radial distribution
functions as extracted from computer simulations. The aver-
age accuracy level is estimated to be ∼0.2% within the first
coordination cell.

Finally, extensive tabulations of the reduced excess internal
energy as obtained from MD simulations available in the
literature [37,109] as well as from the original and updated
versions of the IEMHNC approach are provided in the Supple-
mental Material [55]. The updated version again leads to more
accurate predictions regardless of the screening, although it is
acknowledged that the improvement over the original version
is now less impressive.

Overall, given that the original IEMHNC version has an
accuracy comparable to that of the VMHNC approach [52],
it can be safely concluded that the updated version of the
IEMHNC approach constitutes by far the most accurate the-
oretical approach ever devised for predictions of the YOCP
structural and thermodynamic properties.

VI. SUMMARY AND CONCLUSIONS

The bridge functions of strongly coupled one-component
plasmas were systematically computed for 17 thermodynamic

state points uniformly spread from the Kirkwood point to the
bcc crystallization point. The intermediate- and long-range
bridge functions were made accessible after application of
the Ornstein-Zernike inversion method with structural input
from accurate standard canonical (NVT) molecular dynamics
simulations, while the short-range bridge functions were made
accessible after application of the cavity distribution method
with structural input from long specially designed canon-
ical molecular dynamics simulations that feature a tagged
particle pair. The reliable extraction beyond the correlation
void was achieved by utilizing a near-optimal bin width that
minimizes grid errors with respect to statistical errors, apply-
ing the simplified Lebowitz-Percus expression to correct for
the finite-size errors, developing a Padé approximant strat-
egy to enforce the compressibility sum rule on the structure
factors and using Ng’s long-range decomposition technique
to compute real space direct correlation functions. The re-
liable extraction in the correlation void was achieved by
splitting the short-range interval into four overlapping win-
dows via the inclusion of a windowing component in the
tagged potential and carefully optimizing the biasing com-
ponent of the tagged potential so that uniform statistics are
obtained. Reliable extrapolation at the origin was realized by
applying a methodology reminiscent of the so-called zero-
separation theorems. A detailed error propagation analysis led
to accurate quantification of the uncertainties that are domi-
nated by statistical errors, which are only prominent near the
origin.

The one-component plasma bridge functions were pa-
rameterized by adopting a switching function strategy.
In the intermediate- and long-range intervals, the oscilla-
tory decaying behavior was fitted with a combination of
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exponential decays and cosines, as inspired by an existing
hard sphere bridge function parametrization. In the short-
and intermediate-range intervals, the monotonic behavior was
fitted with a fifth-order polynomial without a linear term,
as dictated by the Widom small argument expansion for the
logarithm of the cavity distribution function and the solution
of the soft mean spherical approximation for the direct corre-
lation function. Owing to the deliberately extended overlap
of the two fitting ranges, the two distinct fitting functions
were smoothly combined into a unique continuous fitting
function valid in the entire range with the aid of a sigmoid
switching function that was bounded within zero and unity.
All the emerging coupling parameter dependent coefficients
were fitted with monotonic functions of the form ui(�)/�s =∑

u j
i (ln �) j ; a form inspired by established parametriza-

tions of numerous one-component plasma properties. The
monotonicity ensures that the parametrization can be state
interpolated without any loss of accuracy and also suggests
that it can even be state extrapolated with a reasonable loss
of accuracy. Overall, the proposed parametrization nearly per-
fectly describes the one-component plasma bridge functions
from the contact up to the end of the first coordination cell. It
is superior to the existing Iyetomi et al. parametrization that
suffers from grid errors, decays exponentially to zero beyond
the first extremum and cannot be reliably interpolated being
based on solely four state point extractions.

We emphasize that the present bridge function extraction
and parametrization activities constitute the most comprehen-
sive to be reported in the long history of bridge functions.
Thus, one-component plasma bridge functions can be consid-
ered to be characterized better than those of Lennard-Jones
and even hard sphere systems.

Our parametrization of the one-component plasma bridge
function was also employed as a building block of the
isomorph-based empirically modified hypernetted chain ap-
proximation that was systematically applied to strongly
coupled Yukawa one-component plasma liquids. This inte-
gral equation theory approach is based upon the recently
revealed approximate isomorph invariance of the reduced-unit
bridge functions of R-simple systems and utilizes an isen-
tropic mapping in order to accurately map the one-component
plasma bridge functions to Yukawa one-component plasma
bridge functions. An exhaustive comparison with “exact” re-
sults from readily available computer simulations revealed
that this approach constitutes by far the most accurate theo-
retical method ever devised for predictions of the structural
and thermodynamic properties of Yukawa liquids. Given also
its simplicity and its low computational cost, we expect
this approach to replace all known integral equation the-
ory approaches that have been devised for Coulomb and
for Yukawa liquids. Taking into account the availability of
accurate equations of state from computer simulations, this
conclusion mainly concerns the calculation of static properties
that, however, also constitute external input for the theoretical
description of dynamic and transport properties, see for in-
stance the quasilocalized charge approximation for collective
modes [110,111], the viscoelastic dynamic density functional
theory for wave dispersion [112,113], the moment approach
of dynamic density-density correlations [114,115], the mode
coupling theory of the glass transition [106,116,117], the

static local field corrected model for the thermal conductivity
[118,119].

It is worth mentioning that our parametrization of the
one-component plasma bridge function has already been
embedded in a dielectric formalism scheme for quantum
one-component plasma liquids [30,120]. This scheme treats
quantum effects on the random phase approximation level
and correlation effects in an exact classical manner. Sys-
tematic comparison with ab initio path integral Monte Carlo
simulations of paramagnetic electron liquids revealed an un-
precedented agreement in terms of both thermodynamic and
structural properties.

Future work will address the extraction of the bridge func-
tions of two-dimensional one-component plasmas [2,121] and
of binary ionic mixtures [2,122] as well as the formulation of
the isomorph-based empirically modified hypernetted chain
approach for two-dimensional Yukawa one-component plas-
mas [123,124] and for binary Yukawa mixtures [125,126].
Our bridge function studies have progressed enough so that
such extensions can be deemed as rather straightforward albeit
still very cumbersome.
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APPENDIX: THE IYETOMI et al. BRIDGE
FUNCTION AND THE OGATA SCREENING

POTENTIAL PARAMETRIZATIONS

Iyetomi et al. indirectly extracted the OCP bridge func-
tions at four state points (� = 10, 40, 80, 160), employing
structural input from accurate standard Monte Carlo (MC)
simulations [20]. The long-range nature of Coulomb inter-
actions was handled with the traditional Ewald technique,
the simulated particle number was N = 1024, the cubic
simulation box length was L/d = 16.2, the number of con-
figurations was 7×106 and the histogram bin width was
�r/d = 0.04.

The intermediate-range bridge functions were obtained
with the OZ inversion method. The long-range-extrapolations
were based on the enforcement of the compressibility sum
rule for the structure factor based on a Padé approximant
strategy, while the short-range extrapolations were based on
the cavity distribution function continuity, the Widom series
representation, the Jancovici exact result for the second-order
Widom coefficient, and the assertion that the fourth-order
Widom coefficient can be simply omitted beyond the lower
endpoint of the reliable bridge function data. It is impor-
tant to point out that the second-order truncation of the
Widom series was strongly criticized by Rosenfeld [63,66],
who considered the fourth-order truncation to be more
appropriate.
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The Iyetomi parametrization of the OCP bridge function
ultimately reads as [20]

BOCP(r, �) = �

[
−b0(�) + c1(�)

(
r

d

)4

+ c2(�)

(
r

d

)6

+ c3(�)

(
r

d

)8]
exp

[
−b1(�)

b0(�)

(
r

d

)2]
,

b0(�) = 0.258 − 0.0612 ln � + 0.0123(ln �)2 − 1

�
,

b1(�) = 0.0269 + 0.0318 ln � + 0.00814(ln �)2,

c1(�) = 0.498 − 0.280 ln � + 0.0294(ln �)2,

c2(�) = − 0.412 + 0.219 ln � − 0.0251(ln �)2,

c3(�) = 0.0988 − 0.0534 ln � + 0.00682(ln �)2.

Notice that the five coupling parameter dependent coeffi-
cients involve three fitting constants, even though computed
bridge functions were available for four OCP coupling param-
eters. This observation implies that extrapolations and even
interpolations might lead to a substantial loss of accuracy.
The validity range of the Iyetomi et al. parametrization was
specified to be 5 < � � 180. The upper validity threshold
of �u

th = 180 simply corresponds to the coupling parameter
at the bcc crystallization point, as estimated by early com-
puter simulations. The lower validity threshold of �l

th � 5 is
imposed mathematically by the sign switching of the b0(�)
coefficient. To be more specific, close to � � 5.25, the co-
efficient b0 becomes negative but the coefficient b1 remains
positive, which leads to an exponential blow-up of the bridge
function at large distances. Notice also that the assumed fitting
function form can only describe the monotonic behavior and
the first extremum of the bridge function and that it features an
artificial strong exponential decay in the place of the physical
oscillatory decay.

Ogata indirectly extracted the logarithm of the OCP
cavity distribution function or the OCP screening poten-
tial within the range 0 � x � 1.7 at the same four OCP
state points (� = 10, 40, 80, 160), employing structural in-
put from long specially designed cavity MC simulations
featuring a tagged particle pair [21]. The simulated particle

number was N = 1000, consisting of 998 standard particles
and two tagged particles, which leads to a L/d = 16 box
length. The number of configurations was ∼108, and the his-
togram bin width was �r/d = 0.04. The particle to be subject
to a trial displacement in the Metropolis algorithm was chosen
with a probability of 25% to be a tagged particle and with a
probability of 0.05% to be a standard particle.

The Ogata parametrization of the OCP screening potential
ultimately reads as [21]

βHO(x)

�
=

{
A1 − 1

4 x2
[
1 − exp

(−A2
x

)]
, x � A3

A4 − A5x + exp (A6
√

x−A7 )
x , A3 < x � 2

and extends from the entire short range up to the intermediate
range. From the asymptotic limit of the bracketed exponential
factor of the short-range branch, it becomes evident that the
parametrization has been constructed to abide by the Widom
small argument expansion and by the Jancovici exact result for
the second-order Widom OCP coefficient. The seven coupling
parameter-dependent coefficients are given by

A1(�) = 1.132 − 0.0094 ln �,

A2(�) = 2.55 − 0.043 ln �,

A3(�) = 1.22 − 0.047 ln �,

A4(�) = 1.356 − 0.0213 ln �,

A5(�) = 0.456 − 0.013 ln �,

A6(�) = 9.29 + 0.79 ln �.

A7(�) = 14.83 + 1.31 ln �.

Notice that the seven coupling parameter-dependent coeffi-
cients involve two fitting constants, even though computed
screening potentials were available only for four OCP cou-
pling parameters. This observation clearly suggests that
extrapolations and even interpolations might lead to a substan-
tial loss of accuracy. Note also that the zeroth-order Widom
OCP coefficient, which, as aforementioned, essentially con-
trols the enhancement factor of the pycnonuclear reactions
in dense astrophysical plasmas owing to charge screening
effects, is simply given by y0(�) = A1(�).

[1] G. J. Kalman, J. M. Rommel, and K. Blagoev, Strongly Cou-
pled Coulomb Systems (Plenum Press, New York, 1998).

[2] M. Baus and J.-P. Hansen, Phys. Rep. 59, 1 (1980).
[3] S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).
[4] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic Press, London, 2006).
[5] H. L. Frisch and J. L. Lebowitz, The Equilibrium Theory of

Classical Fluids (Benjamin, New York, 1964).
[6] D. Chandler, Introduction to Modern Statistical Mechanics

(Oxford University Press, New York, 1987).
[7] A. Santos, A Concise Course on the Theory of Classical Liquids

(Springer, Heidelberg, 2016).
[8] J. Talbot, J. L. Lebowitz, E. M. Waisman, D. Levesque, and

J.-J. Weis, J. Chem. Phys. 85, 2187 (1986).

[9] J. M. Bomont, Adv. Chem. Phys. 139, 1 (2008).
[10] G. Torrie and G. N. Patey, Mol. Phys. 34, 1623 (1977).
[11] S. Labík, and W. R. Smith, J. Chem. Phys. 88, 1223 (1988).
[12] J. Kolafa, S. Labik, and A. Malijevsky, Mol. Phys. 100, 2629

(2002).
[13] R. Fantoni and G. Pastore, J. Chem. Phys. 120, 10681 (2004).
[14] M. Llano-Restrepo and W. G. Chapman, J. Chem. Phys. 97,

2046 (1992).
[15] D. Tomazic, F. Hoffgaard, and S. M. Kast, Chem. Phys. Lett.

591, 237 (2014).
[16] D.-M. Duh and A. D. J. Haymet, J. Chem. Phys. 103, 2625

(1995).
[17] I. Vyalov, G. Chuev, and N. Georgi, J. Chem. Phys. 141,

074505 (2014).

015208-21

https://doi.org/10.1016/0370-1573(80)90022-8
https://doi.org/10.1103/RevModPhys.54.1017
https://doi.org/10.1063/1.451112
https://doi.org/10.1002/9780470259498.ch1
https://doi.org/10.1080/00268977700102821
https://doi.org/10.1063/1.454242
https://doi.org/10.1080/00268970210136357
https://doi.org/10.1063/1.1739392
https://doi.org/10.1063/1.463142
https://doi.org/10.1016/j.cplett.2013.11.025
https://doi.org/10.1063/1.470724
https://doi.org/10.1063/1.4892876


F. LUCCO CASTELLO AND P. TOLIAS PHYSICAL REVIEW E 105, 015208 (2022)

[18] M. Llano-Restrepo and W. G. Chapman, J. Chem. Phys. 100,
5139 (1994); Int. J. Thermophys. 16, 319 (1995).

[19] P. D. Poll, N. W. Ashcroft, and H. E. DeWitt, Phys. Rev. A 37,
1672 (1988).

[20] H. Iyetomi, S. Ogata, and S. Ichimaru, Phys. Rev. A 46, 1051
(1992).

[21] S. Ogata, Phys. Rev. E 53, 1094 (1996).
[22] F. Lucco Castello, P. Tolias, and J. C. Dyre, J. Chem. Phys.

154, 034501 (2021).
[23] D. L. Cheung, L. Anton, M. P. Allen, and A. J. Masters,

Phys. Rev. E 73, 061204 (2006).
[24] E. Lomba, M. Alvarez, G. Stell, and J. A. Anta, J. Chem. Phys.

97, 4349 (1992); S. Kambayashi and J. Chihara, Phys. Rev. E
50, 1317 (1994).

[25] D.-M. Duh and A. D. J. Haymet, J. Chem. Phys. 97, 7716
(1992).

[26] C. Tasseven, L. E. Gonzalez, M. Silbert, O. Alcaraz, and J.
Trullas, J. Chem. Phys. 115, 4676 (2001).

[27] J. Puibasset and L. Belloni, J. Chem. Phys. 136, 154503
(2012).

[28] L. Belloni, J. Chem. Phys. 147, 164121 (2017).
[29] M. Francova, A. Malijevsky, S. Labik, and J. Kolafa,

Collect. Czech. Chem. Commun. 76, 51 (2011).
[30] F. Lucco Castello, P. Tolias, and T. Dornheim,

arXiv:2107.03537.
[31] P. Tolias and F. Lucco Castello, Phys. Plasmas 26, 043703

(2019).
[32] P. Attard and G. N. Patey, J. Chem. Phys. 92, 4970 (1990).
[33] J. S. Perkyns, K. M. Dyer, and B. M. Pettitt, J. Chem. Phys.

116, 9404 (2002).
[34] S, Labik, H. Gabrielova, J. Kolafa, and A. Malijevsky,

Mol. Phys. 101, 1139 (2003).
[35] S. K. Kwak and D. A. Kofke, J. Chem. Phys. 122, 104508

(2005).
[36] W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. Phys.

55, 1128 (1971).
[37] S. Hamaguchi, R. Farouki, and D. H. E. Dubin, J. Chem. Phys.

105, 7641 (1996).
[38] R. J. F. Leote de Carvalho, R. Evans, and Y. Rosenfeld,

Phys. Rev. E 59, 1435 (1999).
[39] J.-M. Caillol and D. Gilles, J. Phys. A: Math. Theor. 43,

105501 (2010).
[40] S. Plimpton, J. Comp. Phys 117, 1 (1995).
[41] A. Y. Toukmaji and J. A. Board, Comput. Phys. Commun. 95,

73 (1996).
[42] E. L. Pollock and J. Glosli, Comput. Phys. Commun. 95, 93

(1996).
[43] G. Dharuman, L. G. Stanton, J. N. Glosli, and M. S. Murillo,

J. Chem. Phys. 146, 024112 (2017).
[44] H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461

(1989).
[45] J. L. Lebowitz and J. K. Percus, Phys. Rev. 122, 1675 (1961).
[46] J. L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev. 153, 250

(1967).
[47] J. J. Salacuse, A. R. Denton, and P. A. Egelstaff, Phys. Rev. E

53, 2382 (1996).
[48] K.-C. Ng, J. Chem. Phys. 61, 2680 (1974).
[49] Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 1208

(1979).

[50] F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28,
2374 (1983).

[51] Y. Rosenfeld, J. Stat. Phys. 42, 437 (1986).
[52] F. Lucco Castello and P. Tolias, Contrib. Plasma Phys. 61,

e202000105 (2021).
[53] P. Tolias, S. Ratynskaia, and U. de Angelis, Phys. Rev. E 90,

053101 (2014).
[54] P. Tolias, S. Ratynskaia, and U. de Angelis, Phys. Plasmas 22,

083703 (2015).
[55] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.105.015208 for the first part features a
detailed comparison of the indirectly extracted OCP bridge
functions with our proposed parametrization and with other
earlier proposed parametrizations as well as a comprehensive
presentation of the error bars. The second part features exten-
sive comparisons of the results of the original and the updated
versions of the IEMHNC approach with computer simulation
results. In particular, it contains extensive tabulations of key
functional properties of the YOCP radial distribution functions
and of reduced excess internal energies.

[56] B. Widom, J. Chem. Phys. 39, 2808 (1963).
[57] B. Jancovici, J. Stat. Phys. 17, 357 (1977).
[58] S. Ichimaru, Rev. Mod. Phys. 65, 255 (1993).
[59] S. Ichimaru and H. Kitamura, Phys. Plasmas 6, 2649 (1999).
[60] A. Alastuey and B. Jancovici, Astrophys. J. 226, 1034 (1978).
[61] E. E. Salpeter, Aust. J. Phys. 7, 373 (1954).
[62] E. E. Salpeter and H. M. Van Horn, Astrophys. J. 155, 183

(1969).
[63] Y. Rosenfeld, Phys. Rev. A 46, 1059 (1992).
[64] S. Ogata, H. Iyetomi, and S. Ichimaru, Astrophys. J. 372, 259

(1991).
[65] S. Ichimaru, S. Ogata, and K. Tsuruta, Phys. Rev. E 50, 2977

(1994).
[66] Y. Rosenfeld, Phys. Rev. E 53, 2000 (1996).
[67] See https://github.com/fedluc/OCP_bridge_function for tabu-

lations of the raw data for the average bridge function as well
as for the standard deviation of the average bridge function at
the 17 thermodynamic state points of interest within the full
nontrivial range.

[68] L. L. Lee, J. Chem. Phys. 103, 9388 (1995).
[69] L. L. Lee and D. Ghonasgi, J. Chem. Phys. 104, 8058 (1996).
[70] Y. Rosenfeld, Phys. Rev. A 24, 2805 (1981).
[71] Y. Rosenfeld, J. Chem. Phys. 103, 9800 (1995).
[72] L. L. Lee and K. S. Shing, J. Chem. Phys. 91, 477 (1989).
[73] J. R. Henderson, Mol. Phys. 48, 389 (1983).
[74] M. Heidari, K. Kremer, R. Cortes-Huerto, and R. Potestio,

J. Chem. Theory Comput. 14, 3409 (2018).
[75] N. Desbiens, P. Arnault, and J. Clérouin, Phys. Plasmas 23,

092120 (2016).
[76] R. Abe, Prog. Theor. Phys. 22, 213 (1959).
[77] E. G. D. Cohen and T. J. Murphy, Phys. Fluids 12, 1404

(1969).
[78] J. Ortner, Phys. Rev. E 59, 6312 (1999).
[79] H. B. Singh, J. Stat. Phys. 33, 371 (1983).
[80] B. Held and P. Pignolet, J. Phys. 47, 437 (1986).
[81] D. A. Young, E. M. Corey, and H. E. DeWitt, Phys. Rev. A 44,

6508 (1991).
[82] V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and

G. E. Morfill, Phys. Rep. 421, 1 (2005).

015208-22

https://doi.org/10.1063/1.467241
https://doi.org/10.1007/BF01441897
https://doi.org/10.1103/PhysRevA.37.1672
https://doi.org/10.1103/PhysRevA.46.1051
https://doi.org/10.1103/PhysRevE.53.1094
https://doi.org/10.1063/5.0036226
https://doi.org/10.1103/PhysRevE.73.061204
https://doi.org/10.1063/1.463904
https://doi.org/10.1103/PhysRevE.50.1317
https://doi.org/10.1063/1.463491
https://doi.org/10.1063/1.1392366
https://doi.org/10.1063/1.4703899
https://doi.org/10.1063/1.5001684
https://doi.org/10.1135/cccc2010127
http://arxiv.org/abs/arXiv:2107.03537
https://doi.org/10.1063/1.5089663
https://doi.org/10.1063/1.458556
https://doi.org/10.1063/1.1473660
https://doi.org/10.1080/0026897031000068596
https://doi.org/10.1063/1.1860559
https://doi.org/10.1063/1.1676196
https://doi.org/10.1063/1.472802
https://doi.org/10.1103/PhysRevE.59.1435
https://doi.org/10.1088/1751-8113/43/10/105501
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/0010-4655(96)00016-1
https://doi.org/10.1016/0010-4655(96)00043-4
https://doi.org/10.1063/1.4973842
https://doi.org/10.1063/1.457480
https://doi.org/10.1103/PhysRev.122.1675
https://doi.org/10.1103/PhysRev.153.250
https://doi.org/10.1103/PhysRevE.53.2382
https://doi.org/10.1063/1.1682399
https://doi.org/10.1103/PhysRevA.20.1208
https://doi.org/10.1103/PhysRevA.28.2374
https://doi.org/10.1007/BF01127720
https://doi.org/10.1002/ctpp.202000105
https://doi.org/10.1103/PhysRevE.90.053101
https://doi.org/10.1063/1.4928113
http://link.aps.org/supplemental/10.1103/PhysRevE.105.015208
https://doi.org/10.1063/1.1734110
https://doi.org/10.1007/BF01014403
https://doi.org/10.1103/RevModPhys.65.255
https://doi.org/10.1063/1.873221
https://doi.org/10.1086/156681
https://doi.org/10.1071/PH540373
https://doi.org/10.1086/149858
https://doi.org/10.1103/PhysRevA.46.1059
https://doi.org/10.1086/169971
https://doi.org/10.1103/PhysRevE.50.2977
https://doi.org/10.1103/PhysRevE.53.2000
https://github.com/fedluc/OCP_bridge_function
https://doi.org/10.1063/1.469998
https://doi.org/10.1063/1.471522
https://doi.org/10.1103/PhysRevA.24.2805
https://doi.org/10.1063/1.469945
https://doi.org/10.1063/1.457483
https://doi.org/10.1080/00268978300100291
https://doi.org/10.1021/acs.jctc.8b00002
https://doi.org/10.1063/1.4963388
https://doi.org/10.1143/PTP.22.213
https://doi.org/10.1063/1.1692681
https://doi.org/10.1103/PhysRevE.59.6312
https://doi.org/10.1007/BF01009802
https://doi.org/10.1051/jphys:01986004703043700
https://doi.org/10.1103/PhysRevA.44.6508
https://doi.org/10.1016/j.physrep.2005.08.007


BRIDGE FUNCTIONS OF CLASSICAL ONE-COMPONENT … PHYSICAL REVIEW E 105, 015208 (2022)

[83] Z. Donko, G. J. Kalman, and P. Hartmann, J. Phys.: Condens.
Matter 20, 413101 (2008).

[84] G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353
(2009).

[85] M. Bonitz, C. Henning, and D. Block, Rep. Prog. Phys. 73,
066501 (2010).

[86] H. Boroudjerdi, Y.-W. Kim, A. Naji, R. R. Netz, X.
Schlagberger, and A. Serr, Phys. Rep. 416, 129 (2005).

[87] F. Westermeier, B. Fischer, W. Roseker, G. Grübel, G. Nägele,
and M. Heinen, J. Chem. Phys. 137, 114504 (2012).

[88] T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, Phys. Rep.
449, 77 (2007).

[89] M. Lyon and S. L. Rolston, Rep. Prog. Phys. 80, 017001
(2017).

[90] B. A. Remington, R. P. Drake, and D. D. Ryutov, Rev. Mod.
Phys. 78, 755 (2006).

[91] S. D. Bergeson, S. D. Baalrud, C. L. Ellison, E. Grant, F. R.
Graziani, T. C. Killian, M. S. Murillo, J. L. Roberts, and L. G.
Stanton, Phys. Plasmas 26, 100501 (2019).

[92] A. A. Veldhorst, T. B. Schrøder, and J. C. Dyre, Phys. Plasmas
22, 073705 (2015).

[93] N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and
J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).

[94] T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev.
X 2, 011011 (2012).

[95] J. C. Dyre, Phys. Rev. E 88, 042139 (2013).
[96] J. C. Dyre, J. Phys.: Condens. Matter 28, 323001 (2016).
[97] T. B. Schrøder and J. C. Dyre, J. Chem. Phys. 141, 204502

(2014).
[98] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and

J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
[99] J. C. Dyre, J. Chem. Phys. 149, 210901 (2018).

[100] M. Rahman, B. M. G. D. Carter, S. Saw, I. M. Douglass, L.
Costigliola, T. S. Ingebrigtsen, T. B. Schrøder, U. R. Pedersen,
and J. C. Dyre, Molecules 26, 1746 (2021).

[101] O. S. Vaulina and S. A. Khrapak, J. Exp. Theor. Phys. 90, 287
(2000).

[102] O. Vaulina, S. Khrapak, and G. Morfill, Phys. Rev. E 66,
016404 (2002).

[103] U. R. Pedersen, L. Costigliola, N. P. Bailey, T. B. Schrøder,
and J. C. Dyre, Nat. Commun. 7, 12386 (2016).

[104] L. Costigliola, T. B. Schrøder, and J. C. Dyre, Phys. Chem.
Chem. Phys. 18, 14678 (2016).

[105] P. Tolias and F. Lucco Castello, Phys. Plasmas 28, 034502
(2021).

[106] F. Lucco Castello and P. Tolias, Molecules 26, 669 (2021).
[107] F. Lucco Castello, P. Tolias, J. S. Hansen, and J. C. Dyre,

Phys. Plasmas 26, 053705 (2019).
[108] T. Ott and M. Bonitz, Contrib. Plasma Phys. 55, 243 (2015).
[109] S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev.

E 56, 4671 (1997).
[110] K. I. Golden and G. J. Kalman, Phys. Plasmas 7, 14 (2000).
[111] S. A. Khrapak, B. A. Klumov, and H. M. Thomas,

Phys. Plasmas 24, 023702 (2017).
[112] A. Diaw and M. S. Murillo, Phys. Rev. E 92, 013107 (2015).
[113] A. Diaw and M. S. Murillo, ApJ 829, 16 (2016).
[114] Y. V. Arkhipov, A. Askaruly, A. E. Davletov, D. Y. Dubovtsev,

Z. Donko, P. Hartmann, I. Korolov, L. Conde, and I. M.
Tkachenko, Phys. Rev. Lett. 119, 045001 (2017).

[115] Yu. V. Arkhipov, A. B. Ashikbayeva, A. Askaruly, M. Bonitz,
L. Conde, A. E. Davletov, T. Dornheim, D. Yu. Dubovtsev,
S. Groth, Kh. Santybayev, S. A. Syzganbayeva, and I. M
Tkachenko, Contrib. Plasma Phys. 58, 967 (2018).

[116] U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C: Solid
State Phys. 17, 5915 (1984).

[117] A. Yazdi, A. Ivlev, S. Khrapak, H. Thomas, G. E. Morfill, H.
Löwen, A. Wysocki, and M. Sperl, Phys. Rev. E 89, 063105
(2014).

[118] S. Ichimaru and S. Tanaka, Phys. Rev. A 32, 1790 (1985).
[119] B. Scheiner and S. D. Baalrud, Phys. Rev. E 100, 043206

(2019).
[120] P. Tolias, F. Lucco Castello, and T. Dornheim, J. Chem. Phys.

155, 134115 (2021).
[121] S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, 91

(1987).
[122] Y. Rosenfeld, Phys. Rev. E 54, 2827 (1996).
[123] N. P. Kryuchkov, S. A. Khrapak, and S. O. Yurchenko,

J. Chem. Phys. 146, 134702 (2017).
[124] F. Lucco Castello and P. Tolias, Phys. Rev. E 103, 063205

(2021).
[125] K. R. Sütterlin, A. Wysocki, A. V. Ivlev, C. Räth, H. M.

Thomas, M. Rubin-Zuzic, W. J. Goedheer, V. E. Fortov, A. M.
Lipaev, V. I. Molotkov, O. F. Petrov, G. E. Morfill, and H.
Löwen, Phys. Rev. Lett. 102, 085003 (2009).

[126] D. Block and A. Meltzer, J. Phys. B: At. Mol. Opt. Phys. 52,
063001 (2019).

015208-23

https://doi.org/10.1088/0953-8984/20/41/413101
https://doi.org/10.1103/RevModPhys.81.1353
https://doi.org/10.1088/0034-4885/73/6/066501
https://doi.org/10.1016/j.physrep.2005.06.006
https://doi.org/10.1063/1.4751544
https://doi.org/10.1016/j.physrep.2007.04.007
https://doi.org/10.1088/0034-4885/80/1/017001
https://doi.org/10.1103/RevModPhys.78.755
https://doi.org/10.1063/1.5119144
https://doi.org/10.1063/1.4926822
https://doi.org/10.1063/1.3265957
https://doi.org/10.1103/PhysRevX.2.011011
https://doi.org/10.1103/PhysRevE.88.042139
https://doi.org/10.1088/0953-8984/28/32/323001
https://doi.org/10.1063/1.4901215
https://doi.org/10.1063/1.2982247
https://doi.org/10.1063/1.5055064
https://doi.org/10.3390/molecules26061746
https://doi.org/10.1134/1.559102
https://doi.org/10.1103/PhysRevE.66.016404
https://doi.org/10.1038/ncomms12386
https://doi.org/10.1039/C5CP06363A
https://doi.org/10.1063/5.0044871
https://doi.org/10.3390/molecules26030669
https://doi.org/10.1063/1.5100150
https://doi.org/10.1002/ctpp.201400063
https://doi.org/10.1103/PhysRevE.56.4671
https://doi.org/10.1063/1.873814
https://doi.org/10.1063/1.4976124
https://doi.org/10.1103/PhysRevE.92.013107
https://doi.org/10.3847/0004-637X/829/1/16
https://doi.org/10.1103/PhysRevLett.119.045001
https://doi.org/10.1002/ctpp.201700136
https://doi.org/10.1088/0022-3719/17/33/005
https://doi.org/10.1103/PhysRevE.89.063105
https://doi.org/10.1103/PhysRevA.32.1790
https://doi.org/10.1103/PhysRevE.100.043206
https://doi.org/10.1063/5.0065988
https://doi.org/10.1016/0370-1573(87)90125-6
https://doi.org/10.1103/PhysRevE.54.2827
https://doi.org/10.1063/1.4979325
https://doi.org/10.1103/PhysRevE.103.063205
https://doi.org/10.1103/PhysRevLett.102.085003
https://doi.org/10.1088/1361-6455/ab023f

