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Quantum electrodynamic effects on counter-streaming instabilities in the whole k space
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In a recent work [Bret, EPL 135, 35001 (2021)], quantum electrodynamic (QED) effects were evaluated
for the two-stream instability. It pertains to the growth of perturbations with a wave vector oriented along the
flow in a collisionless counter-streaming system. Here, the analysis is extended to every possible orientation
of the wave vector. The previous result for the two-stream instability is recovered, and it is proved that, even
within the framework of a three-dimensional (3D) analysis, this instability remains fundamentally 1D even when
accounting for QED effects. The filamentation instability, found for wave vectors normal to the flow, is weakly
affected by QED corrections. As in the classical case, its growth rate saturates at large k⊥. The saturation value
is found independent of QED corrections. Also, the smallest unstable k⊥ is independent of QED corrections.
Surprisingly, unstable modes found for oblique wave vectors do not follow the same pattern. For some, QED
corrections do reduce the growth rate. But, for others, the same corrections increase the growth rate instead. The
possibility for QED effects to play a role in unmagnetized systems is evaluated. Pair production resulting from
γ emission by particles oscillating in the exponentially growing fields is not accounted for.
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I. INTRODUCTION

Counter-streaming instabilities have been a central topic in
plasma physics for nearly one century [1,2]. Extreme plasma
physics, on the other hand, has been rising during the past
years [3,4]. It has to do with quantum electrodynamic (QED)
effects that could appear in plasmas immersed in extreme
electromagnetic fields. This new field of research is spurred by
the advent of high-power lasers with which such effects could
be observed [5,6]. Also involved are high energy astrophysics
settings, like magnetars or pulsars, where magnetic fields of
the order of the critical Schwinger field Bcr = m2c3/qh̄ =
4.4 × 1013 G, or even greater, are present [7,8].

In neutron stars or magnetars, particle beams flow along
the field lines from one foot of the lines to the other. It is
yet unclear how they are stopped when hitting the surface.
There, counter-streaming instabilities could play a role in the
dissipation of the kinetic energy [9]. Such instabilities have
also been invoked in the context of pulsar emissions [10–12].

With fields B0 of the order of 1012 G for neutron stars,
the ratio B0/Bcr reaches 0.02 so that corrections described
here are necessary. As for magnetars, the ratio B0/Bcr reaches
2 to 22 so that the present corrections are but preliminaries
for even greater ones since the present treatment assumes
B0/Bcr � 1.

In the context of long γ -ray bursts, some models propose
a protomagnetar as central engine [13–15]. As the jet it pro-
duces makes its way through the remainder of the progenitor
star, counter-streaming instabilities in a highly magnetized
environment should be excited, especially in the inner part of
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the jet. Here, the field of the protomagnetar would also render
necessary QED corrections.

It seems therefore natural to investigate QED effects on
counter-streaming instabilities as they could be triggered in
various high field environments. Recently, QED effects were
studied for the two-stream instability (TSI) in the presence
of a guiding magnetic field B0 [16]. It was found that,
for B0 � Bcr , the growth rate is scaled down by a factor√

1 + ξ with

ξ = α

9π

( B0

Bcr

)2

, (1)

where α ∼ 1/137 is the fine structure constant.
Still, it has been known for a long time that the

TSI is not the only instability triggered in collisionless
counter-streaming systems [17–19]. While the TSI amplifies
perturbations ∝exp(ik · r − iωt ) with k parallel to the flow,
perturbations with k normal and even oblique to the flow
can also grow as the filamentation instability (FI) and the
oblique instability, respectively. Depending on the parameters
of the problem, various instabilities can dominate the unstable
spectrum, and their hierarchy has been worked out for several
kinds of systems [20–25].

The goal of this article is to extend the study of QED effects
on the TSI to every possible perturbation. We consider the
simple system pictured on Fig. 1. Two counter-streaming cold
electron beams of identical density n0 and opposed velocities
±v0 stream along the z axis. “Cold” here means that the
thermal velocity spread �v in each beam satisfies �v � v0.
A background of fixed ions ensures charge neutrality. An
external magnetic field B0 is aligned with the flow. The system
is therefore charge and current neutral at equilibrium, with no
force acting on it since v0 × B0 = 0.
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FIG. 1. System considered.

Perturbations with wave vector k are applied. Since the
system has cylindrical symmetry around z, we can choose
the x, y directions such that k = (kx, 0, kz ) without loss of
generality.

In Sec. II we briefly recall the structure of the classical
calculation in order to clearly see where QED corrections
come into play. Then, in Sec. III, QED corrections are
worked out.

II. CLASSICAL CALCULATION

Since the beams are assumed cold, a two-fluids model
can be implemented. We write the conservation equations for
matter and momentum for the two beams,

∂ni

∂t
+ ∇ · (nivi ) = 0, (2)

∂pi

∂t
+ (vi · ∇)pi = q

(
E + vi × B

c

)
, (3)

where the momentum pi reads pi = γimvi with γi = (1 −
v2

i /c2)−1/2, m the electron mass, and q its charge. We also
write the Maxwell’s equations involved in the calculation,

∇ × E = −1

c

∂B
∂t

, (4)

∇ × B = 1

c

∂E
∂t

+ 4π

c
J. (5)

The full calculation can be found in Refs. [22,26]. It goes as
follows. Assume first order perturbations ∝exp(ik · r − iωt )
of every quantity and linearize Eqs. (2)–(5). Equations (2) and
(3) give the first order density perturbation n1i. Then Eq. (3)
gives the first order velocity perturbation v1i in terms of E1,
B1, and B0. Finally, Eq. (4) gives B1 = (c/ω)k × E1.

The classical current can then be computed as

Jclass(E1) = q
∑

i

n0v0︸ ︷︷ ︸
=0

+q
∑

i

n0iv1i + n1iv0i. (6)

Finally, Eq. (5) is used to obtain

k × (k × E1) + ω2

c2

(
E1 + 4iπ

ω
Jclass(E1)

)
= 0, (7)

that is, a tensorial equation of the form T(E1) = 0. The dis-
persion equation then comes through det T = 0. Note that,
when considering the TSI, the dispersion equation can be
obtained from the scalar Poisson equation since the problem
is one dimensional (1D). Here, we need to use the vec-
torial Maxwell-Faraday equation for the current since the
problem is 3D.

FIG. 2. Growth rate of the classical FI in terms of the field
amplitude 	B and the wave vector Zx . The growth rate saturates at
large Zx and the instability is stabilized for 	B > β0

√
2γ0.

Although without major technical difficulties, calculations
are lengthy. They can be performed with the Mathematica
Notebook described in Ref. [27] in terms of the dimensionless
variables,

x = ω

ωp
, Z = kv0

ωp
, β0 = v0

c
, γ0 = 1√

1 − β2
0

,

	B = ωB

ωp
, ωB = |q|B0

mc
, (8)

with

ω2
p = 4πn0q2

m
. (9)

The Mathematica Notebook used to compute the dispersion
equation is provided as Supplemental Material [28].

The salient and known features of the classical case are as
follows.

(i) For Zx = 0, that is k parallel to the flow, the TSI is left
unchanged by the field since it has particles oscillating along
the field, hence canceling the Lorentz force.

(ii) For Zz = 0, that is k normal to the flow, the growth rate
δ of the FI is pictured on Fig. 2 in terms of Zx and 	B. For
large Zx, the growth rate saturates at [26]

δ(Zx = ∞) =
√

2β2
0γ0 − 	2

B

γ0
. (10)

The most direct and interesting consequence of this equation
is that FI is quenched beyond the critical value,

	B > β0

√
2γ0 ≡ 	Bc. (11)

The field also stabilizes the small wavelengths fulfilling (see
details in Sec. III B)

Zx <

√
2

γ
3/2
0

β0	B√
2β2γ0 − 	2

B

. (12)

(iii) For both Zx, Zz 	= 0, Fig. 3 pictures a typical growth
rate map in terms of Zx and Zz. The amplitude of the field
	B = 3 > β0

√
2γ0 ∼ 2.3 is such that the FI is stabilized. The

TSI is left unchanged with respect to the field-free case. The
dominant unstable modes are now oblique. We refer the reader
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FIG. 3. Classical growth rate δ in terms of Zx and Zz. The
amplitude of the field 	B = 3 > β0

√
2γ0 ∼ 2.3 is such that the fil-

amentation instability is stabilized. The TSI is left unchanged with
respect to the field-free case. The dominant unstable modes are now
oblique.

to Ref. [26] for the analysis of the unstable upper-hybrid-like
modes with Zz 	= 0 and Zx 
 1.

III. QED CALCULATION

QED corrections only modify the expression (6) for the
current.1 It now reads

J = Jclass + Jvac, (13)

where Jclass is the classical result and

Jvac = − 1

180π2

α

c2B2
cr

(
∇ × M − ∂P

∂t

)
, (14)

where

M = 2(E2 − c2B2)cB − 7c(E · B)E, (15)

P = 2(E2 − c2B2)E + 7c2(E · B)B. (16)

Since the ∇× and the ∂t operators are linear, we can linearize
M and P first, before applying these operators to obtain the
linearized version of Eq. (14). The linearization of Eqs. (15)
and (16) gives

M = −
⎛
⎝ 0

0

2B3
0c3 + 4B2

0c4E1ykx

ω

⎞
⎠+ O(E2

1 ), (17)

P =
⎛
⎝−2B2

0c2E1x

−2B2
0c2E1y

5B2
0c2E1z

⎞
⎠+ O(E2

1 ). (18)

Since E1x,y,z ∝ exp(ik · r − iωt ) we find from Eq. (14) the
QED correction to the first order current,

J1,vac = iω
ξ

20π

( B0

Bcr

)2

⎛
⎜⎝ 2E1x

2
(

1 − 2 c2k2
x

ω2

)
E1y

−5E1z

⎞
⎟⎠, (19)

where ξ is the dimensionless parameter defined by Eq. (1).

1See, for example, Eqs. (1)–(8) of Ref. [29].

All the steps described for the classical case are therefore
identical, except that we now need to add J1,vac to the current
equation (6). The dispersion equation is eventually still of the
form det T = 0 with now

T = Tclass + ξ TQED, (20)

with

TQED =

⎛
⎜⎝− 2

5 0 0

0 2
5

(
2Z2

x

x2β2
0

− 1
)

0

0 0 1

⎞
⎟⎠, (21)

so that the correction for all k’s is of order ξ and
diagonal only.

Note that, for all practical purposes, ξ is an extremely small
parameter since B0 � Bcr is required to write Eqs. (13) and
(14) on the one hand (see [30] or [31], p. 32), while α ∼ 1/137
on the other hand. For example, with B0/Bcr = 0.1, Eq. (1)
gives ξ = 2.5 × 10−6. Even ξ = 0.1 requires B0 = 19Bcr ,
which is far out of range of the present theory.

Computing the dispersion equation is performed using a
Mathematica Notebook very similar to the one used for the
classical case. The only difference is that the QED-corrected
first order current (19) is added to Eq. (5) of Ref. [27].

Since the dispersion equation reads det T = 0, where T

is now given by Eq. (20), an alternative to the forthcoming
calculations would be to write

Tclass + ξ TQED = Tclass(I + ξ T−1
classTQED), (22)

so that

det T = det Tclass × det(I + ξ T−1
classTQED)

= det Tclass × {1 + ξ tr(T−1
classTQED) + O(ξ 2)

}
, (23)

where tr M is the trace of the matrix M and Jacoby’s
formula has been used to expand the determinant det(I +
ξ T−1

classTQED). The dispersion equation would then read, at
first order in ξ ,

det T = 0 ⇒ 1 + ξ tr(T−1
ClassTQED) = 0. (24)

However, since the dispersion equation is to be solved for x
and not ξ , computations are not simpler than the ones ex-
plained from now. We now review the consequences of the
QED corrections on the various instabilities involved in the
system.

A. Two-stream instability (TSI)

Since the TSI pertains to wave vectors aligned with the
flow, we set Zx = 0 in Eq. (20). The result is a tensor of
the form

T =
⎛
⎝T11 T12 0

T ∗
12 T22 0
0 0 T33

⎞
⎠, (25)

where z∗ is the complex conjugate of z. The dispersion
equation then reads

T33(T11T22 − T ∗
12T12) = 0. (26)

The second factor can be further factorized, but the subfactors
still are fourth degree polynomials in x, with both even and
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odd powers of x. They are therefore difficult to deal with
analytically. Yet, a numerical exploration shows that, at least
in the regime B0 � Bcr , they do not yield unstable modes. The
instability comes therefore from T33 = 0, which is the usual
dispersion equation for the TSI. In the present case with QED
corrections, the equation derived in Ref. [16] is recovered,
namely,

1 + ξ − 1

γ 3
0 (x − Zz )2

− 1

γ 3
0 (x + Zz )2

= 0. (27)

We therefore here extend the results of Ref. [16]: even when
considering a full 3D system, the QED-corrected TSI is still
1D like.

B. Filamentation instability (FI)

The FI pertains to wave vectors normal to the flow.
We therefore set Zz = 0 in Eq. (20). A tensor of the form
(25) is obtained again, yielding a dispersion equation of the
form (26).

In the classical case, the tensor element T33 is the one which
yields the instability. Here it reads

T33 = 1 + ξ − 1

x2

(
2

γ 3
0

+ Z2
x

β2
0

+ 1

γ0

2Z2
x

x2 − 	2
B/γ 2

0

)
. (28)

In the case of the TSI, Eq. (27) makes it possible to rescale x
and Zz (or γ0) and formally come back to the classical TSI
dispersion equation [16]. Such a procedure is not possible
here. Still, some analytical conclusions can be reached.

For large Zx, Eq. (28) gives the dispersion equation,

− 1

x2

(
Z2

x

β2
0

)
− 2γ0Z2

x

γ 2
0 x4 − x2	2

B

= 0

⇒ 1

β2
0

+ 2γ0

γ 2
0 x2 − 	2

B

= 0

⇒ x2 = 	2
B − 2β2

0γ0

γ 2
0

. (29)

This corresponds exactly to the classical growth rate (10).
Therefore, QED effects do not affect the saturation value
of the FI, nor the value of the magnetic field required to
cancel it.

Regarding the stabilization of small Zx’s, it can be directly
derived from Eq. (28). Setting Eq. (28) to one single de-
nominator will result in a fraction the numerator of which
is a fourth degree polynomial in x. Therefore, T33 = 0 must
have four real roots for the system to be stable. We can then
reason that (i) T33(x) is an even function. So, if there are two
positive real roots, there will also be two negative real roots
and hence a total of four. We can therefore restrict the analysis
to x > 0. (ii) Then, limx=+∞ T33(x) = 1 + ξ > 0. (iii) Also,
limx=	B/γ ±

0
T33(x) = ∓∞. (iv) Finally,

lim
x=0+

T33(x) = −sgn

(
2

γ 3
0

+ Z2
x

β2
0

− 2Z2
x

	2
B/γ0

)
︸ ︷︷ ︸

≡X

.

The situation is eventually summarized on Fig. 4. When
sgn(X ) < 0, limx=0+ T33(x) = +∞ and the equation has but
one positive real root. The system is therefore unstable. On the

FIG. 4. Plot of T33(x) given by Eq. (28) for two values of 	B. For
the larger one, the equation T33(x) = 0 has four real roots, whereas it
has only two for the smaller 	B.

contrary, the system is stable with two positive real roots for
the equation. The threshold pertains to X = 0, which exactly
gives back Eq. (12).

As previously said, the full dispersion equation for the FI
is of the form (26). In the classical case, the factor (T11T22 −
T ∗

12T12) does not yield any instability. Here, also, numerical
exploration shows that, as long as ξ ≪ 1, this factor does not
yield any unstable mode either. We find therefore that QED
effects do not affect the smallest unstable Zx of the FI nor the
saturation value of its growth rate for large Zx’s.

Strictly speaking, the FI dispersion equation can be solved
exactly since T33 = 0, where T33 is given by Eq. (28), yields
a fourth degree polynomial with only even powers. Yet, we
understand QED correction for any Zx cannot be considerable
since the growth rate starts from a point independent of ξ ,
and ends up the same way. In this respect, Fig. 5 shows the
growth rate of the FI for 	B = 1 and two values of ξ . A picture
similar to the TSI one emerges: QED effects slightly reduce
the growth rate.

C. Oblique instabilities

Surprisingly, what has been found for the TSI and the
FI, namely that QED effects reduce the growth rate, is not
systematically valid for oblique modes with both Zz 	= 0 and
Zx 	= 0. Of course, the two growth rates only slightly differ
since ξ ≪ 1, but the forthcoming analysis shows that, in

FIG. 5. QED corrected growth rate δ of the filamentation insta-
bility for 	B = 1 and two values of ξ .
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(a)

(b)

FIG. 6. (a) Growth rate of the oblique modes around Zz = 	B/γ0

and Zx = ∞. The QED corrected growth rate is larger than the
classical one. (b) Typical growth rate for the QED (ξ = 0.2) and the
classical cases when the FI is stabilized with 	B > 	Bc. The value
of ξ is exaggerated in both plots to make QED effects visible.

some regions of the k space, the QED corrected growth rate
δQED can be larger than the classical one δclass.

We shall first prove analytically that δclass < δQED for some
oblique instabilities at large k⊥ (i.e., Zx 
 1), before present-
ing a systematic numerical analysis of the difference.

1. Oblique instabilities at Zx � 1 and Zz = �B/γ0

As evidenced on Fig. 3, some oblique unstable modes are
found for finite Zz and large Zx. They were dubbed “upper-

hybrid-like” modes in Ref. [26]. Figure 3 suggests that those
found for the lower values of Zz vanish at large Zx. This will
be proved in the forthcoming analysis. Yet, those found at a
larger Zz persist at Zx 
 1. They are centered around Zz =
	B/γ0 [26,32], which is a pole of the tensor Tclass elements.
We can see from Eqs. (20) and (21) that QED corrections do
not modify this pole.

An analytical analysis of these unstable modes found at
finite k‖ (i.e., finite Zz) and large k⊥ (Zx 
 1) is possible
with Mathematica. One starts computing the determinant of
the tensor T given by Eq. (21). A sum of several rational
fractions follows. Setting them all on the same denominator
results in a single fraction, the numerator of which is a poly-
nomial Q(x, Zz, Zx ). The dispersion equation reads therefore
Q(x, Zz, Zx ) = 0. Q is a polynomial of degree 4 in Zx. The
dispersion equation for Zx 
 1 is therefore the coefficient a4

of Z4
x in Q. It reads

a4 = γ 3
0 (4ξ − 5)(x − Zz )2(x + Zz )2

(
4∑

j=0

b jx
j

)
, (30)

with

b0 = [10γ0 + (5 − 2ξ )	2
B + γ 2

0 (2ξ − 5)Z2
z

]
× (2β2

0γ0 − 	2
B + γ 2

0 Z2
z

)
,

b1 = 0,

b2 = 2γ 2
0

{
γ0
[
β2

0 (2ξ − 5) + 5
]+ (5 − 2ξ )	2

B

+ γ 2
0 (5 − 2ξ )Z2

z

}
,

b3 = 0,

b4 = γ 4
0 (2ξ − 5). (31)

The first factor of a4 does not yield any instability. As
for the second one, the QED correction ξ ≪ 1 enters its
coefficients b j in such a way that they will only be slightly
modified. And since the roots of a polynomial are continuous
functions of its coefficients [33], the associated growth rate is
also only slightly modified.

Solving the equation allows one to compute exactly the
square of the growth rate. Taylor expanding it for ξ � 1 gives

δ =
⎡
⎣δ2

class − 2ξ

5γ0

⎛
⎝1 − β2

0 + 2γ0Z2
z + 1√

β4
0 + β2

0 (2 − 4γ0Z2
z ) + 4Z2

z (γ0 + 	2
B) + 1

⎞
⎠+ O(ξ 2)

⎤
⎦1/2

. (32)

It is interesting to evaluate this expression for Zz = 	B/γ0. The result is simply

δ(Zz = 	B/γ0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ2
class − 2ξ

5γ0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
β2

0 + 2	2
B

γ0
+ 1√

− 4(β2
0 −1)	2

B
γ0

+ (β2
0 + 1)2 + 4	4

B

γ 2
0︸ ︷︷ ︸

≡A/B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O(ξ 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

. (33)
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FIG. 7. Plot of δclass − δQED for ξ = 10−2 and various combinations (γ0, 	B ). The quantity 	Bc indicates the threshold (11) for the
stabilization of the FI. While the classical growth rate is larger than the QED one for the TSI and the FI, the contrary can happen for oblique
modes (dark blue regions).

Clearly, if A/B > 1, then the QED growth rate will be
larger than the classical one, instead of smaller as is the case
for the TSI and the FI. Now, some algebra shows that

B2 − A2 = −8β2
0	2

B

γ0

⇒ A2

B2
= 1 + 1

B2

8β2
0	2

B

γ0
> 1. (34)

Therefore, for Zz = 	B/γ0 and Zx → ∞, the QED cor-
rected growth rate is larger than the classical one. This is
illustrated on Fig. 6(a), which shows the two quantities as
a function of Zz. Note that temperature effects are likely to
stabilize these large k⊥ modes [23,34]. Note also that, since
Eq. (30), that is, a4 = 0, features only one unstable mode,
it means that, out of the two branches visible at large Zx

on Fig. 3, only one persists in the limit Zx = ∞. We just
found that this is the one located around Zz = 	B/γ0. We
now show numerically that δclass < δQED does not occur only
at Zz = 	B/γ0 and Zx → ∞.

2. Numerical study

We now systematically study the difference δclass − δQED

over the whole k space, for several values of γ0 and 	B. The
result is displayed on Fig. 7. Note that, for faster computa-
tion, the polynomial dispersion equation has been transferred
from Mathematica to MatLab using the procedure described
in Ref. [35]. For each combination (γ0,	B), the value of

the critical magnetic parameter 	Bc [Eq. (11)] canceling the
filamentation instability is indicated on Fig. 7.

These calculations confirm what was previously found. Not
only δclass < δQED is fulfilled around Zz = 	B/γ0 and at large
Zx’s, but also in several parts of the spectrum. In some cases,
the dark blue regions, which indicate places where δclass <

δQED, seem to reach the vertical axis Zz = 0. One could then
think that in such cases we have δclass < δQED for the FI, in
contradiction with the conclusions of Sec. III B.

Yet, as shown for example on Fig. 6(b), this is not the case.
On this plot, the FI is stabilized since 	B = 3.4 > 	Bc = 0.6.
While we retrieve δclass > δQED for the TSI, there is a region
near 0.5 � Zx � 1 where δclass < δQED, while both go to zero
simultaneously for Zz = 0 since the criteria for canceling them
is the same. In other words, we do not find here δclass(Zx =
0) < δQED(Zx = 0). Instead, we find cases with δclass(Zx =
0+) > δQED(Zx = 0+) and δclass(Zx = 0) = δQED(Zx = 0) =
0.

IV. CONCLUSION

We computed the QED corrections to counter-streaming
instabilities resulting from harmonic perturbations with any
possible orientation of the wave vector. As was the case for
the TSI, finite first order corrections demand the presence of
a flow-aligned static magnetic field B0. If B0 = 0, the fields
cannot reach high enough intensities when growing from zero
during the linear phase for QED effects to appear.
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Note that QED effects could arise during the nonlinear
phase of an unmagnetized system if the field at saturation ap-
proaches the Schwinger limit Bcr . For example, the saturation
value Bsat of the magnetic field for the filamentation instability
is of the order of [36,37]

Bsat = √
γ0

mcωp

q
, (35)

so that Bsat ∼ Bcr gives

√
γ0

mcωp

q
∼ m2c3

qh̄
⇒ γ0 ∼ 1

ω2
p

m2c4

h̄2

⇒ γ0 ∼
(

�e

�C

)2

, (36)

where �e = c/ωp is the electron inertial length and �C =
h̄/mc the reduced electronic Compton wavelength. With �C =
3.8 × 10−11 cm and �e = 5.3 × 105n−1/2

e cm, where ne is the
electronic density in cm−3 [38], this translates to

γ0 ∼ 1.9 × 1032

ne [cm−3]
. (37)

Hence Bsat ∼ Bcr could be achieved for extremely high
Lorentz factors and/or beam densities.

Previous results for the TSI are recovered. In addition, we
find here that, even in 3D, the QED corrected TSI remains a
1D problem.

Choosing the wave vector perpendicular to the flow allows
one to analyze the FI. We find that QED effects neither change
the smallest unstable k⊥ nor the growth rate at large k⊥. In
between, QED corrections slightly decrease the growth rate.

Noteworthily, when it comes to oblique unstable modes,
analytical and numerical calculations do not confirm the
trends found for the TSI and the FI. While the growth rate
reductions can be attributed to virtual particles screening
the charges (see [31], p. 482), its increase in some regions
of the k space is surprising.

Some important effects have been left out of this article.
When particles oscillate in the first order growing fields,
they may emit γ photons, which in turn trigger pair produc-
tion [39,40]. These effects should arguably be worked out in
future works.
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