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Ion energy distribution in an electron beam ion trap inferred from simulations
of the trapped ion cloud
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We have inferred the energy distribution of trapped ions in an electron beam ion trap (EBIT) from simulations
of the spatial distribution of Fe13+ ions and a comparison with measured visible light images of the ion cloud. We
simulated the cloud of Fe13+ ions by computing ion trajectories in the EBIT for different ion energy distributions
used to initialize the trajectories. We then performed a least-squares fit to infer the ion energy distribution that
best reproduced the measured ion cloud. These best-fit distributions were typically non-Maxwellian. For electron
beam energies of 395–475 eV and electron beam currents of 1–9 mA, we find that the average ion energy
is in the range of 10–300 eV. We also find that the average ion energy increases with increasing beam current
approximately as 〈E〉 ≈ 25Ie eV, where Ie is the electron beam current in mA. We have also compared our results
to Maxwell-Boltzmann-distribution ion clouds. We find that our best-fit non-thermal distributions have an 〈E〉
that is less than half that of the T from the best-fit Maxwell-Boltzmann distributions (〈E〉/q)/T = 0.41 ± 0.05.
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I. INTRODUCTION

Electron beam ion traps (EBITs) are versatile sources for
benchmarking fundamental atomic physics parameters as well
as spectral fitting packages used to help interpret data mea-
sured from a variety of complex plasmas [1,2]. These traps
have a cylindrical geometry with an electron beam running
along the axis of the trap. Ions are confined radially within the
trap by the electrostatic potential of the electron beam and by
an applied axial magnetic field. Axial confinement is achieved
by electrodes at the ends of the trapping region [3,4]. Trapped
ions travel along trajectories that pass through the electron
beam, but also extend out to larger radii. Collectively, these
orbits form a cloud of trapped ions. The statistical distribution
of the total ion energy is generally not well known in EBITs.
As the total energy of each ion determines each individual tra-
jectory, the energy distribution among all the ions determines
the shape of the ion cloud.

The ion energy distribution is often assumed to be close to
Maxwell-Boltzmann and characterized by an ion temperature
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Ti. (Throughout, temperatures are in energy units.) Because
EBITs rely on electrostatic trapping, Ti is important for trap-
ping and producing highly charged ions in the device. Lower
Ti leads to narrower linewidths for precision spectroscopy
[5–7]. Ion temperature is also important when an EBIT is
used as an ion source [8–10]. For many applications, it is
also useful to have experimental control over the ion energy.
For example, some EBIT experiments seek to maximize the
time that the ions spend within the electron beam. However,
collisions between the electron beam and the ions increase the
energy of the ions, mainly in the transverse direction [11].
This drives ion orbits to larger radii until they hit the inner
wall of the trap and are lost. One approach to reducing the
energy of the ions is sympathetic evaporative cooling. For
this, a second, lower atomic number ion species is introduced
into the trap. Ion-ion collisions between the high mass, highly
charged species of interest and the low mass, lower charged
second species transfer energy to the lighter ions. Since the
lower charged ions are less strongly trapped electrostatically,
they escape more easily, leaving behind less energetic higher
mass ions [12]. Conversely, for other applications it can be
beneficial to expand the ion orbits in order to dilute the effec-
tive electron density experienced by the ions [13–16]. In such
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cases it would be desirable to increase the ion energy in order
to probe lower densities.

There have been several measurements of the ion temper-
ature in EBITs that have relied on measuring the Doppler
broadening of emission lines. For example, Beiersdorfer et al.
[17] measured the Doppler width for the x-ray 1s2 2S0 −
−1s2p 3P2 transition of Ti20+. The inferred temperature for
Ti20+ was 550 eV, corresponding to about 27.5q. Adler et al.
[18] inferred the ion temperature based on the width of a visi-
ble line of Ba34+ and obtained a temperature of Ti ≈ 500 −
−1000 eV. Beiersdorfer et al. [19] measured the Doppler
width of the x-ray lines arising from the Cs45+ (2p5

3/23d5/2)J=1

and (2p5
1/23s1/2)J=1 upper levels to the (2p6)J=0 ground state.

They found a temperature below 60 eV due to efficient cool-
ing using Ne10+. In another experiment, Beiersdorfer et al.
[20] performed similar measurements for Ti19+ using a high-
resolution crystal spectrometer and found temperatures in the
range of 70–700 eV, varying with the beam current.

All of these measurements have relied on inferring the
Doppler width of an observed spectral line, but for many
experiments, determining the ion temperature via Doppler
broadening is not practical. Hence, developing an alternative
method for determining the ion temperature is desirable. One
alternative is to use the spatial distribution of ions in the trap.
Because the potential of the trap varies radially, ions that are
more energetic will have a broader radial distribution. Porto
et al. [21] inferred Ti in an EBIT by considering the shape of
an ion cloud in thermal equilibrium produced by a Maxwell-
Boltzmann distribution of ions. However, Porto et al. [21]
point out that at high temperatures, where Ti is equal to the
potential at the edge of the electron beam, the ion clouds must
be nonthermal. Measurements based on Doppler broadening
also typically assume a Maxwellian line broadening. It would
be useful to have a diagnostic that can also characterize a
nonthermal ion energy distribution.

The method we introduce here is based on comparing test-
particle simulations of the ion orbits in EBIT to visible light
images of the ion cloud. We apply this method to ion cloud
images acquired during a recent set of experiments whose
objective was to calibrate electron-density-sensitive emission
lines in the extreme ultraviolet (EUV) [16]. The visible light
from the ions is due to a metastable level whose lifetime is or-
ders of magnitude longer than the orbital period of the trapped
ions. Consequently, the emission occurs throughout the ion
cloud and allows us to image the spatial distribution of the
ions. Arthanayaka et al. [16] measured the ion cloud in order
to determine the overlap between the ions and the electron
beam and the resulting effective electron density experienced
by the ions. Here, we use the Arthanayaka et al. measurements
to study the ion energy distribution. In their experiment, the
EUV spectra themselves could not be used to determine the
ion temperature because the spectral linewidths of the ob-
served allowed transitions were dominated by the width of the
electron beam. However, for a given ion energy distribution,
we can numerically follow a representative sample of particle
orbits and construct a synthetic ion cloud. The synthetic ion
cloud can then be compared to the observed ion cloud and
a least-squares fitting method used to iteratively vary the ion
energy distribution in the simulation until the measured and

synthetic ion clouds are in agreement. We used this method to
infer the ion energy distribution.

II. EXPERIMENT

Details of the ion cloud measurements using the EBIT-I
at the Lawrence Livermore National Laboratory have been
described in Refs. [16,22]. To review, the ions were confined
axially by a 400 V axial trapping potential created using a
set of three drift tubes. The radial confinement is due to the
radial electric field from the electron beam itself as well as
an applied axial magnetic field of 3 T. Iron pentacarbonyl
Fe(CO)5 was injected into the trap and then dissociated and
ionized by electron collisions. The spectra were measured
for various electron beam currents ranging from Ie = 1 to 9
mA. Measurements were completed at nominal electron beam
energies of Ee = 395 and 475 eV. The space charge of the
electron beam at the trap for these measurements reduces the
electron beam energy seen by the ions by ≈20 eV below the
nominal values [23]. We use the space-charge corrected elec-
tron beam energies reported by [16], but we continue to refer
to the electron beam energy by their uncorrected energies.

Arthanayaka et al. [16] inferred the full width at half-
maximum (FWHM) of the radial extent of the electron beam,
�e, from the EUV emission of the iron ions recorded using
a high-resolution grazing incidence spectrometer (HiGGS)
[24]. The EUV lines were from fast dipole-allowed transi-
tions, so that emission occurred only within the electron beam.
The observed iron lines were fit with Gaussian line profiles in
order to extract the intensities of the various lines of interest,
separate some line blends, and to quantify the linewidths.
The linewidths were essentially images of the electron beam.
The corresponding electron density, ne, could then be inferred
based on the measured �e and the known Ie and Ee.

The radius of the trapped ion cloud was measured using a
visible line emitted from a metastable level. As the lifetimes
of the metastable levels are long compared to the oscillation
period of the ions through the electron beam, the visible
light emission spans the entire ion cloud, giving an accurate
measurement of its dimensions. Specifically, we measured
the metastable Fe13+ 3s2 3p 2P3/2 − 3s2 3p 2P1/2 transition at
5302.9 Å [25]. This emission was isolated by using a 30-Å-
wide bandpass filter centered at 5320 Å. The lifetime of the
Fe13+ 5302.9 Å transition is 16.7 ms [26,27], which is much
longer than the ∼0.01 μm transit time for ions to cross the
trap.

The ion cloud profiles were well fit using a sum of two
Gaussian components. The amplitudes A1 and A2 and the
FWHM �1 and �2 for the fits are provided by Tables 6 and
7 of Ref. [16]. In the following, we use these fits and other
relevant quantities from the experiment.

III. METHOD

To infer the ion energy distribution, we calculated ion orbit
trajectories and simulated the ion cloud. Each simulation be-
gins with a trial energy distribution for ∼104 ions. As there are
no collisions in the simulation, the individual ion energies and
their energy distribution are conserved. Each ion is randomly
assigned an initial position and velocity drawn from the trial
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energy distribution. Then the orbit trajectory for that ion is
computed based on the forces from the radial electric field
due to the electron beam and the axial 3 T magnetic field.
After several orbits, sufficient time has passed to remove any
correlations among the ion orbits from their initialization. We
then construct a synthetic ion cloud measurement by project-
ing the ion positions onto one Cartesian axis. The synthetic
and measured ion clouds are compared, and a least-squares
minimization algorithm iteratively updates the trial energy
distribution until the best-fit energy distribution is found.

A. Initialization of the ion energy distribution

The total energy of the ions is the sum of the kinetic energy
and the electrostatic potential energy. In EBIT, electron-ion
collisions transfer energy to the ions, and ion-ion collisions
redistribute that energy among the ions. Physically, these col-
lision processes determine the evolution of the ion energy
distribution. However, our objective here is not to model the
actual evolution of the ion distribution, but only to describe the
ion energy distribution that produced our observed ion cloud.
Thus, we assume that the ions have a fixed, albeit unknown,
statistical distribution, and we ignore the collisions that ex-
plain how that distribution arose. Additionally, we neglect any
collective motion of the ions.

Because collisions are neglected, energy is conserved
along the ion trajectories, and the ion energy distribution,
f (E ), is fixed by the initial conditions. For each ion, the total
energy was set using a random number generator to draw an
energy from an assumed energy distribution. We considered
two approaches for specifying the energy distribution: we
could directly set the form of the total energy distribution, or
we could indirectly set the energy distribution by describing
the initial position and velocity distributions. In principle,
these are equivalent as they both set the initial ion energies,
though in practice they allow the distribution to be varied in
different ways. We worked with both approaches and obtained
similar results. Here, we focus on those obtained using the
direct method.

We described the initial energy distribution using a gener-
alized energy distribution function of the form [28]

f (E ) = x

T 3/2

1

�(3/2x)
(E − E0)1/2e−( E−E0

T )
x

. (1)

Here, E is the energy, T is an effective temperature, x is a
parameter that controls the shape of the distribution, and � is
the gamma function. With x = 1 this distribution has the form
of a Maxwell-Boltzmann energy distribution and with x = 2
the form is that of a Druyvesteyn distribution [29]. We use
this distribution because it is versatile, allowing for functions
either sharper or broader than a Maxwell-Boltzmann distribu-
tion. Both x and T are free parameters in the ion cloud fits.
The parameter E0 is the zero of the energy distribution, which
is the potential on the axis of the electron beam.

To calculate the trajectory of each ion, the initial positions
and velocities are required, not just the total energy. Motivated
by the physical consideration that the ions are formed by
collisions with the electron beam, we set the initial radial
distributions of the ions proportional to that of the electron
beam density (see below). This sets the initial potential energy

for each ion. The remaining energy for each ion was then
assigned to the kinetic energy, and the ions were given the
corresponding initial velocity. This initial velocity vector was
assigned to have a uniformly random orientation in the xy
plane.

B. Ion trajectory calculations

We calculated the ion orbit trajectories for Fe13+ ions in
EBIT-I in the two-dimensional plane perpendicular to the
beam axis. This is justified by the axial symmetry of EBIT
and the lack of any axial variation observed in the ion clouds
measured by Arthanayaka et al. [16]. These ions are subject
to an axial magnetic field of 3 T. They also experience a radial
electric force from the electron beam. The electron beam
density in EBIT-I is Gaussian, with

ne(r) = n0e−r2/2σ 2
e , (2)

where n0 is the central density of the beam, σe is the Gaussian
beam width, and the FWHM �e = 2.355σe. These parameters
can be derived from the quantities given in Tables 6 and 7
of Ref. [16]. There, the geometric average density n̄e was
reported, which corresponds to the density of the beam if it
were a uniform cylinder of radius re = 2σe. The correspond-
ing central density is n0 = 2n̄e.

For this cylindrically symmetric Gaussian density distribu-
tion of the electrons, the radial electric field is given by

Er,e(r) = en0σ
2
e

ε0r
(1 − e−r2/2σ 2

e ), (3)

where e is the unit charge and ε0 is the vacuum permittivity.
For computing the potential energy, one also needs to have the
corresponding electric potential φ. Upon integrating Eq. (3),
one obtains

φ(r) = en0σ
2
e

ε0

{
ln

r

r0
+ 1

2

[
E1

(
r2

2σ 2
e

)
− E1

(
r2

0

2σ 2

)]}
. (4)

Here E1 represents the first exponential integral and r0 is the
radius at which the potential is defined to be zero. We have
set r0 = 0.5 cm, which corresponds to the inner radius of the
drift tube in the trapping region. Note also that r0 itself has
no influence on the trajectories, as it is the electric field that
determines the forces, and Er,e(r) is independent of r0.

Taking the limit of Eq. (4) for small r and multiplying by
the ion charge qi gives the potential energy of an ion on the
axis of the electron beam:

E0 =−qi
en0σ

2
e

ε0

[
γ

2
+ ln(r0) + 1

2
ln

(
1

2σ 2
e

)
+ 1

2
E1

(
r0

2σ 2
e

)]
.

(5)

Here, γ is the Euler-Mascheroni constant with γ ≈ 0.577 216.
We also included the ion space charge. However, the ion

space charge depends on the shape of the ion cloud. We defer
the description of the electrostatic forces from the ions to
Sec. III C.

The ion trajectories were calculated by integrating the
equation of motion for the Lorentz force from the combined
axial magnetic field and the radial electric field. The inte-
gration was carried out using the Boris algorithm [30,31].
We tested the orbits for energy conservation and found that
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FIG. 1. Example of an ion orbit in EBIT-I.

energy is conserved to better than 2%. In many cases, the
deviations from energy conservation are much less than 1%.
The method is very fast, allowing for ∼104 ion trajectories to
be calculated in minutes. Figure 1 shows an example of an ion
orbit trajectory. Note that the energy conservation is evident in
the figure as the radial turning points of the orbits are constant.

Following the ions is necessary in order to remove bias
from the initial position distributions. Setting the initial
position and velocity distributions, f (r, v), uses ad hoc as-
sumptions that may differ from the f (r, v) in the experiment.
After several oscillation periods, the ion orbits become inco-
herent, removing the signatures of the initial f (r, v), so that
the orbits can be compared to the real ion cloud. After the ion
orbits have become incoherent, the shape of the observed ion
cloud no longer evolves (see also Appendix B of Ref. [16]).
The typical radial oscillation period is about 0.01 μs. We
sample the synthetic ion cloud after about 0.1 μs. Figure 2
illustrates the positions of 500 ion trajectories for the Ie = 5
mA and Ee = 395 eV experiment.

FIG. 2. Positions of 500 ions after a simulated 0.14 μs for the
Ie = 5 mA and Ee = 395 eV case. The simulated ion cloud is ob-
tained by making a histogram of the x-coordinates for all the ions.

C. Ion space charge

Given the final positions of the ions, we can compute the
electric field and electric potential due to the ions. From the
coordinates, (x, y), for the ions we make a histogram of the
radial distribution of the ion cloud density, f (r). Using
Gauss’s law, the radial electric field due to the ions is deter-
mined by numerically performing the integral,

Er,i (r) = Qi

ε0r

∫ r

0
f (r′)r′ dr′, (6)

where Qi is the total number of ions per unit axial length in the
trap. The electric potential is found by numerically integrating
over the electric field.

The value of Qi is very uncertain due to the unknown
number of ions in the trap. It is very difficult to experimentally
determine the number of trapped ions, and there have been
few attempts to estimate it. Brown [32] studied Fe16+ and
estimated that there were about 106 trapped ions in the EBIT
for Ie = 42 mA and Ee = 1150 eV. If those ions are confined
to the same volume as the electron beam, the positive charge
density would be about half that of the negative charged elec-
trons. Beiersdorfer et al. [33] and Schweikhard et al. [34] used
ion cyclotron resonance mass spectrometry to estimate the
number of Kr33+ − −Kr36+ in EBIT, and they found that there
were about 105 Kr ions at Ie = 150 mA and Ee = 100 keV.
Porto et al. [21] assumed that the total ion charge was 65% of
the electron charge. Based on these measurements, the trapped
ion charge is typically roughly half that of the electrons, so we
assume that the ion charge is 50% of the electron charge. This
total ion charge is due not only to Fe13+, but also to other
charge states. Here, we assume that all ion space charge is
distributed as it is for Fe13+, which is the only ion whose
spatial distribution is constrained by measurements.

To obtain a self-consistent ion cloud, we perform the calcu-
lation of the ion orbits iteratively. That is, the shape of the ion
cloud determines the electric potential, which in turn modifies
the shape of the ion cloud. For the initial run, we take f (r)
to be the one implied by the observed ion cloud. However,
as described below, this initial ion cloud is probably different
from the actual ion cloud in EBIT. After obtaining a model ion
distribution, we recalculate f (r) and repeat the process. A few
iterations are sufficient so that subsequent ion clouds differ by
10% or less. The electric potential is not very sensitive to the
exact shape of the ion cloud (see also Ref. [21]), and so this
tolerance suffices.

D. Construction of a synthetic ion cloud

The trajectory calculation gives the Cartesian coordinates
of a sample of ions. In the experiment, the ion cloud was
measured using a visible light charge-coupled device (CCD).
Thus, the experiment measured the projection of the ion cloud
distribution onto one Cartesian axis, that is, the measured
distribution is the Abel transform [35] of the ions’ radial posi-
tions. Taking the x axis to be the plane of the CCD, we produce
a synthetic image of the ion cloud by making a histogram of
the x-coordinates of the ions. For the histogram, we use a bin
size of 10 μm.

Figure 3 shows an example of our synthetic ion cloud
compared to the empirical ion cloud for the Ie = 7 mA and
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FIG. 3. Fit to the measured ion cloud for Ie = 7 mA and Ee =
395 eV. Solid connected square symbols in blue indicate the mea-
sured ion cloud, and the filled circles with error bars represent
the double-Gaussian fit to those data and the associated counting
statistical uncertainties. It is those smooth ion cloud data that the
model attempts to replicate. The solid curve is the synthetic ion cloud
obtained by fitting to the initial energy distribution f (E ) and then
convolving with the estimated PSF for the optical system. The dashed
curve illustrates the synthetic ion cloud before convolving with the
PSF.

Ee = 395 eV case. The filled circles reproduce the function
given by Table 6 of Arthanayaka et al. [16], which has been
normalized by the total number of counts in order to compare
with the synthetic cloud. That function is a fit to the data
represented by the blue squares. The error bars represent
counting statistical uncertainties on the measurement, based
on the total counts reported in the experiment.

The inferred f (E ) for the 5 mA and 395 eV ion cloud is
shown in Fig. 4. The best-fit parameters for this distribution
as well as for other experimental conditions are discussed in
detail in Sec. IV B.

FIG. 4. Simulated f (E ) for the experiment with Ee = 395 eV
and Ie = 5 mA. The solid curve is derived from the histogram of the
ion energies in the model with 105 ions, and the “noise” in the curve
is due to counting statistics. The dashed curve shows the analytical
f (E ) distribution, from which the simulated ion energies are drawn.

We consistently find that our best-fit synthetic ion clouds
have a taller and sharper peak than the measured ones. This
occurs for different functional forms for f (E ) or f (r, v),
whether including or ignoring the ion space charge, and even
for Maxwell-Boltzmann distribution ion clouds for which
no numerical simulation is needed (discussed further in
Sec. IV A). The most likely explanation for this consistent
discrepancy is that diffraction and optical aberrations in the
visible imaging system smooth out the actual ion cloud in the
experiment. Such effects are present in every optical system,
and consequently any measured ion cloud will be blurred
compared to the ideal theoretical one.

We have estimated the point spread function (PSF) for
the optical system that would be needed to account for the
discrepancy between the observed and synthetic ion clouds.
To do this, we convolved a Gaussian PSF with the synthetic
ion cloud data and varied the width of the PSF to obtain the
best least-squares fit to the measurements. For the 5 mA and
395 eV ion cloud, we find that the Gaussian width of the PSF
would need to be roughly σ ≈ 21 μm.

For comparison, we can estimate the diffraction-limited
resolution of the optical setup used in the experiment. The
diffraction-limited angular resolution θ for a perfect circular
lens of diameter d observing a wavelength λ is θ ≈ 1.22λ/d
[36]. Our system used a 4-in.-diam lens, however the lens was
occulted down to 1 in. (2.54 cm) to reduce aberrations. This
implies an angular resolution of 24.6 μrad for the observed
wavelength of λ = 5320 Å. Since the beam is located 67 cm
from the lens, we find that the diffraction-limited spatial res-
olution for a perfect optical system is about 16.5 μm. The
optical system used in the experiment was known to have
some optical aberrations, and so the larger inferred PSF width
of ≈21 μm is reasonable.

To improve the correspondence between our synthetic ion
cloud and the real measured one, we have convolved our
model ion clouds with a PSF having σ = 21 μm. Figure 3
illustrates the effect of the PSF convolution on the model ion
cloud. In addition to correcting the sharp peak at x = 0, the
smoothing also has numerical advantages. Since the ions are
initialized stochastically, there are run-to-run fluctuations in
the ions and in the resulting ion clouds. The PSF smoothes
the model ion spatial distribution, effectively removing these
fluctuations and thereby leading to a faster convergence of the
chi-squared minimization.

IV. RESULTS AND DISCUSSION

A. Maxwell-Boltzmann distribution ion clouds

Before discussing ion clouds generated for an arbitrary ion
energy distribution using the numerical model, it is useful
to estimate some results using a Maxwell-Boltzmann distri-
bution, i.e., applying the method of Porto et al. [21]. For a
Maxwell-Boltzmann distribution, the radial spatial distribu-
tion of the ions is given by

f (r) ∝ e−qiφ(r)/Ti . (7)

The observed image of the ion cloud is the projection of this
cylindrically symmetric ion cloud onto an image plane. To
compare this Maxwell-Boltzmann distribution ion cloud to the
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FIG. 5. Same as Fig. 3, but using a Maxwell-Boltzmann distribu-
tion. The solid curve is the Maxwell-Boltzmann distributed ion cloud
after convolving with the estimated PSF for the optical system. The
dashed curve illustrates the distribution before the convolution.

measured one, we find the Abel transform F (x) of f (r) [35],

F (x) = 2
∫ ∞

x

f (r)r√
r2 − x2

dy. (8)

In this comparison, we normalize the theoretical and measured
ion clouds so that

∫
F (x) dx = 1.

In Eq. (7), φ(r) is the electric potential due to both the
electrons and the ions, the latter of which depends on f (r). We
used an iterative method to obtain a self-consistent f (r) and
φ(r). For the initial iteration, the ions are neglected and φ(r)
is due only to the electrons. The resulting ion cloud is then
used to recalculate φ(r) and generate an updated φ(r). The
process is repeated until f (r) converges. We considered the
criteria for convergence to be that two subsequent iterations
for f (r) differ by not more than 2%.

In many cases, the Maxwell-Boltzmann distribution pro-
vides a reasonable approximation to the observed ion cloud
(Fig. 5). In terms of the chi-squared value, χ2, of the fits,
the Maxwell-Boltzmann distribution has a χ2 typically only a
factor of a few greater than the trajectory calculation, although
there are a couple of cases in which they are about equal,
including the 7 mA case illustrated in Figs. 3 and 5.

Figure 6 compares the Maxwell-Boltzmann distributed ion
cloud temperature to the radial electrostatic potential drop 
φ

(see also Table I). It is clear that the best-fit ion temperature
is very close to 
φ, especially for smaller 
φ, which corre-
sponds to lower electron beam currents. This relation suggests
that the ion energy distribution is limited by escape from the
trap. If the ions had a higher temperature, the ions in the
high-energy portion of the distribution would be lost, reducing
the temperature.

B. Trajectory model ion cloud results

The trajectory calculation can produce synthetic ion clouds
for any input ion energy distribution. As discussed above, we
have used the generalized distribution function of Eq. (1) to
characterize the ion energy distribution. Table II summarizes
the results of that fit.

FIG. 6. Maxwell-Boltzmann distribution ion temperature T vs
the radial electrostatic potential drop 
φ for the 395 eV (filled
circles) and 475 eV (filled squares) electron beam energy. The dotted
line indicates T = 
φ.

The parameter x is related to the shape of the distribu-
tion, with x = 1 being a Maxwell-Boltzmann distribution and
larger values of x corresponding to a sharper distribution with
fewer particles at high energies. We find that the value of
x increases with the beam current, or equivalently, with the
radial potential difference. This implies that the ion energy
distribution becomes increasingly nonthermal. Our method
can diagnose the ion distribution, but it does not provide an
explanation for it. Nevertheless, we can speculate. The main
factors that influence the ion energy distribution are energy in-
put from collisions with the electron beam, and energy losses
from the escape of the most energetic ions. At low currents,
energy input into the distribution may be low enough that in-
puts thermalize among the ions. At high currents, this balance
may be lost with energy input causing rapid energization of
ions that are then lost, leading to truncation of the tails of the
distribution.

The second parameter of f (E ) is a temperature-like pa-
rameter, T . However, T is not directly related to the average
energy of the ions, unlike the equilibrium temperature in a

TABLE I. Ion temperatures assuming a Maxwell-Boltzmann
distribution.

Ee (eV) Ie (mA) 
φ (V) T (eV)

395 1 4.3 3.13 ± 0.02
395 2 10.2 10.23 ± 0.14
395 3 16.2 18.21 ± 0.28
395 5 25.3 25.50 ± 0.38
395 7 36.0 36.60 ± 0.06
395 8 42.3 44.81 ± 0.63
475 1 4.7 4.75 ± 0.01
475 2 9.4 9.63 ± 0.02
475 3 12.8 11.59 ± 0.14
475 5 23.4 24.01 ± 0.36
475 7 35.4 38.94 ± 0.71
475 9 47.9 56.3 ± 1.0
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TABLE II. Parameters describing f (E ).

Ee (eV) Ie (mA) −E0 (eV) T (eV) x 〈E〉 (eV) (r80,e/r80,i )2

395 1 59.8 9.29 ± 0.48 1.00 ± 0.01 14.02 ± 0.54 0.23
395 2 126.4 68.2 ± 1.4 1.64 ± 0.09 57.2 ± 1.2 0.067
395 3 195.1 157.4 ± 3.5 2.81 ± 0.28 101.94 ± 0.58 0.047
395 5 316.7 192.3 ± 3.6 3.49 ± 0.61 118.7 ± 1.6 0.091
395 7 453.8 267.9 ± 6.5 3.78 ± 0.64 163.36 ± 0.26 0.081
395 8 521.7 321.2 ± 6.7 3.05 ± 0.51 203.8 ± 4.1 0.065
475 1 59.2 23.21 ± 0.64 1.06 ± 0.04 31.62 ± 0.98 0.078
475 2 118.3 83.6 ± 4.4 2.45 ± 0.48 56.5 ± 1.4 0.063
475 3 172.6 113.5 ± 2.0 3.29 ± 0.80 07.9 ± 2.7 0.090
475 5 295.0 195.9 ± 5.6 2.67 ± 0.46 128.8 ± 3.5 0.058
475 7 431.0 318.7 ± 9.6 3.46 ± 0.94 197.1 ± 5.2 0.040
475 9 557.7 436 ± 16 2.55 ± 0.33 291.0 ± 2.6 0.022

Maxwell-Boltzmann distribution. Instead we find the average
ion energy for the generalized energy distribution by calcu-
lating the first moment of the inferred f (E ). For the energy
distribution of Eq. (1), this is

〈E〉 =
∫ ∞

0
(E − E0) f (E ) dE . (9)

As E0 is the minimum value of the energy distribution (i.e., in
the absence of kinetic energy), we measure the average energy
of the distribution above that value.

The ion energy increases in proportion to Ie, or equivalently
to the beam density. Figure 7 shows 〈E〉 versus Ie for the
two electron beam energies of 395 and 475 eV. There are
several reasons that the average energy may increase with Ie

or ne. Increasing the electron density deepens the potential
well, allowing higher-energy ions to be trapped. Hence, as I
increases, so does the trap depth and the 〈E〉 of the trapped
ions. This can be seen more directly in Fig. 8, which plots
〈E〉 against −E0. As E0 is negative and represents the zero
of the energy distribution, −E0 is positive and measures the

FIG. 7. The average energy of the ions 〈E〉 vs the electron beam
current Ie. The filled circles show the results for the 395 eV electron
beam energy, and the filled squares are for the 475 eV beam en-
ergy. The propagated uncertainties in 〈E〉 are shown, but are usually
smaller than the symbol size.

effective depth of the potential energy well in which the ions
are trapped.

A higher electron current or density also increases the
number of electron-ion collisions that transfer energy to the
ions. Atoms arrive in the trap at room temperature. They are
ionized and gain energy due to collisions with the electron
beam. Therefore, more frequent collisions might also lead to
a higher average ion energy.

Our measurements show that the ion energy depends
strongly on Ie. For currents in the range of 1–9 mA, we find
〈E〉 ≈ 10 − −300 eV. From this we can derive an empirical
relation 〈E〉 ≈ 25Ie, where Ie is given in mA.

Figure 9 compares these average energies to the best-fit
Maxwell-Boltzmann distribution temperatures. The average
energy for a Maxwell-Boltzmann distribution is the temper-
ature. To compare these quantities on the same basis, we
have divided 〈E〉 by the ion charge, q = 13. Clearly, 〈E〉
and T are proportional to one another. This is expected since
the ion energies are determined by the trap depth, regardless
of the assumed shape of that distribution. The nonthermal
distribution has an 〈E〉 that is less than half that of the
T from the Maxwell-Boltzmann distribution (〈E〉/q)/T =

FIG. 8. Same as Fig. 7, except that here 〈E〉 is plotted as a
function of −E0, the magnitude of the minimum energy of the ion
energy distribution.
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FIG. 9. The average energy of the ions per charge 〈E〉/q vs the
corresponding Maxwell-Boltzmann temperature T , for the 395 eV
(filled circles) and 475 eV (filled squares) electron beam energies.

0.41 ± 0.05. This implies that the bulk of the ion
distribution is trapped more strongly than would be expected
for a Maxwell-Boltzmann distribution.

The most significant systematic uncertainties in our results
come from the optical resolution of the imaging system and
the estimate of the number of trapped ions. These could be
resolved in future work by measuring the PSF of the opti-
cal system independently and by quantifying the number of
trapped ions. Such data could then be readily incorporated into
the methods presented here without fundamentally changing
the procedure.

The PSF of the optical system smoothes the measured
ion spatial distribution, especially by rounding off the sharp
central peak in the modeled ion spatial distribution. In one
test (for the 5 mA and 395 eV case neglecting ion space
charge), we found that the best fit had a reduced chi-squared
of χ2

ν = 2.2, but adding a PSF width of 21 μm improves the
statistic to χ2

ν = 0.77. The effect is so large that other choices
of the energy distribution may also produce reasonable fits.
For example, we constructed an ion cloud from a uniform
ion energy distribution that has the same average energy as
the best fit for the generalized distribution, i.e., one that is
constant from E = 0 to E = 2〈E〉. Without smoothing, this
uniform distribution yields χ2

ν = 4.4, which is clearly worse
than that of the generalized distribution. However, if the uni-
form distribution cloud is smoothed with the estimated PSF,
then agreement is improved to χ2

ν = 1.0, which is a good fit.
An optical system with better spatial resolution could increase
the accuracy of the inferred f (E ).

The average energy 〈E〉 found by our fits is, however,
robust to the ambiguity introduced by the optical system PSF.
Distributions that have very different 〈E〉 from our results
produce ion clouds that are significantly worse fits to the
measurements. In addition, some aspects of the shape of the
distribution are also robust; very different f (E ) distributions
will lead to clear discrepancies with the measured ion cloud,
even if 〈E〉 is kept the same as for the best fit. For example, a
δ-function (beam) distribution with f (E ) = δ(E − 〈E〉) pro-

duces a nearly uniform density ion cloud that clearly differs
from the observed one.

Smoothing of the ion cloud peak by the PSF intro-
duces a previously unappreciated systematic uncertainty
into the electron-density-sensitive emission-line experiments.
Arthanayaka et al. [16] sought to use the observed ion clouds
to infer the effective average density, neff , that ions experi-
enced along their orbits. Smoothing of the central peak makes
it appear as though ions spend less time at the high densities
near the center of the electron beam, and so Arthanayaka
et al. underestimated neff . Using the trajectory calculations, we
computed neff directly for the best-fit ion distributions, and we
found that neff is about a factor of 1.4 greater than previously
estimated.

The overlap of the ion cloud with the electron beam is
another quantity that is commonly used to characterize the
trapping in an EBIT, but we find that the sharper peak in the
synthetic ion cloud only slightly changes this overlap factor
compared to the measured ion cloud. It is conventional to
consider the radius of the beam or cloud to be that radius
that contains 80% of the particles, r80,e or r80,i. Then the area
overlap is given by (r80,e/r80,i )2. For the synthetic ion cloud,
we find that the overlap factor is on average 0.08 ± 0.05
(see Table II). The Ee = 395 eV and Ie = 1 mA case ap-
pears to be an outlier, but in that case the experiment also
showed a narrow ion cloud without the broader Gaussian
component seen for the other conditions. These synthetic
overlap factors can be compared to those expected from
the measured ion cloud parameters given by Arthanayaka
et al. [16], for which the overlap factor is about 0.05. The
slightly larger overlap factor found using the modeled ion
trajectories is probably due to the sharper peak in the cen-
ter of the ion, but this difference is small and within the
uncertainties.

A second source of systematic uncertainty is the number of
trapped ions, which determines the magnitude of the ion space
charge. The ion space charge reduces the radial electric field
in the trap and the depth of the electric potential. As discussed
above, we do not have a measurement of the number of ions.
Rather, we have used a rough estimate based on other studies,
finding that the trapped ion charge is about half that of the
electron beam.

Our results allow us to predict qualitatively how a different
ion space charge would affect the ion energies. In our mea-
surements, 〈E〉 varies most strongly with the electrostatic trap
depth. If we have estimated too few trapped ions, then we have
overestimated the trap depth and our results for the magnitude
of 〈E〉 are overstated. On the other hand, if we have estimated
too many trapped ions, then the average ion energy is smaller
than our estimate. This affects the magnitude of 〈E〉, but the
trends with Ie and Ee should be unaffected.

In this work, we have neglected the role of axial trap-
ping. Previous experiments have found that Ti increases with
increasing axial trapping potential [19,20]. Our current mea-
surements with varying radial potentials suggest that the
reason for this dependence is that ions with sufficiently high
energies escape so that a deeper potential well allows for
higher energy ions to be trapped. It is necessary to apply
the methods presented here to understand the characteristics
of the ion cloud under typical EBIT conditions where axial
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trapping and escape dominates with a lower trapping potential
and a higher electron current.

V. SUMMARY

We have characterized the ion energy distribution f (E )
in an EBIT using a combined modeling and observational
approach. Our diagnostic uses an ion trajectory calculation
for a given set of experimental conditions and a trial f (E ) to
construct a synthetic ion cloud. The form of f (E ) can accom-
modate nonthermal distributions. The parameters describing
f (E ) are then varied until the synthetic ion cloud best matches
the measurements. Here, we compared to the measurements of
Arthanayaka et al. [16]. We find that the average ion energy,
〈E〉, increases with Ie and the depth of the radial potential. The
inferred 〈E〉 ranges from about 10 eV to about 300 eV. We
also compared to ion clouds from a thermal distribution, and
we found that the ion temperature is approximately equal to
the radial electrostatic potential drop across the trap. However,
our more general results imply that the ion energy distribution
is typically nonthermal with average ion energies less than
half the temperature of the best-fit Maxwell-Boltzmann dis-
tribution. Our results suggest that the ion energy distribution
is largely determined by the escape from the trap of ions that
attain sufficient energy in the tails of the distribution.

The main sources of systematic uncertainty are the magni-
tude of the ion space charge and the spatial resolution of the
optical system. The ion space charge reduces the depth of the
potential well, which determines the 〈E〉 of the trapped ions.
The spatial resolution constrains our ability to determine the
details of f (E ), though 〈E〉 is expected to be robust to this
uncertainty. The optical system PSF also smoothes out the
central peak in the ion cloud. In the calculations we consis-
tently find a sharp peak, which is not directly observed. If the
actual ion spatial distribution is as strongly peaked as it is in
the simulations, then the experimental effective densities were
underestimated by ≈40%. Future work can improve these
systematic uncertainties by quantifying the number of trapped
ions and by reducing the PSF of the optical system.
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