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Dense plasma opacity via the multiple-scattering method
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The calculation of the optical properties of hot dense plasmas with a model that has self-consistent plasma
physics is a grand challenge for high energy density science. Here we exploit a recently developed electronic
structure model that uses multiple scattering theory to solve the Kohn-Sham density functional theory equations
for dense plasmas. We calculate opacities in this regime, validate the method, and apply it to recent experimental
measurements of opacity for Cr, Ni, and Fe. Good agreement is found in the quasicontinuum region for Cr and
Ni, while the self-consistent plasma physics of the approach cannot explain the observed difference between
models and the experiment for Fe.
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I. INTRODUCTION

One of the grand challenges in high energy density physics
is a comprehensive model of dense plasma opacity. Most
modern-day plasma opacity models are based on the atomic
structure calculations of isolated ions, which are then cou-
pled to external models for plasma density and temperature
effects and possibly rate equations for ion population kinetics
[1–4]. Such approaches are well-suited for low-density plas-
mas, where the isolated-ion picture is a good starting point
for the electronic structure and where there exist accurate
models for the most important plasma effects such as Stark
broadening, ionization potential depression, and continuum
lowering. However, there is a growing corpus of experimental
and computational evidence that these models become unre-
liable for high-density plasmas, taken here to mean densities
greater than about 1/100th of solid density [5–11].

The essential physical problem is that at high densities, one
cannot decouple the atomic physics from the plasma physics.
That is, the electronic structure of individual ions must be
considered self-consistently with their neighbors. Rather than
an isolated-ion electronic structure, the natural starting point
should be a multiatom electronic structure method that in-
cludes a consistent treatment of free electrons. In that way,
the important temperature and density effects—Stark broad-
ening and continuum lowering in particular—are built into
the electronic structure from the outset. One such method that
meets this requirement is finite-temperature density functional
theory (DFT) [12–14].

In principle, with DFT all electrons are treated equally;
there is no required distinction between free and bound elec-
trons. Moreover, the electronic structure due to many ions
is found at once; there is no need to first consider isolated

*nsha@lle.rochester.edu

atoms and try to add plasma effects afterward. These strengths
mean that the plasma physics in a DFT treatment is very high
quality. The method has been used with success for the optical
properties and equation of state of dense plasmas for over
20 years [9,15–19]. Due to computational and practical lim-
itations, the method has been restricted in its applications to
systems with degenerate or nearly degenerate electrons (i.e.,
temperatures similar to, or lower than, the Fermi temperature).

Recently, however, these limitations have been overcome
by adapting multiple scattering theory (MST) to plasma con-
ditions [20,21]. MST is a blanket term [22,23] that covers both
the Korringa-Kohn-Rostoker (KKR) method [24,25] as well
as the real-space Green’s function (RSGF) method [15,26].
Its name derives from the multiple scattering of a wave as
it passes though a medium [27]. For electrons, this refers to
quantum diffraction. Originally developed to model periodic
solids [24,25] (KKR), the method was adapted to treat clusters
of atoms and molecules (RSGF), with wide ranging uses for
optical properties [15,28–30].

In brief, MST solves the electronic structure problem by
using a multicenter expansion. This casts the global electronic
structure problem into many local ones, whose solutions are
coherently connected to one another. While not restricted
to solving the Kohn-Sham DFT equations (in fact it pre-
dates DFT), it has found widespread use for such problems
[22,31,32]. In Refs. [20,21], both KKR and RSGF were used
to model dense plasmas with DFT and predict their equa-
tions of state. MST has two principal advantages over other
methods to solve the DFT equations for plasmas. First, core
electrons are computed consistently, i.e., without pseudopo-
tentials. Second, it can reach arbitrarily high temperatures
without prohibitive computational scaling.

In this paper, we apply MST to the optical properties of
hot dense plasmas, focusing on conditions that are inaccessi-
ble or extremely challenging to existing multicenter methods.
We compare to existing methods based on DFT and find
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generally good agreement. After this validation, we apply the
method to recent experiments on Cr, Fe, and Ni [8,33]. We
find good agreement on Cr and Ni for the quasicontinuum
(bound-free) region of the spectra, while for Fe, the enigmatic
difference between models and experiment [33] is reinforced
by our calculations. The comparison with experiment also
highlights the weakness of the approach for bound-bound
spectra. Moreover, since MST has a consistent treatment of
all electrons, effects such as continuum lowering and wave
function decoherence due to multiple collisions with ions [34]
are automatically included. Ours results therefore imply that
the ad hoc treatment of these effects in models starting from
isolated atom calculations is not the source of the difference
between such models and the experimental results for Fe.

II. THEORY

In a basis of single-particle states, the real part of the
optical conductivity is given by the Kubo-Greenwood formula
[35,36],

σ (ω) = 2πe2ω

3�

∑
a,b

|〈a|r|b〉|2( fa − fb)δ(h̄ω − Eb + Ea),

(1)
where h̄ω is the photon energy, � is the system volume,
a labels the initial states with energy Ea and Fermi-Dirac
occupation fa, and b labels the final states with energy Eb

and occupation fb. Here and throughout, the twofold spin
degeneracy of each state has been explicitly factored out of
the summations. Positive ω corresponds to photoexcitation of
state a to b, with the Dirac delta representing the conservation
of energy. To evaluate the conductivity using the Green’s
function formalism, we introduce the one-electron Green’s
function:

G(r, r′; z) = 2
∑

a

〈r|a〉〈a|r′〉
z − Ea

. (2)

Here, z = E + i� is the complex energy with real E and �.
Throughout, we consider � � 0, i.e., the retarded Green’s
function. As � → 0+, the imaginary part of the Green’s func-
tion is

Im G(r, r′; E ) = −2π
∑

a

〈r|a〉〈a|r′〉δ(E − Ea) (3)

in terms of which the Kubo-Greenwood formula may be
rewritten

σ (ω) = e2ω

6π�

∫
�

∫
�

∫ ∞

−∞
( f1 − f2)(r · r′)Im G(r, r′; E1)

× Im G(r′, r; E2)dE1dr′dr, (4)

in which E2 = E1 + h̄ω and the discrete sums over states have
been replaced with an integral over all energies. The usual
form of the Kubo-Greenwood relation, Eq. (1), is recovered
using the residue theorem. The Green’s function formulation
allows us to make use of an efficient, local representation, the
RSGF method.

The idea of the RSGF method is to partition the domain �

into nonoverlapping cells, {�n}, each containing one special
point, Rn, called the center or site. For crystals, these centers
are usually chosen to coincide with the nuclei. For disordered

plasmas, it is necessary to also have cells without nuclei [20].
The r and r′ dependence of the Green’s function are expressed
relative to the center of the cell they lie in,

r = rn + Rn r′ = r′
n′ + Rn′ , (5)

so the Green’s function can be expressed piecewise in terms
of site-site Green’s functions:

G(r, r′; z) =

⎧⎪⎨
⎪⎩

...

Gnn′
(rn, r′

n′ ; z) if r ∈ �n, r′ ∈ �n′ .
...

(6)

With this representation of the Green’s function, the integrals
over all space in Eq. (4) can be decomposed into integrals over
the cells

σ (ω) = e2ω

6π�

∑
nn′

∫
�n

drn

∫
�n′

dr′
n′

∫ ∞

−∞
dE1

× (rn + Rn) · (r′
n′ + Rn′ )( f1 − f2)

× Im Gnn′
(rn, r′

n′ ; E1)Im Gn′n(r′
n′ , rn; E2). (7)

The advantage of this representation is one can expand Gnn′
in

spherical harmonics about the site centers Rn and Rn′ . This ex-
pansion is only conditionally convergent for arbitrarily shaped
cells [37,38], but this issue is mitigated if the cells are nearly
spherical, which is one reason for introducing non-nuclear
expansion centers.

The general spherical harmonic expansion of the site-site
Green’s function has two terms, Gnn′ = Gnn′

ss + Gnn′
ms , these be-

ing (with energy arguments suppressed) a single-site part

Gnn′
ss (rn, r′

n′ ) = −2π iδnn′
∑

L

Rn
L(r<)Hn

L (r>)YL(r̂n)Y ∗
L (r̂′

n) (8)

and a multiple-scattering part

Gnn′
ms (rn, r′

n′ ) = 2π
∑
L,L′

Gnn′
LL′Rn

L(rn)Rn′
L′ (r′

n′ )YL(r̂n)Y ∗
L′ (r̂′

n′ ). (9)

Here, Rn
L (Hn

L ) is an (ir)regular partial wave solution to the
radial Schrödinger equation at site n, with L = (l, m) being
the angular momentum numbers. The coefficients Gnn′

LL′ (z) are
the matrix elements of the structural Green’s function, which
is the solution of a Dyson equation

G = G0 + G0TG, (10)

where the T is the single-site t-matrix with elements δnn′t nn
LL′ (z)

and the matrix elements of G0 are the structure constants,
which are evaluated using the real-space cluster method de-
scribed in Ref. [21]. Note, however, the use of different
normalization conventions, as detailed in the Appendix.

The conductivity, Eq. (7), would be unnecessarily ex-
pensive to evaluate if the general expressions Eqs. (8) and
(9) were used directly. To obtain a more practical expres-
sion for numerical implementation, we make the following
simplifications.

First, we consider photoabsorption by core electrons only,
defined to be those occupying deeply bound atomiclike or-
bitals. This means we truncate the integral over initial-state
energies in Eq. (7) to only extend up to some Emin that lies
below any valence bands, which we choose based on inspect-
ing the density of states. In this energy range, the Green’s
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function for the initial state is replaced by core orbitals using
Eq. (2) and the Plemelj relation Im 1

E−Ea+i0+ = −πδ(E − Ea).
This collapses the energy integral and allows for the identifi-
cation of independent contributions to the conductivity from
each core electron. As a further benefit, the double sum over
sites in Eq. (7) need only include nuclear cells, since the
potential in cells without nuclei is too shallow to support
deeply bound electrons.

Second, we replace the dipole operators rn + Rn → rn,
dropping the explicit dependence on the coordinates of the
expansion centers. In an isotropic plasma, this explicit co-
ordinate dependence must vanish upon ensemble averaging
anyway, so it is a waste of effort to retain it. We also re-
place 1

3 rn · r′
n′ → (ẑ · rn)(r′

n′ · ẑ), that is, we calculate the zz
Cartesian component of the conductivity tensor rather than
one-third its trace. This is again permitted for isotropic sys-
tems like disordered plasmas, cutting the expense of the
calculation by a factor of 3.

Third, we adopt a muffin-tin approximation to the potential
at each site. This allows us to drop the radial wave functions’
dependence on the magnetic (m) quantum number and also al-
lows the matrix elements of T to be simplified to δnn′δLL′t n

l (z),
where t n

l (z) is the familiar partial-wave t-matrix element for
scattering by a spherically symmetric potential.

Fourth, the single-site term of the final-state Green’s func-
tion is treated using a renormalization procedure suggested
by Prange et al. in Ref. [39]. This procedure separates the
rn and r′

n dependence of Gnn′
ss , which are generally coupled

together via r≶. This procedure is detailed and justified in
the Appendix. By separating the rn and r′

n dependence of the
Green’s function, the spatial integrals in Eq. (7) fully decouple
into two radial and four angular integrals, and the angular
integrals may be evaluated analytically.

With the above considerations, the optical conductivity for
absorption by a core electron a at site n is given by

σ n
a (ω) = 2πe2ω

�

∑
L,L′

[
f
(
En

a

) − f
(
En

a + h̄ω
)]

ann
LL′

(
En

a + h̄ω
)

× Dn0
LaL

(
En

a , En
a + h̄ω

)
Dn0

L′La

(
En

a + h̄ω, En
a

)
, (11)

where

ann′
LL′ (z) = δnn′δLL′ − 1

2i

[
Ḡnn′

LL′ (z) − (−1)m+m′ Ḡnn′∗
L̄L̄′ (z)

]
(12)

are the spherical harmonic expansion coefficients of the imag-
inary part of the site-site Green’s function:

Im Gnn′
(rn, r′

n′ ) = −2π
∑
LL′

ann′
LL′ R̄l (rn)R̄n′

l ′ (r′
n′ )YL(r̂n)Y ∗

L′ (r̂′
n′ ).

(13)
In Eq. (12), L̄ = (l,−m) is the opposite-parity angular mo-
mentum index and Ḡ is a rescaled structural Green’s function,
defined in the Appendix. The renormalized wave functions
R̄n

l are defined in the Appendix as well. Also appearing in
Eq. (11) is the dipole matrix element

Dnq
L1L2

(z1, z2) =
√

4π

3

∫
�n

rRn
l1 (r; z1)Rn

l2 (r; z2)

×YL1 (r̂)Y ∗
L2

(r̂)Y1q(r̂)dr, (14)

which is evaluated by decomposing the cell �n into the
muffin-tin sphere and an interstitial region. Over the muffin-
tin sphere, the angular integrals may be performed analytically
in terms of 3 j symbols, and the usual dipole selection rules
apply. The remaining integral over the interstitial region is
done using the quadrature rule described in Ref. [40]. The
interstitial region can often be neglected since core states
decay rapidly away from the site center.

Equation (11) is appropriate for photoabsorption from a
core state into a valence or continuum state, En

a + h̄ω > Emin.
For transitions between core states a → b, we may evaluate
the simpler formula:

σ n
ab(ω) = 2πe2

�

(
En

b − En
a

)
( fa − fb)

∣∣Dn0
LaLb

(
En

a , En
b

)∣∣2

× δ
(
En

a − En
b + h̄ω

)
. (15)

The Dirac delta is an artifact of the infinite lifetimes of
the Kohn-Sham states and is in practice replaced by a unit
Lorentzian line profile δ(E ) → (�/π )(E2 + �2)−1, with the
same width � used to evaluate the retarded Green’s function
for core-valence transitions. Since this width is a numerical
parameter rather than a physical one, it is chosen to be much
less than the total line width due to the variation in transition
energy from site to site.

The total conductivity due to core excitations at site n
is the sum of core-valence and core-core conductivities, for
each core state that exists at site n. The core-electron con-
ductivity of a particular nuclear configuration is the sum from
each site, which is then averaged over an ensemble of con-
figurations produced from pseudoatom molecular dynamics
(PAMD) simulations [41]. PAMD produces realistic nuclear
configurations for warm and hot dense plasmas, and in this
paper we focus on conditions where it has been validated
against higher-fidelity approaches [42,43]. Below, we give
results in terms of the mass absorption coefficient

κ (ω) = σ (ω)

ρcε0
, (16)

where ρ is the mass density. The plasma index of refraction
has been assumed to be unity. This is valid for all cases con-
sidered here, where the core-electron binding energy is on the
keV scale. In comparison, the index of refraction is relevant
only near or below the plasma frequency, ωp =

√
e2ne/ε0me,

which is typically 1 eV to 100 eV for laser-produced plasmas.

III. RESULTS

A. Comparison with an average atom model

The average atom (AA) model is a single-center ap-
proximation to the electronic structure of plasma ions. The
Kohn-Sham equations are solved in the potential of a single
nucleus, with free-particle boundary conditions imposed be-
yond the ion-sphere radius. Compared to the present RSGF
method, the AA model neglects multiple scattering, does
not have site-to-site variation in the muffin-tin radii, and its
Kohn-Sham potential does not account for the arrangement
of nuclei. As a result, AA models miss important qualitative
effects of the plasma environment on the opacity.

This is illustrated in Fig. 1, which compares the opacity
of the Tartarus AA model [5,44] to the RSGF method for an
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FIG. 1. Opacity of aluminum at 2.7 gcm−3 and 100 eV. Solid
curves are the results of RSGF in the single-site approximation (red)
and including multiple scattering (blue). The black dotted curve is
the result of the Tartarus average-atom model.

aluminum plasma at 2.7 gcm−3 and 100 eV. Both calculations
use the KSDT local exchange-correlation functional [45]. The
RSGF calculations were averaged over 37 PAMD configura-
tions, each containing eight atoms. The photon energy range
shown emphasizes the K-shell opacity but also includes the
opacity from photoionization of the L shell. Two qualitative
difference are worth noting.

First, the 1s-2p line is sharp in the AA model, but quite
broad in the RSGF calculation. In both approaches, 1s and
2p are in the discrete spectrum (core states in the case of
RSGF), and an artificial broadening of � = 0.27 eV has been
applied. The sharpness of the AA line comes from the fact
that there is only one atom under consideration, and thus a
single line. In contrast, the RSGF calculation allows the 1s
and 2p eigenvalues to vary site to site and across different
arrangements of the nuclei. In doing so, the RSGF opacity
accounts for the ion Stark effect, which is the dominant line
broadening mechanisms in hot dense plasmas.

The second qualitative difference between the AA and
RSGF comes near the 1s photoionization edge. In the AA
model, there is a well-defined edge as well as a well-defined
1s-3p line. This occurs because the AA model has a hard
threshold between its bound and continuous spectrum. Thus,
the 3p orbital, despite being very weakly bound, still con-
tributes a clear line in the AA opacity. In contrast, the RSGF
method treats the 3p electron as a valence state, which can
lie either above or below the ionization threshold depending
on each atom’s local environment. Thus, in RSGF, the 1s
edge subsumes the 1s-3p line into a single merged feature, a
phenomenon which single-atom approaches can only capture
by invoking external continuum lowering models.

Another interesting result is shown in Fig. 1. We compare
opacities from our full calculation [labeled RSGF (MS)] to
those that set the multiple scattering term in the Green’s func-
tion, Eq. (9), to zero (labeled RSGF SS). On the whole, these
calculations agree very well, with only slight differences seen.
This means that for this case, the multiple scattering effect for
opacity is washed out by the ion Stark effect, and can be safely

FIG. 2. Opacity of silicon at 1 gcm−3 and 43.1 eV. Solid curves
are the results of RSGF in the single-site approximation (red) and
including multiple scattering (blue). The black dash-dotted curve is
the result of plane-wave DFT calculations by Karasiev and Hu [46].

ignored. However, this is not a general result and we would
expect multiple scattering to be more important for strongly
coupled ionic fluids (and solids), where site-to-site variation
is smaller and the ion Stark effect less significant.

B. Comparison with plane-wave DFT calculations

Recently, Karasiev and Hu published a systematic study of
the opacity of silicon using plane-wave DFT [46]. They were
able to perform calculations at both lower density and higher
temperature than is usually feasible with plane-wave basis sets
by supplementing multicenter calculations with single-atom
calculations. This makes for a valuable test of the RSGF
method, since plane-wave and real-space DFT are formally
equivalent but rely on very different approximations to be
made practical.

We single out the case of silicon at 1 gcm−3 and 43.1 eV
(500 kK). At these conditions, both methods predict that sili-
con has a fully occupied K shell, a partially occupied L shell,
and slightly occupied M shell that is close to the continuum.
In Fig. 2, we compare the opacity calculated in Ref. [46] with
RSGF in both the single-site and multiple-scattering approx-
imations. The RSGF calculations made use of 18 snapshots
from an eight-atom PAMD simulation plus 30 extra expansion
centers.

Certain features of the spectrum are in good agreement
between the methods. The 1s → 2p lines near 1700 eV differ
in transition energy by only 10 eV to 20 eV. This is easily
within the variation one might expect from the use of dif-
ferent exchange-correlation functionals (local in the case of
RSGF, versus gradient-corrected for the plane-wave results)
and/or different treatments of the nuclear potential (Coulomb
in RSGF versus PAW pseudopotential in plane-wave). The K
edge is also in excellent agreement between the methods, with
the only difference of note being the slightly steeper pre-edge
predicted in the plane-wave calculation.

The most visible disagreement between the plane-wave
and RSGF methods comes in the K → M lines predicted
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by the plane-wave calculation between 1800 eV to 1900 eV.
The RSGF calculations both predict an unambiguous 1s →
3p-like transition that is only slightly affected by multiple-
scattering effects. This would suggest that each atom of the
RSGF calculation has a reasonably well-defined atomiclike
M shell, despite it being near the continuum. In contrast, the
plane-wave calculation predicts that the M shell is signifi-
cantly distorted by the plasma environment, signaled by the
weak 1s → 3s-like forbidden transition near 1820 eV. The
RSGF calculations do predict that such a transition occurs but
with a much smaller cross section, such that its contribution
to the opacity is negligible.

The most likely cause of the observed difference is the use
of a muffin-tin potential in the RSGF calculations combined
with the insertion of non-nuclear spheres. Together, these
serve to make each cell nearly spherical. In the muffin-tin
approximation, spherical symmetry at each site can be broken
in only two ways: either in the nonspherical interstitial region
where the potential is constant or by accounting for multiple
scattering. The first effect is suppressed by the inclusion of
non-nuclear spheres, which tends to shrink the size of the
interstitial regions. The second effect is suppressed by the fact
that the structural Green’s function is based on muffin-tin t
matrices, which are diagonal in the angular momentum basis.
Thus, even though the solution of the Dyson equation couples
together partial waves of different l and m, this alone is not
enough to adequately capture the deformation of the M shell.
To capture these transitions within RSGF would require a
so-called full-potential implementation [31], which does away
with the muffin-tin construction and allows the single-site
potentials to be nonspherical.

C. Comparison with pulse-power experiments

Having demonstrated that the RSGF method is superior
to AA calculations and in good agreement with plane-wave
DFT calculations for hot dense plasmas, we now compare
with the opacity experiments performed at Sandia National
Laboratory on chromium, iron, and nickel [8,33] as well
as the OPLIB atomic opacity database [47]. For all three
elements, the L-shell opacity was measured near conditions
of 180 eV and 0.16 gcm−3 to 0.17 gcm−3. We have performed
RSGF opacity calculations in the single-site approximation at
these conditions based on 19 independent eight-atom molecu-
lar dynamics configurations.

Our results are shown in Fig. 3, alongside the experimental
results. There are two important observations to draw from
this.

First, at high energies, where the opacity is dominated by
L-shell photoionization, RSGF is in very good agreement with
the experiments on chromium and nickel but severely under-
estimates the iron opacity. This is consistent with the results
from the Los Alamos OPLIB database, which is representative
of the state of the art in the isolated-atom approach. We have
also verified that accounting for multiple scattering in the
RSGF calculations makes no discernible difference to the iron
opacity prediction above 1500 eV. We conclude then that the
high measured iron opacity compared to the atomic models
is not explained by taking better account of the the plasma
environment.

FIG. 3. Opacity of chromium, iron, and nickel 0.16 g cm−3,
0.16 g cm−3, and 0.17 g cm−3, respectively. Solid red curves are the
results of RSGF at a temperature of 180 eV in the single-site approx-
imation (red). The solid black curves show experimental results by
Bailey et al. [8] and Nagayama et al. [33]. The solid blue curves are
taken from the OPLIB database at a temperature 175 eV.

The second important observation is the complete failure of
the RSGF calculation to capture the measured bound-bound
absorption lines. Specifically, the RSGF calculations predict
broad but strong bound-bound lines, with deep windows
separating them, whereas experiments and isolated-atom cal-
culations indicate the bound-bound spectrum is made up of
a dense sea of weaker lines. This issue is not unique to
RSGF; it is a fundamental problem with any opacity model
based on finite-temperature DFT, including AA and plane-
wave approaches. The problem is that the eigenstates of
finite-temperature DFT do not represent a single electron
in an individual ion. Rather, they represent a sort of mean
eigenstate, taken over a thermal ensemble of ions of different
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charges and electronic configurations. Each of these electronic
configurations produces distinct absorption lines in reality,
which are missed when one only considers transitions be-
tween the Kohn-Sham eigenstates. This problem has long
been recognized in the context of AA models, for which
there exist several models for undoing the thermal averaging
to predict the underlying statistical distribution of discrete-
occupation ion configurations [11,48–50].

IV. CONCLUSIONS

In summary, the RSGF method has been shown to be an
attractive means of predicting the x-ray spectra of warm and
hot dense plasmas. Being a multicenter approach, it naturally
includes the effects of continuum lowering and Stark broad-
ening, which are difficult to model reliably in single-atom
opacity models. Being a local real-space approach, it avoids
many technical limitations of standard plane-wave DFT opac-
ity calculations at high temperature related to pseuopotentials
and the required basis set size.

Comparison with experimental opacity measurements for
Cr and Ni reveals good agreement with the bound-free part
of the spectrum, and strong disagreement with the bound-
bound part. This disagreement is an expected limitation of
using the Kohn-Sham DFT eigenstates. Comparison with
measurements for Fe reveals that neither multiple-scattering
or non-self-consistent plasma physics is the source of the
difference between models and experiments in the bound-free
part of the spectrum [33,51].
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APPENDIX: NORMALIZATION
AND RENORMALIZATION

The site-site Green’s function, Eq. (8), is built from solu-
tions to the radial Schrödinger equation centered at site n,{

d2

dr2
+ 2

r

d

dr
− l (l + 1)

r2
− 2me

h̄2 V n(r) + k2

}[
Rn

l (r; z)
Hn

l (r; z)

]
= 0.

(A1)

Here, k =
√

2mez/h̄2 is the complex momentum and V n is
the Kohn-Sham potential centered about Rn and treated in
the muffin-tin approximation. Since the complex energy wave
functions are not square integrable, they must be normalized
as scattering states. We adopt the convention that where the
potential vanishes, the wave functions take the form

Rn
l =

√
2mek

π h̄

1

2

[
eiδn

l h+
l (krn) + e−iδn

l h−
l (krn)

]
(A2)

Hn
l =

√
2mek

π h̄
eiδn

l h+
l (krn), (A3)

where h±
l are spherical Hankel functions. The complex scat-

tering phase shift δn
l (z) is determined by matching Eq. (A2) to

the regular wave function obtained from integrating Eq. (A1)
outward to the muffin-tin radius. The phase shift also deter-
mines the T -matrix element,

t n
l (z) = 1 − e2iδn

l

2ik
, (A4)

used to solve for the structural Green’s function.
Other normalizations of the wave functions are possible but

the choice made here offers a particular advantage for calcu-
lating optical properties, due to a procedure by Prange et al.
[39], which makes the calculation of double-spatial integral
in Eq. (4) much simpler to evaluate. This integral is cum-
bersome because of the product Rn

l (r<; z)Hn
l (r>) appearing in

the single-site Green’s function. However, on the positive real
energy axis, the regular wave function is real and related to
the irregular wave function by

Im
[
iHn

l (rn; E )
] = Rn

l (rn; E ) (A5)

Then when taking the imaginary part of the single-site Green’s
function, only regular wave functions are needed, and the
spatial dependence is totally decoupled

Im Gnn
ss (rn, r′

n; E ) = −2π
∑

L

Rn
l (rn; z)Rn

l (r′
n; z)YL(r̂n)Y ∗

L (r̂′
n)

(A6)

This separation of the rn and r′
n dependence greatly simpli-

fies the calculation, but it does not hold away from the real
axis. Instead, one supposes that there exist renormalized wave
functions R̄n

l that obey

Im
[
iRn

l (r<; z)Hn
l (r>; z)

] ≈ R̄n
l (rn; z)R̄n

l (r′
n; z) (A7)

and which relate to the regular wave function by

R̄n
l (rm; z) = An

l (z)Re Rn
l (rn; z) (A8)

The constant An
l is chosen so the renormalized wave func-

tions preserve the single-site density of states, χn
ss(z) ∝∫

�n
Im Gnn

ss (rn, rn; z)drn, leading to

[
An

l (z)
]2 =

∫
�n

Im
[
iRn

l (r; z)Hn
l (r; z)

]
dr∫

�n

[
Re Rn

l (r; z)
]2

dr
. (A9)

As for the multiple-scattering Green’s function, its rn and
r′

n′ dependence is already separated, so there is no need to in-
troduce renormalized wave functions. However for uniformity
of notation in Eq. (13), it is helpful to use the renormalized
wave functions anyway and to compensate for the extra A
factors by rescaling the structural Green’s function:

Ḡnn′
LL′ = ei(δn

l +δn′
l′ )

2kAn
l An′

l ′
Gnn′

LL′ . (A10)

The other factors compensate for the nonstandard wave func-
tion normalization used here.
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