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Phonon spectra of a two-dimensional (2D) solid dusty plasma modulated by 2D square and triangular periodic
substrates are investigated using Langevin dynamical simulations. The commensurability ratio, i.e., the ratio of
the number of particles to the number of potential well minima, is set to 1 or 2. The resulting phonon spectra
show that propagation of waves is always suppressed due to the confinement of particles by the applied 2D
periodic substrates. For a commensurability ratio of 1, the spectra indicate that all particles mainly oscillate at
one specific frequency, corresponding to the harmonic oscillation frequency of one single particle inside one
potential well. At a commensurability ratio of 2, the substrate allows two particles to sit inside the bottom of
each potential well, and the resulting longitudinal and transverse spectra exhibit four branches in total. We find
that the two moderate branches come from the harmonic oscillations of one single particle and two combined
particles in the potential well. The other two branches correspond to the relative motion of the two-body structure
in each potential well in the radial and azimuthal directions. The difference in the spectra between the square
and triangular substrates is attributed to the anisotropy of the substrates and the resulting alignment directions of
the two-body structure in each potential well.
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I. INTRODUCTION

Dynamical behaviors of collective particles modulated by
substrates are of great interest and have been widely studied
in various two-dimensional (2D) systems, such as colloidal
monolayers [1], vortices in type-II superconductors [2], elec-
tron crystals on a liquid helium surface [3], pattern-forming
systems [4,5], and dusty plasmas [6]. When a substrate is
applied to these systems, a variety of new physical phenomena
can be generated, such as pinning and depinning dynamics [7],
Shapiro steps [8], phase transitions [9], and anomalous trans-
port [10]. These external substrates include one-dimensional
(1D) periodic substrates [11], 2D periodic substrates [12],
quasiperiodic substrates [13], quasicrystalline substrates [14],
and random substrates [15]. More interesting phenomena are
currently being explored in a range of various systems for
these substrates.

A dusty plasma [16–22], also called a complex plasma, is a
mixture of free electrons, ions, neutral gas atoms, and micron-
sized dust particles. Under typical laboratory conditions, by
absorbing free electrons and ions in plasmas, micron-sized
dust particles gain a high negative charge of ≈10−4e in the
steady state within microseconds. Due to their high negative
charge, these dust particles are strongly coupled, and they
can be self-organized into a single layer [23,24], i.e., the 2D
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dusty plasma, exhibiting typical solidlike [25,26] or liquidlike
[27,28] properties. The interparticle interaction between these
dust particles can be described as a Yukawa repulsion [29],
where the shielding effect comes from the free electrons and
ions. As a promising physical model system permitting the
direct imaging of individual dust particles, various fundamen-
tal physical processes of solids and liquids, such as diffusion
[30,31], shear viscosity [32], and phase transitions [25], have
been studied widely at the kinetic level in dusty plasmas.

Phonon spectra are often calculated in the investigations
of dusty plasmas using the velocities and positions of dust
particles from either experimental observations [33–37] or
computer simulations [38,39]. These spectra provide the en-
ergy distribution of phonons in k-ω space, corresponding to
the dispersion relation [33] of the studied system. In dusty
plasmas, the phonon spectra can be derived directly from the
thermal motion of the dust particles [33], in good agreement
with the theoretical dispersion relations [40]. In addition to
the 2D dusty plasmas [33–37], phonon spectra have also been
studied for a 1D chain [41] and a ring [42] of dusty plasmas.

Recently, 1D periodic substrates have been introduced in
dusty plasmas to modulate the collective behaviors of dust
particles in Langevin dynamical simulations. In Ref. [43],
as the 1D periodic substrate depth increases gradually from
zero, it is found that the 2D dusty plasma exhibits structural
transitions from a disordered liquid state to a modulated or-
dered state, and finally to a modulated disordered state. As
the width of the 1D periodic substrate is gradually varied,
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the particle diffusion exhibits an oscillation-like feature [44].
When a gradually increasing external driving force is applied
to the 2D dusty plasma on the 1D periodic substrate, three dif-
ferent states, i.e., pinned, disordered plastic flow, and moving
ordered states, appear [45]. The properties of the transition
between these states are determined by the depth of the 1D
periodic substrate [6]. In addition, the phonon spectra of a
2D dusty plasma modulated by a 1D periodic substrate are
studied in [46], where breathing spectra and the backward
propagation of sloshing spectra are observed. However, the
collective dynamics of a 2D dusty plasma modulated by 2D
periodic substrates, and the corresponding phonon spectra,
have not been studied previously.

Another system of particles interacting with 2D periodic
substrates that has been studied extensively is charged col-
loids coupled to optical or patterned square or triangular
arrays, where various commensuration effects appear when
the number of particles is an integer multiple of the number
of substrate minima [47–56]. One of the goals in studying
these systems is to create structures with phononic band-gap
properties, similar to photonic band gaps, in which certain
mechanical waves cannot propagate through the system while
others can [57,58]. In colloidal assemblies, investigations have
considered how a periodic substrate could be used to create
such phononic band gaps [59]; however, the phononic modes
in most colloidal systems are strongly damped, giving only
a very limited range of propagation [60]. In contrast, the
reduced damping in dusty plasmas can produce much stronger
phononic modes, so understanding how a periodic substrate
could create phononic band gaps in dusty plasmas could also
provide insight into how such phononic band gaps would
appear in other systems. Examples of underdamped systems
include charged colloidal particles suspended in air rather than
in a solution and interacting with an array of optical traps [61],
ions in periodic atom traps [62], or even a Wigner crystal in a
monolayer system [63]. Our work indicates that a 2D periodic
substrate can create phononic band gaps, and our results could
be general to a wide range of underdamped systems coupled
to a 2D periodic substrate.

This paper is organized as follows. In Sec. II, we briefly
describe our Langevin simulation method to mimic solid 2D
dusty plasmas under 2D periodic square and triangular sub-
strates. In Sec. III, we present the phonon spectra of the 2D
dusty plasma on different types of 2D periodic substrates. We
find that the phonon spectra of the 2D solid dusty plasma
change to branches with nearly unmodified frequency values,
suggesting that all particles are mainly confined by the sub-
strate. The frequencies of these branches agree well with our
derivation of the oscillation modes of dust particles within
potential wells of the 2D substrates. Finally, we summarize
our findings in Sec. IV.

II. SIMULATION METHOD

Traditionally, dusty plasma can be characterized by two
dimensionless parameters [64,65], namely the coupling pa-
rameter � = Q2/(4πε0akBT ) and the screening parameter
κ = a/λD. Here Q is the charge of one particle, T is the
averaged kinetic temperature of the particles, a = (πn)−1/2 is
the Wigner-Seitz radius [66] with the 2D areal number n, and
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FIG. 1. Contour plot of the applied potential for the square
(a) and triangular (b) substrates in our simulations. Here, only ≈1.8%
of the total simulation box is shown.

λD is the Debye screening length. The Wigner-Seitz radius a,
and the lattice constant b, i.e., the average distance between
nearest neighbors [ b = (2π )1/2a/31/4 ≈ 1.9046a for the 2D
triangular lattice], are both used to normalize the length.

We use Langevin dynamical simulations to investigate the
dynamics of a 2D dusty plasma on 2D periodic substrates. In
our simulations, for each particle i, the equation of motion
[46] is

mr̈i = −∇�φi j − νmṙi + ξi(t ) + FS
i . (1)

The first term on the right-hand side of Eq. (1)
comes from the binary Yukawa repulsion [41], φi j =
Q2 exp(−ri j/λD)/4πε0ri j , where ri j is the distance between
two dust particles i and j. The second and third terms
correspond to the frictional drag −νmṙi and the Langevin
random kicks ξi(t ) [67,68], respectively. The last term is the
force from the applied 2D substrate, as we explain in detail
later.

Our simulation parameters are listed below. We simulate
Np = 1024 particles, confined in a 61.1a × 52.9a rectangular
box with periodic boundary conditions. The conditions of the
2D dusty plasma are specified as � = 1000 and κ = 2, corre-
sponding to the typical solid state of 2D Yukawa systems [69].
The frictional drag coefficient is specified as ν/ωpd = 0.027,
close to the typical experimental value [23], where ωpd =
(Q2/2πε0ma3)1/2 is the nominal dusty plasma frequency [66].
For each simulation run, we integrate �107 steps with the time
step of 0.003ω−1

pd to obtain the positions and velocities of all
particles.

We investigate the effects on the dynamics of 2D dusty
plasmas of two types of substrates, square and triangular, as
shown in Fig. 1. The square substrate [47] has the form

U (x, y) = U0[cos(2πx/w) + cos(2πy/w)], (2)

where U0 and w correspond to the depth and width of the
potential wells, in units of E0 = Q2/4πε0b and b, respectively.
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The triangular substrate [70] is given by

U (x, y) = −2
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where U0 and w are related to the depth of the potential
wells and the distance between them. From these substrate
definitions, we can easily derive the forces FS

i acting on the
dust particle i as
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from the triangular substrate, respectively.
In our simulations, we choose the commensurability ratio

ρ defined as ρ = Np/Nw to be either 1 or 2. Here, Np is the
total number of particles while Nw is the number of potential
well minima. Since we simulate 1024 particles, we need to
arrange either 1024 or 512 potential wells in our simulation
box. For the square substrate, the substrate parameter w is
specified as ≈0.93b and ≈1.32b, corresponding to ρ = 1
and 2, respectively. For the triangular substrate, the substrate
parameter w is specified as b and 1.39b, corresponding to
ρ = 1 and 2, respectively. We specify the other parameter of
the substrate as U0 = 0.5E0 and E0, respectively. We note that
since our simulation box is designed to match the length ratio
of the triangular lattice and not that of the square lattice, the
parameter w in the x and y directions of Eq. (2) varies slightly,
≈1%, for the square substrate in order to satisfy the periodic
boundary conditions, while the triangular substrate does not
have this problem.

To obtain the phonon spectra, we use the Fourier trans-
forms of the longitudinal and transverse current correlation
function. The current autocorrelation functions are defined as
[71,72]

CL(k, t ) = 1

Np
〈[k · j(k, t )][k · j(−k, 0)]〉 (6)

for the longitudinal mode, and

CT (k, t ) = 1

2Np
〈[k × j(k, t )] · [k × j(−k, 0)]〉 (7)

for the transverse mode. Here, k is the wave vector, and
j(k, t ) = ∑Np

j=1 v j (t ) exp[ik · r j (t )] is the current function for
a given wave vector k, where v j (t ) and r j (t ) are the veloc-
ity and position of the jth particle, respectively. Finally, the
phonon spectra can be obtained by the Fourier transform of
these current autocorrelation functions (6) and (7), defined as

C̃L,T (k, ω) =
∫ ∞

0
e−iωtCL,T (k, t )dt . (8)
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FIG. 2. Snapshots of the particle positions from our simulations
on the square (a,b) and triangular (c,d) substrates of the same depth,
with commensurability ratio ρ values of either 1 or 2. Here, ρ is
defined as ρ = Np/Nw , the ratio of the number of particles Np to the
number of potential wells Nw . For each panel, the inset in the lower
left corner corresponds to the calculated 2D distribution function
g(x, y) of the particles.

Here, C̃L(k, ω) and C̃T (k, ω) are the longitudinal and trans-
verse wave spectra, respectively. Due to the anisotropy that
appears in the 2D Yukawa solids when they are modified by
the 2D substrate, we need to analyze the phonon spectra in
different directions. Here, we focus on the phonon spectra of
C̃L(kx, ω), C̃T (kx, ω), C̃L(ky, ω), and C̃T (ky, ω), correspond-
ing to the longitudinal and transverse spectra with the wave
vector along the x and y directions, respectively. Note, besides
the simulations described above, we also perform a few test
runs with longer time durations and the larger system contain-
ing 4096 particles, combined with the corresponding number
of potential wells, to make sure that the obtained phonon
spectra reported here are nearly unchanged.

III. RESULTS AND DISCUSSIONS

A. Particle arrangement under substrates

In Fig. 2, we present snapshots of particle positions from
our simulations showing the arrangement of particles under
the square and triangular substrates. For the square substrate,
when the commensurability ratio ρ = 1 in Fig. 2(a), all par-
ticles are pinned at the bottom of potential wells, forming
an ordered square arrangement. When the commensurability
ratio ρ = 2 in Fig. 2(b), most potential wells contain two par-
ticles. At the bottom of each potential well, the two particles
repel each other due to their Yukawa repulsion, forming a
typical two-body structure similar to the colloidal molecu-
lar crystals or vortex molecular crystals found for colloidal
particles [47–52] or superconducting vortices on 2D periodic
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substrate arrays [73,74]. Interestingly, in Fig. 2(b), within
each potential well, the two particles are mostly aligned in
two directions, parallel to either the x or the y directions,
corresponding to the two axes of the square substrate. The
inset of each panel presents the corresponding 2D distribution
function [75] g(x, y), which provides the probability density
of finding a particle at the relative position (x, y) from one
chosen particle. From our calculated g(x, y) in Figs. 2(a) and
2(b), we find that, under the square substrate, the structure
along the x direction is nearly the same as that along the
y direction, so that the phonon spectra of C̃L(kx, ω) should
be nearly the same as those for C̃L(ky, ω), and similarly for
C̃T (kx, ω) and C̃T (ky, ω), as we will verify later. We note
that a few potential wells contain either three or one particle,
probably due to an energy fluctuation, as shown in Fig. 2(b).

Under the triangular substrate, the arrangement of particles
is completely different from that found for the square sub-
strate. When the commensurability ratio ρ = 1 in Fig. 2(c),
the particles are pinned at the bottom of the potential well,
forming a triangular lattice with hexagonal symmetry match-
ing the triangular substrate. When the commensurability ratio
ρ = 2 in Fig. 2(d), most of the potential wells contain two
particles forming a two-body structure, similar to Fig. 2(b).
The alignment direction of the pairs of particles in each po-
tential well in Fig. 2(b) is either roughly parallel, 60◦, or 120◦
with respect to the x direction, corresponding to the principal
axes of the triangular substrate. We note that under thermal
motion, these particle pairs in the triangular substrate are
more likely to rotate, unlike the particle pairs on the square
substrate described above. From g(x, y) in Figs. 2(c) and 2(d),
we find the anisotropy of the static structure on the triangular
substrate, which is distinct from those in Figs. 2(a) and 2(b).
As a result, the corresponding longitudinal spectra C̃L(k, ω)
[transverse spectra C̃T (k, ω)] along the x direction should be
completely different from those along the y direction. Similar
to Fig. 2(b), there are also a few potential wells containing
either three or only one particle in Fig. 2(d).

B. Wave spectra under a square substrate

To better quantify the substrate effect, we first calculate the
phonon spectra of a 2D Yukawa solid with the same values
of � and κ without any substrates, as presented in Fig. 3. For
both the longitudinal spectra C̃L(kx, ω) in Fig. 3(a) and the
transverse spectra C̃T (kx, ω) in Fig. 3(b), the slope around the
smaller wave numbers indicates the longitudinal and trans-
verse wave propagation speeds. The longitudinal spectra of
C̃L(ky, ω) in Fig. 3(c) are similar to C̃L(kx, ω) in Fig. 3(a),
for almost the full range of the wave number. The transverse
spectra of C̃T (ky, ω) in Fig. 3(d) are similar to C̃T (kx, ω) in
Fig. 3(b) only in the lower wave numbers. However, when
the wave number is higher, C̃T (ky, ω) in Fig. 3(d) are quite
different from C̃T (kx, ω) in Fig. 3(b) due to the anisotropy of
the highly ordered triangular lattice at lower temperatures.

In Fig. 4, we present our calculated phonon spectra of the
2D Yukawa solid under square substrates with U0 = 0.5E0

and E0, respectively, for a commensurability ratio of ρ = 1.
In Fig. 4, the nearly unchanged frequency for all wave num-
bers in the longitudinal and transverse spectra for each U0

shows that the propagation of both longitudinal and transverse

FIG. 3. Calculated longitudinal C̃L (kx, ω) (a), C̃L (ky, ω) (c), and
transverse C̃T (kx, ω) (b), C̃T (ky, ω) (d) phonon spectra for our sim-
ulated 2D Yukawa solid without any substrates. The difference
between these two transverse spectra arises from the anisotropy of
the triangular structure of the 2D Yukawa solid, as does the longitu-
dinal spectra difference. The conditions of our simulated 2D Yukawa
solid are � = 1000, κ = 2.0, and ν = 0.027ωpd . Note, the color scale
on the right side corresponds to the magnitude of the calculated
C̃L,T (k, ω) with the dimensionless unit, similar to those in Figs. 4,
5, and 7 presented later.

waves is strongly suppressed, indicating that the correspond-
ing group velocity is nearly zero, i.e., all particles only
oscillate locally with this frequency. When the substrate depth
increases from 0.5E0 to E0, the wave propagation is further
suppressed, as shown in Fig. 4, similar to [76]. In addition, we
verify that the phonon spectra of C̃L(kx, ω) [C̃T (kx, ω)] are
almost exactly the same as those of C̃L(ky, ω) [C̃T (ky, ω)].

For each substrate depth, the frequencies of the longitu-
dinal C̃L(kx, ω) and transverse spectra C̃L(kx, ω) are almost
the same, since they correspond to the motion of particles in
the x and y directions. As the substrate depth increases from
U0 = 0.5E0 to E0, this frequency is greatly enhanced from
≈1.29ωpd in Figs. 4(a) and 4(b) to ≈1.79ωpd in Figs. 4(c) and
4(d). In fact, these two frequencies can be derived from the
harmonic oscillation of a single particle within the bottom of
the square potential well of Eq. (2) with depth values of 0.5E0

and E0, respectively. Since the particles only vibrate around
the bottom of the potential well, we can linearize the force
from the square potential well of Eq. (4) to yield the spring
constant of ks = 4π2U0/w

2, where the subscript s refers to
the square potential well. Thus, the oscillation frequency of
a single particle is just ω1 = √

ks/m =
√

4π2U0/mw2. Sub-
stituting the depth U0 and width w of the potential well into
this oscillation frequency equation, we derive the oscillation
frequency of 1.28ωpd and 1.82ωpd for the substrate depth
of 0.5E0 and E0, respectively. Clearly, these two derived
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FIG. 4. Calculated longitudinal C̃L (kx, ω) (a,c) and transverse
spectra C̃T (kx, ω) (b,d) of the 2D Yukawa solid, under the periodic
square substrate with different depths of U0 = 0.5E0 in (a,b) and
U0 = E0 in (c,d), with a commensurability ratio of ρ = 1. Clearly, for
each condition, both the longitudinal and transverse spectra mainly
concentrate around one specific frequency, suggesting that the wave
propagation is suppressed due to the confinement from the substrate.
As the depth of the substrate increases from U0 = 0.5E0 to E0, the
frequency of the wave spectra is enhanced. The two frequency values
in these four panels agree well with the harmonic oscillation frequen-
cies estimated from one single particle inside a potential wells with
U0 = 0.5E0 and E0.

frequency values of 1.28ωpd and 1.82ωpd agree well with the
phonon spectra frequencies in Fig. 4. We note that the slight
difference between the derived frequencies and those shown
in Fig. 4 may come from the interparticle interaction, which is
not included in the derivation of the single-particle harmonic
oscillation.

In Fig. 5, we present our calculated phonon spectra of
the 2D Yukawa solid under the same substrate of depths
U0 = 0.5E0 and E0 for a commensurability ratio ρ = 2. Com-
pared with the spectra for ρ = 1 in Fig. 4, all spectra in each
panel of Fig. 5 contain three branches, corresponding to three
different modes of the particle motion, probably due to the
two-body structure within each potential well. The frequency
of each branch is nearly unchanged while the wave number
varies, suggesting that the corresponding wave propagation is
also strongly suppressed as in Fig. 4. Interestingly, for the
same substrate depth U0, the frequencies of two branches
in C̃L(kx, ω) and C̃T (kx, ω) are the same, such as 0.91ωpd

and 0.62ωpd in Figs. 5(a) and 5(b), as well as 1.25ωpd and
1.00ωpd in Figs. 5(c) and 5(d). We think these two branches
correspond to the harmonic oscillation motion of one single
particle and two combined particles within the bottom of the
potential well. Note that the oscillation of the two combined
particles within the potential well is similar to the sloshing

FIG. 5. Calculated longitudinal C̃L (kx, ω) (a,c) and transverse
phonon spectra C̃T (kx, ω) (b,d) of the 2D Yukawa solid, under
periodic square substrates with U0 = 0.5E0 in (a,b) and U0 = E0

in (c,d), for a commensurability ratio of ρ = 2. Clearly, both the
longitudinal and transverse spectra mainly concentrate around three
frequencies, due to the motion modes of the two particles within
each potential well. For the substrate depth U0 = 0.5E0, both the
longitudinal (a) and transverse spectra (b) have two equal frequency
values, agreeing well with the oscillation frequencies of one single
particle and two combined particles within the potential well of
U0 = 0.5E0. In addition, the highest frequency of the longitudinal
spectra (a) and the lowest frequency of the transverse spectra (b) are
consistent with the oscillation frequencies of the relative motion
of a two-body structure inside the potential well, in the radial and
azimuthal directions, respectively. As the depth of the substrate in-
creases to E0, the frequencies of the wave spectra in (c,d) also agree
with the estimated frequencies from U0 = E0.

mode [46]. The oscillation frequencies of a single particle and
two combined particles are ω1 = √

ks/m =
√

4π2U0/mw2

and ω2 = √
ks/2m =

√
2π2U0/mw2, respectively. Thus, un-

der the substrate depth of U0 = 0.5E0, the derived frequencies
are 0.91ωpd and 0.64ωpd , respectively. Similarly, the substrate
depth of E0 results in the two frequencies of 1.28ωpd and
0.91ωpd , respectively. Clearly, for each of these two substrate
depths, the two derived frequencies agree well with the fre-
quencies in the spectra of Fig. 5.

Besides the two branches studied above, there is one more
branch in each panel of Fig. 5. Since the two branches de-
scribed above correspond to the harmonic oscillation of a
single particle and two combined particles together, the left
branch should correspond to the relative motion of the two
particles in each potential well, similar to a breathing mode
[46]. In their relative motion, these two particles always move
along or perpendicular to the vector connecting the particles,
i.e., in the radial or the azimuthal directions. Thus, the highest
branch of C̃L(kx, ω) in Fig. 5(a) with ω = 1.62ωpd and the
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FIG. 6. Schematic of the two-particle arrangement under the
square substrate. The alignment of the two particles within one
potential well is in either the x (a) or y (b) directions, i.e., parallel to
one of the two axes of the square substrate. Each particle oscillates
in the radial and azimuthal directions, as vr and va presented here.
In the radial direction, the force Fr acting on each particle is the
summation of the interparticle repulsion and the restoring force from
the substrate. In the azimuthal direction, the restoring force from
the substrate is partially canceled out by the interparticle repulsion,
due to the purely repulsive force between particles, shown here as
Fa. Note, to present the forces and velocities clearly, the distance
between the two particles is magnified in this schematic.

lowest branch of C̃T (kx, ω) in Fig. 5(b) with ω = 0.42ωpd

should correspond to the relative motion of the two particles
in each potential well for the conditions of U0 = 0.5E0 and
ρ = 2 in the radial and azimuthal directions, respectively.
When the substrate depth increases to U0 = E0, these two
frequencies are changed to 2.24ωpd and 0.50ωpd as shown in
Figs. 5(c) and 5(d), respectively.

We can directly derive these frequencies from the relative
motion of the two-body structure inside the potential well in
the radial and azimuthal directions, as shown in the schematic
of Fig. 6. Since these two particles mainly oscillate with small
amplitudes around the nearly fixed equilibrium positions, we
follow the 1D chain model [77] to linearize the interparticle
Yukawa repulsive force to obtain the radial and azimuthal
spring constants of kr and ka as

kr = Q2(L2κ2 + 2Lκ + 2)

4πε0L3a3eLκ
, (9)

ka = Q2(Lκ + 1)

4πε0L3a3eLκ
, (10)

where La is the distance between these two particles inside the
potential well when they are in their equilibrium positions. By
incorporating the motion of the particles inside the potential
well into their relative motion, using Eqs. (9) and (10), we
obtain the corresponding oscillation frequencies as

ωr =
√

ks

2m
+ kr

m/2

=
√

2π2U0

mw2
+ Q2(L2κ2 + 2Lκ + 2)

2πε0mL3a3eLκ
(11)

for the radial direction, and

ωa =
√

ks

m
− ka

m/2

=
√

4π2U0

mw2
− Q2(Lκ + 1)

2πε0mL3a3eLκ
(12)

for the azimuthal direction of the two-body structure in the
potential well. In the radial direction, the frequency ωr comes
from the restoring force of two combined particles from the
substrate

√
ks/2m, coupled with the oscillation from their

interparticle repulsion of their reduced mass
√

kr/(m/2), since
the relative motion of the two particles is in opposite direc-
tions. However, in the azimuthal direction, the relative motion
refers to the particle motion perpendicular to the radial direc-
tion, i.e., the single-particle motion behavior, corresponding
to

√
ks/m, coupled with the repulsion of their reduced mass√

ka/(m/2). Furthermore, the pure repulsion between parti-
cles further increases the force in the radial direction, while
decreasing the force in the azimuthal direction, as in Eqs. (11)
and (12) shown above.

We find that Eqs. (11) and (12) correspond to the highest
frequency in the longitudinal spectra and the lowest frequency
of the transverse spectra. Substituting the substrate depth
U0 = 0.5E0 into Eqs. (11) and (12), we obtain the derived fre-
quencies of the relative motion as 1.55ωpd and 0.43ωpd for the
relative motion of the two-body structure in the potential well
in the radial and azimuthal directions, which are very close
to the two frequencies of 1.62ωpd and 0.42ωpd in Figs. 5(a)
and 5(b). When the substrate depth increases to E0, we obtain
these two frequencies as 2.20ωpd and 0.51ωpd , respectively.
These two frequencies are also very close to 2.24ωpd and
0.50ωpd observed in Figs. 5(a) and 5(b), respectively. Thus,
our derived results above agree well with the spectra frequen-
cies in Fig. 5.

Note that, for our system, the alignment direction of two
particles in either the x or y direction inside the potential well
greatly simplifies the spectra results in Fig. 5. Two particles
aligned in the y direction as shown in Fig. 6(b) mainly oscil-
late around their equilibrium positions, so their x coordinates
are nearly the same. From Eqs. (6) and (7), their relative mo-
tion has almost no contribution in the current autocorrelation
functions CL(kx, t ) and CT (kx, t ). Thus, only the motion of
the pairs of two particles aligned in the x direction provides
substantial contributions to the longitudinal C̃L(kx, ω) and
transverse spectra C̃T (kx, ω), as shown in Fig. 6(a).

C. Wave spectra under a triangular substrate

We next study the effect of a triangular substrate on the
phonon spectra of the 2D Yukawa solid. Figure 7 presents the
phonon spectra of the 2D Yukawa solid under the triangular
substrate with a depth of U0 = E0 at a commensurability ratio
of ρ = 1. Clearly, for all four spectra in Fig. 7, the nearly
zero slope indicates that the group velocity is nearly zero,
i.e., the wave propagation is strongly suppressed. Although
the current 2D Yukawa solid is strongly anisotropic in the
x and y directions as shown in Fig. 2(c), the calculated lon-
gitudinal spectra C̃L(kx, ω) in Fig. 7(a) are nearly the same
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FIG. 7. Calculated longitudinal C̃L (kx, ω) (a), C̃L (ky, ω) (c) and
transverse phonon spectra C̃T (kx, ω) (b), C̃T (ky, ω) (d) of the 2D
Yukawa solid under the periodic triangular substrate with U0 =
E0 at a commensurability ratio of ρ = 1. Clearly, all four spectra
are mainly concentrated on a specific frequency value, in good
agreement with the oscillation frequency estimated from one single
particle within the potential well. The slight difference between
the x and y directions, especially at higher wave-number values, is
mainly due to the anisotropy of the triangular substrate, similar to
the hexagonal lattice arrangement of 2D solids.

as C̃L(ky, ω) in Fig. 7(c) for almost the entire range of wave
numbers. However, only for small wave numbers, the trans-
verse spectra C̃T (kx, ω) in Fig. 7(b) are the same as C̃T (ky, ω)
in Fig. 7(d). In the higher wave-number range, the transverse
phonon spectra are slightly different, i.e., the frequency of
C̃T (kx, ω) increases slightly with the wave number, while the
frequency of C̃T (ky, ω) does not, due to the anisotropy of our
system, as shown in Fig. 2(c).

Interestingly, we find that all four spectra in Fig. 7 have
only one frequency, which is ≈1.12ωpd , suggesting that all
particles mainly oscillate in both directions with this fre-
quency inside the potential well. This frequency can also
be derived from the harmonic oscillation motion of a single
particle within the triangular potential well of Eq. (3). We
can linearize the force from the triangular potential well,
Eq. (5), to obtain the corresponding spring constant of kt =
16π2U0/9w2, where the subscript t refers to the triangular
potential well. Thus, we obtain the oscillation frequency of a
single particle as ω1 = √

kt/m =
√

16π2U0/9mw2. Substitut-
ing the depth U0 and width w of the potential well, we derive
the oscillation frequency of 1.13ωpd for the depth of E0, in
good agreement with the phonon spectra frequency in Fig. 7.

In Fig. 8, we present the phonon spectra of the 2D Yukawa
solid under the triangular substrate with the same substrate
depth E0, where the commensurability ratio is changed to
ρ = 2. Clearly, the longitudinal and transverse phonon spec-

FIG. 8. Calculated longitudinal C̃L (kx, ω) (a), C̃L (ky, ω) (c) and
transverse phonon spectra C̃T (kx, ω) (b), C̃T (ky, ω) (d) of the 2D
Yukawa solid under the periodic triangular substrate of U0 = E0,
with a commensurability ratio of ρ = 2. Clearly, all four spectra
are mainly concentrated on the same four frequencies due to the
two-body structure formed by two dust particles in each potential
well. The two moderate frequencies agree well with the oscillation
frequencies estimated from one single particle and two combined
particles within the potential well. The highest and lowest frequen-
cies are in good agreement with the oscillation frequencies of the
relative motion of the two-body structure in the potential well, in the
radial and azimuthal directions, respectively.

tra in Fig. 8 contain four branches, similar to the spectra in
Fig. 5. The frequency of each branch is almost unchanged
while the wave number varies, also indicating that the cor-
responding wave propagation is strongly suppressed in Fig. 8.
In the four panels of Fig. 8, the frequency values of the four
branches are almost the same, which are 1.45ωpd , 0.79ωpd ,
0.58ωpd , and 0.17ωpd , respectively. Similar to Fig. 5, the
two moderate frequencies in Fig. 8 probably come from
the oscillation of one single particle and two combined par-
ticles inside the potential well of the triangular substrate.
Using the spring constant of the triangular substrate with the
depth of U0 = E0 obtained above, the oscillation frequencies
of a single particle and two combined particles are ω1 =√

kt/m =
√

16π2U0/9mw2 = 0.81ωpd and ω2 = √
kt/2m =√

8π2U0/9mw2 = 0.57ωpd , respectively. Clearly, these two
derived frequency values agree well with the two moderate
phonon spectra frequencies in Fig. 8. Note that the oscillation
of the two combined particles inside one potential well corre-
sponds to the sloshing mode [46].

Besides the two moderate frequency values above, the
highest and lowest frequencies in Fig. 8 probably come from
the relative motion of the two-body structure in the trian-
gular potential well, in the radial and azimuthal directions,
respectively. Due to the alignment of the two particles in each
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triangular potential well along ≈60◦ or 120◦ with respect to
the x direction, their relative motion makes contributions to
both the longitudinal and transverse spectra. After incorpo-
rating the derived spring constants kr and ka of the relative
motion in the radial and azimuthal direction from the interpar-
ticle Yukawa repulsion, Eqs. (9) and (10), into the triangular
potential well, we can derive the oscillation frequencies as

ωr =
√

kt

2m
+ kr

m/2

=
√

8π2U0

9mw2
+ Q2(L2κ2 + 2Lκ + 2)

2πε0mL3a3eLκ
(13)

for the radial direction, and

ωa =
√

kt

m
− ka

m/2

=
√

16π2U0

9mw2
− Q2(Lκ + 1)

2πε0mL3a3eLκ
(14)

for the azimuthal direction of the two-body structure in the
potential well. Clearly, in Eqs. (13) and (14), the coupling
with the relative motion of the two-body structure from the
interparticle repulsion of their reduced mass is exactly the
same as

√
kr/(m/2) in Eq. (11) and

√
ka/(m/2) in Eq. (12).

Substituting the depth U0 = E0 into Eqs. (13) and (14), we ob-
tain the oscillation frequencies of 1.51ωpd and 0.18ωpd for the
relative motion of the two-body structure in the potential well,
in the radial and azimuthal directions, respectively. Clearly,
these two derived frequencies agree well with the phonon
spectra frequencies shown in Fig. 8. Note that the spectra with
the higher frequency of 1.51ωpd corresponds to the breathing
mode [46].

IV. SUMMARY

We investigate the phonon spectra of a 2D solid dusty
plasma modified by 2D square and triangular periodic sub-
strates using Langevin dynamical simulations. We find that
the wave propagation is strongly suppressed due to the con-
finement of the particles by the applied 2D substrates. When

the commensurability ratio is ρ = 1, i.e., only one particle in-
side each potential well, the spectra mainly concentrate on one
specific frequency for all studied wave numbers, agreeing well
with our derived harmonic frequency of one single-particle
oscillation inside one potential well. When the commensura-
bility ratio is ρ = 2, corresponding to two particles on average
within each potential well, the longitudinal and transverse
spectra split into four branches in total, where the frequency
value for each branch is nearly unchanged for all wave num-
bers. The two moderate frequencies can be derived from the
harmonic oscillation frequency values of one single particle
and two combined particles inside the potential well, respec-
tively. The frequencies of the other two branches can be
derived from the relative motion of the two-body structure
inside one potential well, in the radial and azimuthal direc-
tions, respectively. The force amplitude from the potential
well and the interparticle Yukawa repulsion both determine
these frequency values. The difference between the spectra
results modified by the square and triangular substrates comes
from the anisotropy of substrates and the resulting alignment
directions of the two-body structure inside the potential wells.
There are several future directions to examine, including the
ordering and band gaps that appear at high fillings such as
three or four particles per trap, fractional fillings, and ex-
amining other substrate symmetries or even a quasiperiodic
substrate to determine how the band gaps change. In fact, there
have already been several works examining colloidal ordering
on quasiperiodic substrates, for example in Ref. [78].
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