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Transport properties of mixtures in the warm dense matter (WDM) regime play an important role in natural
astrophysics. However, a physical understanding of ionic transport properties in quasisymmetric liquid mixtures
has remained elusive. Here, we present extensive ab initio molecular dynamics (AIMD) simulations on the
ionic diffusion and viscosity of a quasisymmetric binary nitrogen-oxygen (N-O) mixture in a wide warm dense
regime of 8–120 kK and 4.5–8.0 g/cm3. Diffusion and viscosity of N-O mixtures with different compositions
are obtained by using the Green–Kubo formula. Unlike asymmetric mixtures, the change of proportions in N-O
mixtures slightly affects the viscosity and diffusion in the strong-coupling region. Furthermore, the AIMD results
are used to build and verify a global pseudo-ion in jellium (PIJ) model for ionic transport calculations. The PIJ
model succeeds in reproducing the transport properties of N-O mixtures where ionization has occurred, and
provides a promising alternative approach to obtaining comparable results to AIMD simulations with relatively
small computational costs. Our current results highlight the characteristic features of the quasisymmetric binary
mixtures and demonstrate the applicability of the PIJ model in the WDM regime.
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I. INTRODUCTION

Warm dense mixtures are ubiquitous in energy sources
as well as in the interior of astronomical bodies [1–3]. The
ionization properties of particles under these extreme cir-
cumstances vary between constituents, leading to extremely
complex interactions and the diversity of the macroscopic
properties, in particular, the transport properties [4]. The
understanding of ionic transport in warm dense mixtures
has recently become a topic of considerable interest [5,6].
Sedimentation of the neutron-rich isotope 22Ne may be an
important source of gravitational energy during the cooling
of white-dwarf stars [7]. The segregation of hydrogen and
helium in gas giant planets interiors such as Jupiter and
Saturn [8–11], and the superionic state of hydrogen in ice
giants such Uranus and Neptune [chemical abundance ratio of
hydrogen (H), carbon (C), nitrogen (N), and oxygen (O)] are
crucial for modeling their interior structures [12–14]. Overall,
it is vital to develop an accurate knowledge of ionic transport
in warm dense mixtures.

It remains difficult to study experimentally the transport
properties of warm dense mixtures. Thus, numerical simu-
lation has become an extremely powerful tool that not only
helps to understand experiments at the microscopic level
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but also helps to study extreme conditions that are not ac-
cessible experimentally. Therefore, theoretical calculations
are required to provide data on ionic transport coefficients.
Currently, the widely used first-principles methods, includ-
ing ab initio molecular dynamics (AIMD) [15–19] and
orbital-free molecular dynamics (OFMD) [20–23], are able
to obtain the ionic transport coefficients over a wide range
of temperature and density. Note that the research is mainly
directed at the asymmetric binary mixtures of H-He, H-C,
H-Ag, etc., together with some multicomponent mixtures in
the warm and hot dense matter regimes. More importantly,
first-principles methods are often limited by expensive com-
putational costs, especially for high temperatures that require
a large number of bands. An effective alternative tool for
calculating the transport parameters of mixtures at extremely
high temperature-density conditions is the pseudo-ion in jel-
lium (PIJ) model [22–24]. The backbone of the PIJ model
combines two parts: Kinetic theory for particles and a coupled
modeling to describe the interparticle interactions [21]. This
model describes the ionization degree Qi and coupling coeffi-
cient �i of different particles in the mixtures, which effectively
overcomes the problem of seeking an effective coupling pa-
rameter �eff for the transport properties of mixtures in the
one-component plasma (OCP) and Yukawa models [24]. For
asymmetric mixtures, the PIJ model can reproduce many ther-
mophysical parameters of warm dense matter (WDM) and
dense plasmas, such as ionic transport coefficients and ion
features [22,23]. However, the applicability of this model to
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symmetric mixtures in the WDM regime still needs to be
further explored.

Quasisymmetric binary nitrogen-oxygen (N-O) mixtures
are essential elemental components of detonation products
and of some ice giant planets [3,25–28]. N-O mixtures un-
der different concentrations have complicated structural and
first-order properties under several thousand kelvins [29]. In
detonation products and the deep interiors of planets, disso-
ciation and ionization play a key role in N-O mixtures as
the temperature increases, and the particles are in a mixed
state. Here, we focus on the ionic transport properties of N-O
mixtures at different concentrations to reveal a compositional
effect. Whether the transport properties of quasisymmetric
binary N-O mixtures will change significantly with concen-
tration, like asymmetric mixtures, remains unknown.

In this work, extensive AIMD simulations are performed
to explore the transport properties of N-O mixtures cov-
ering a wide temperature-density range of 8–120 kK and
4.5–8.0 g/cm3. Careful examination of the autocorrelation
functions results in highly convergent diffusion and viscosity
coefficients. Variable compositions (from 0% to 100%) are
considered to reveal the compositional effect in the quasisym-
metric N-O mixtures. To construct a PIJ model for binary
N-O mixtures, hypernetted-chain equations are used to re-
produce the structure of the mixture and derive the input of
the global formulation of the transport coefficients. Finally,
the PIJ model of N-O mixtures is validated by AIMD data.
The present results not only fill the void in the research on
thermophysical properties of binary N-O mixtures but also
reveal the practicability of the PIJ model for quasisymmetric
mixtures in the WDM regime.

II. COMPUTATIONAL METHODS

A. Ab initio molecular dynamics simulation

The AIMD simulations invoke the Born-Oppenheimer ap-
proximation to separate the electronic and ionic motions in
which the force acting on ions is derived from an electronic
calculation based on density functional theory, following
which the ionic motion is described via Newton’s law, as
implemented in the VASP package [30]. Exchange-correlation
effects are approximated with a zero-temperature model of the
Perdew-Burke-Ernzerhof functional [31]. The 2s22p3 elec-
trons of N and 2s22p4 electrons of O are explicitly treated as
valence electrons, the electronic wave functions are expanded
in a plane wave basis with an energy cutoff of 800 eV, with
core electrons represented by pseudopotentials of the projec-
tor augmented wave type [32]. The number of electrons is
compatible with the total number derived from the valence
in all atoms to assure charge neutrality. The � point is used
to sample the Brillouin zone, and the simulation supercell
contains 90 atoms in a cubic box with boundary conditions,
periodically replicated throughout space in a consistent man-
ner. The MD simulations are performed within the canonical
(NVT) ensemble, where a Nosé–Hoover thermostat [33] is
coupled to the ionic degrees of freedom and electronic states
are populated according to the Fermi-Dirac distribution [34].
Seven different mixing ratios (xO = 0%, 25%, 33.3%, 50%,
66.6%, 75%, and 100%) are considered in this work to explore

the compositional effect. The simulation supercell contains
90 atoms in a cubic box, and we typically run for 20 000
steps for each ρ-T condition. The time step covers 0.25–
1.0 fs and smaller values correspond to higher temperatures.
Considering the crucial role of spin fluctuations present in
liquid oxygen [35], the spin-polarization effect is included
in the present AIMD calculation of N-O mixtures. The spin-
polarization affects the microscopic structure of the N-O
mixtures, as shown in Fig. S1 of the Supplemental Material
(SM) [36], and ignoring spin polarization will underestimate
the pair correlation functions g(r). Additionally, the extensive
convergence tests are carefully carried out to ensure the reli-
ability of these selected parameters, which will be presented
below.

The self-diffusion coefficient of a particular ion species Dα

is extracted from the integral of the velocity autocorrelation
function (VACF) by using the Green-Kubo formula [37],

Dα = 1

3

∫ ∞

0
〈�vi(t ) · �vi(0) 〉dt, (1)

where vi(t ) is the velocity of the ith particle (α species) at time
t , and the bracket indicates an ensemble average. Similarly,
mutual-diffusion coefficients are found within the Maxwell–
Stefan formula through the integral of the mutual-diffusion
current autocorrelation function (MCACF):

Dαβ = 1

3Nxαxβ

∫ ∞

0
〈A(t )A(0)〉dt, (2)

A(t ) = xβ

Nα∑
i

�vi(t ) − xα

Nβ∑
j

�v j (t ), (3)

where A(t ) is the mutual-diffusion current, N is the total
number of particles, and xα is the concentration of component
α. The shear viscosity η can be determined by the stress tensor
autocorrelation function (STACF) [37],

η = V

kBT

∫ ∞

0
〈Pi j (t

′)Pi j (0) 〉dt ′, (4)

where V , kB, and T are the volume, Boltzmann constant,
and temperature, respectively. Pi j (t ) represents the averaged
result for five independent off-diagonal components of the
stress tensor: Pxy, Pyz, Pzx, (Pxx − Pyy)/2, and (Pyy − Pzz)/2. To
overcome the limited simulation time of AIMD and noise in
the long-time behavior of ACFs, an appropriate fitting method
of the ACFs by Meyer et al. [38] and Guo et al [39]. is
adopted to yield the ionic transport properties; see details in
the SM [36].

B. Hypernetted-chain equations

The weak-coupling approximation fails for WDM and
strongly coupled plasmas, where the correlations cannot
be treated as a small perturbation of the thermal mo-
tion [40–43]. Here, the modeling of the static structure within
higher-order correlations can be implemented by the multi-
component extension of the integral equation of fluid theory,
the hypernetted-chain theory (HNC) [44]. For binary ionic
mixture, the integral equations approach starts with the gen-
eral Ornstein–Zernike relation that describes the total pair
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correlation function hαβ (r) and direct correlation functions
cαβ (r) [45–47],

hαβ (r) = cαβ (r) +
∑

λ

nλ

∫
cαλ(|r − r′|)hλβ (r′)dr′. (5)

Furthermore, the exact expression of the pair distribution
functions gαβ (r) is needed to fully determine the closure rela-
tion of the HNC:

gαβ (r) = exp

[
−Vαβ (r)

kBT
+ hαβ (r) − cαβ (r) + Bαβ (r)

]
, (6)

where hαβ (r) = gαβ (r) − 1. In the strongly coupled region,
the interaction between species α and β is expressed by the
Coulomb potential Vαβ (r) = QαQβe2/r, where Qα is the ion
charge state of component α, e is the fundamental charge, and
Bαβ (r) is the bridge function. For the numerical evaluation,
the Ornstein–Zernike relation contains a convolution, so it is
an algebraic matrix equation in Fourier space,

h̃αβ = c̃αβ +
∑

i

nic̃αih̃iβ, (7)

where ni is the density of the species i.
The HNC approximation ignores the contributions arising

from the potential of mean force in the logarithm of the
radial-distribution function, especially in the strong-coupling
system, while the bridge functions Bαβ (r) account for strong
correlations at short distances. Bαβ (r) is used to modify the
HNC approximation breakdown in the vicinity of the first
peak of g(r) [48–50],

Bii(r) = −0.0464�1.336 exp

(
−b1

b0
r2

)
, (8)

b0 = 0.258 − 0.0612 ln � + 0.0123(ln �)2 − 1/�,

b1 = 0.0269 + 0.0318 ln � + 0.00814(ln �)2,
(9)

where � = √
�α�β and �α is the coupling coefficient of

component α. The coupling parameter �α is defined by
�α = Q2

ae2/(aαkBT ), where aα = (3/4πnα )1/3 is the mean
ion sphere, and nα is the ionic density.

C. Pseudo-ion in jellium model

The PIJ model, which assumes that the electron screening
on ion-ion interactions can be accounted for by consider-
ing pointlike pseudo-ions interacting in a jellium, addresses
the viscosity and diffusion of extensive asymmetric WDM
and plasmas of pure elements and multicomponent mix-
tures [21,24]. The model treats on an equal footing both
strongly and weakly coupled regimes, and the main idea is
to gather, in a single scheme, approximate kinetic expressions
and coupled evaluations of transport coefficients reflecting the
thermodynamic state of the mixture. The ionic transport in
mixtures is

η = ηFPL + ηex, (10)

D = DFPL + Dex. (11)

In the kinetic regime, transport coefficients are given using
collision frequency estimates in the Fokker-Planck-Landau
framework (FPL) [51,52],

ηFPL = K1
nαkBT

ṽα

+ K2
nβkBT

ṽβ

, (12)

DFPL
αβ = R12cβ

kBT

vαβ

m̄

mαmβ

, (13)

DFPL
i = Rα

1

ṽi

kBT

mi
, i = α, β, (14)

where mα is the mass of component α, cα is its mass con-
centration, and m̄ = xαmα + xβmβ is the effective mass. K1,
K2, R1, R2, and R12 are correction factors, which are evaluated
by solving the linearized kinetic equations to obtain the cor-
rections to the Maxwellian distributions associated with small
gradients of density, velocity, and temperature [53,54]. In the
moderate- to strong-coupling regime of the present cases,
R1 = R2 = R12 = 1.19 and K1 = K2 = 0.965 is suggested by
Ticknor et al. [22], which is effectively applied to asymmetric
mixtures in the WDM range. The collision frequency between
two fully ionized charged elements is

vαβ = nβ

mα

4
√

2πmαβQ2
αQ2

βe4 ln 	αβ

3(kBT )3/2 , (15)

where mαβ = mαmβ/(mα + mβ ) is the reduced mass, and
ln 	αβ is the Coulomb logarithm for binary collisions between
species α and β [55],

ln 	αβ = ln

(
bmax

αβ

bmin
αβ

)
, (16)

where the minimum impact parameter bmin is given by the
classical formula for ions, bmin

αβ = QαQβe2/(2kBT ), and the
maximum impact parameter bmax is given by the Debye
length for ions, bmax

αβ = (4πn〈Q2〉e2/kBT )−1/2, where 〈Q〉 =∑
α xαQα is the average charge. The total collision frequen-

cies for each species are ṽα = vαα + vαβ and ṽβ = vββ + vβα .
In the strong-coupling regime, bounded Coulomb logarithms
are required to avoid divergence: ln 	 = max(ln 	, L0) with
L0 = 3.00.

In the coupled regime, the mixing rules are used to estimate
the excess contributions Dex and ηex. For the viscosity, an
equivalent OCP with charge Qeff is defined, corresponding to
the effective coupling �eff of the mixture, and evaluate ηex as

ηex = ηOCP(�eff , ρ, T ) − ηFPL(�eff , ρ, T ), (17)

where the �eff is equal to

�eff =
∑

α

xα�α = 〈Q5/3 〉〈Q〉1/3

akBT
. (18)

For self-diffusion, the excess contributions Dα,ex is defined as

Dα,ex = DOCP(�α, ρα, T ) − DFPL(�α, ρα, T ), (19)

and the Darken relation is applied in the limit of excess
mutual-diffusion,

Dαβ,ex = xαDβ,ex + xβDα,ex. (20)

In the FPL framework, the viscosity ηFPL and self-diffusion
DFPL are given by ηFPL = 0.557π1/2�−5/2/ ln 	 and DFPL =
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FIG. 1. The (a) energy cutoff and (b) supercell convergence tests
of mutual-diffusion coefficients DM and viscosity η for xO = 50%
at 8.0 g/cm3. The inset of panel (a) shows the convergence of
normalized STACF with respect to the simulation steps. The inset
of panel (b) shows the convergence test of transport properties under
different concentrations at 8.0 g/cm3 and 80 kK.

1.234ηFPL, respectively. For OCP diffusion and viscosity, the
empirical function of Daligault et al. [56] and Bastea et al. [57]
are used, and a smooth transition across coupling regimes is
then achieved at � ≈ 0.15.

III. RESULTS AND DISCUSSION

First, detailed convergence tests on the simulation pa-
rameters including cutoff energy, simulation step, and size
of supercell are performed, which is essential for accessing
reliable ionic velocity and force. Figure 1(a) presents the con-
vergence test of cutoff energy and simulation step. Note that
relaxation times of the autocorrelation functions under differ-
ent oxygen concentrations are close, so only the test results for
a typical ratio (xO = 50%) are shown. The test results of cutoff
energy show that 700 eV can make diffusion and viscosity
converge to 0.7%. Diffusions and viscosities require very long
trajectories to arrive at desirably convergent values, especially
for viscosities. The stress tensor is the property of the entire
system without an additional average over Nα particles, so the
viscosity is subjected to greater statistical imprecision than

(a)

(c) (d)

(b)

FIG. 2. Normalized ACFs of N-O mixtures with xO = 50%
(8.00 g/cm3) at three representative temperatures. The present
AIMD data (symbols) are compared with the fitting results (solid
lines) by using a multiple-timescale function, and the corresponding
results are D and η, respectively.

the diffusion coefficient [9,15]. Consequently, convergence
tests of time steps for normalized STACFs are given in the
inset of Fig. 1(a). One can clearly see that the deviation of
the viscosity coefficient between 15 000 and 30 000 steps
is larger than 6%, while that for 20 000 and 30 000 steps
is only 1.2%. The tests of the finite-size effect taking into
account the influence of temperature and concentration are
performed using 60, 90, and 120 atoms, as shown in Fig. 1(b).
The results with 60 atoms deviate up to 7% from those with
120 atoms, while the results with 90 and 120 atoms show
good consistency. Therefore, supercells with 90 atoms and
20 000 simulation steps are sufficient to obtain converged
results.

The time ACFs are of great interest in computational sim-
ulations due to their clear picture of dynamics in a fluid
system. To explore how different ionic structures affect the
dynamical behavior of N-O mixtures, normalized ACFs of
N-O mixtures with xO = 50% (8.00 g/cm3) at three repre-
sentative temperatures are shown in Fig. 2. The VACFs and
MCACFs are used to determine the diffusion coefficients, as
shown in Figs. 2(a)–2(c). The negative correlation regions
and oscillatory features are evident on VACFs and MCACF
at 8 kK, which is an embodiment of the bonding effect. This
phenomenon can also be understood from g(r) in Fig. S2 [36].
The obvious peaks in g(r) indicate the rich bonding structures
in N-O mixtures at 8 kK, and the bonding structures have
negative contributions to the atomic transport. The bonding
system structures undergo violent dissociation as the tem-
perature rises. The oscillation of the correlation functions at
elevated temperatures, such as 30 kK, is mainly caused by
the cage effect. As the temperature increases, the short- and
medium-range order fluid states are destroyed, weakening the
cage effect. The STACFs decay to zero in a few tens of fem-
toseconds, as shown in Fig. 2(d), and the normalized STACFs
tend to attenuate monotonically as the temperature increases.
As suggested by Meyer et al. [38] and Guo et al. [39], the
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(a)

(c) (d)

(b)

FIG. 3. The self-diffusion for (a) nitrogen DN and (b) oxygen DO, (c) mutual-diffusion DM, and (d) viscosity η coefficients of N-O mixtures
obtained by AIMD simulation along the isochores for densities 4.50 (solid lines) and 8.00 g/cm3 (dashed lines) and temperatures between 8
and 120 kK.

diffusion and viscosity coefficients of the N-O mixture can
be estimated by using exponential-decay functions to fit the
ACFs. Note that the fits go smoothly through ACFs data points
for different temperatures, and the ionic transport properties
can be obtained by numerical analytical expressions. Detailed
descriptions of the fitting method used to derive the transport
coefficients are provided in the SM [36]. The normalized
ACFs of N-O mixtures under different concentrations are also
shown in Fig. S4 [36]. The ionic transport coefficients of N-O
mixtures under different proportions are obtained by using the
same method as above.

The derived diffusion and viscosity coefficients of N-O
mixtures at densities of 4.5 and 8.0 g/cm3 and tempera-
tures from 8 to 120 kK are presented in Fig. 3. As shown
in Figs. 3(a)–3(c), both self- and mutual-diffusions in N-O
mixtures become larger as the temperature increases because
the heat velocities get higher. Simultaneously, at a certain
temperature, the diffusion coefficients decrease as the density
increases, which is caused by the stronger general interactions
between fluid particles at higher densities. Unlike asymmetric
mixtures, such as H-C and H-Ag mixtures [22,23], the diffu-
sion coefficients of N-O mixtures, especially self-diffusions,
do not change significantly with concentration. Moreover,
the calculated viscosity coefficients of N-O mixtures are dis-
played in Fig. 3(d). The viscosity increases with density, and
seems to have a local minimum within the present temper-
ature range. That is because the viscosity arises from the
transport of momentum, which is related to not only the

bodily movement of particles but also the mean free path
of particles [9,18]. The probabilities of particle mixing and
collision increase as the temperature rises, which decreases
the mean free path of particles and reduces the viscosity.
On the other hand, the velocity of ionic motion increases as
the temperature rise, resulting in intensified momentum ex-
change and increased the viscosity. The two mechanisms have
a competitive relation as the temperature increases, which
leads to the viscosity perhaps having a local minimum as a
function of temperature. However, the concentration effect
does not significantly change the momentum transmission of
the N-O system, and the viscosity has a similar performance
with diffusion coefficients under the change of concentration.
The present AIMD simulations give accurate ionic transport
information on N-O mixtures, which exhibit characteristics
different from asymmetric mixtures and can be used to bench-
mark the PIJ models for quasisymmetric mixtures in the
WDM regime.

The PIJ model provides a highly desirable, alternative
method to predict the transport coefficients. In this concept,
it is of primary importance to determine the coupling coeffi-
cients �i for each species. The input of the global PIJ model
can be found by using the g(r) as an indicator of the existence
of these correlations and then matching the g(r) of HNC to
that of AIMD. To obtain a fast evaluation of the g(r) for the
HNC, the initial values of �i are estimated using the Thomas–
Fermi approximation [58]. For each thermodynamic state, we
use an iterative method to search for the �i of HNC by finding
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FIG. 4. Comparison of pair correlation functions g(r) obtained
by AIMD simulations (symbols) with HNC calculations (solid lines)
in a N-O mixture (xO = 50%) for densities of 8.00 g/cm3 and
temperatures between 50 and 120 kK.

the best agreement with AIMD in terms of the distance of
closest approach, position of the main peak, and the first min-
imum of g(r). Figure 4 plots the g(r) of the N-O mixtures with
xO = 50% under different temperatures. Except for g(r)NN

at 50 kK, the HNC results perfectly fit the AIMD simula-
tion. This effect naturally lies in the ability of N to adopt
different bond types (single to triple) [29,59], which forces
the nitrogen atoms to be distributed within a certain distance
and leads to the multipeak characteristics in g(r)NN. The HNC
equations with only Coulombic correlations cannot match the
AIMD”s g(r) with multipeak characteristics, so it becomes no
longer applicable below 50 kK. As the temperature increases,
the main peak of g(r) becomes inconspicuous, which shows
that the coupling coefficients of particles decrease and the
ionization increases with temperature. The similar structure
of each g(r) in the N-O system implies that, at the same
temperature, the coupling coefficient and ionization of N and
O particles are close. The g(r) of N-O mixtures under dif-
ferent concentrations at 80 and 120 kK are also presented in
Fig. S5 [36]. Interestingly, the correlations between the par-
ticles in the quasisymmetric N-O system are weakly affected
by the concentrations, which indicates that, compared with the
asymmetric mixture, the coupling coefficients and ionization
of particles change slightly with concentration. Taking into
account the screening effect in the system, the HNC with the
Yukawa-type interaction is also used to calculate g(r), which
is compared with the g(r) calculated by the Coulomb-type
interaction, as shown in Fig. S6 [36]. Under the same coupling
coefficients, the g(r) obtained by the HNC with the Yukawa-
type interaction and the Coulomb-type interaction differ only
slightly, and both provide a better match for the g(r) of AIMD.

To gain further insight into the ionization effect, the elec-
tronic density of states as a function of temperature and
density in N-O mixtures are exhibited in Fig. S7 [36]. Both
temperature and pressure affect in the area above 30 kK will
contribute to ionization. Combining the above matching g(r)
of HNC and AIMD, only the ionization states with temper-
atures above 80 kK are considered in our current PIJ model

TABLE I. Representative coupling coefficient �α of each species
and effective coupling coefficient �eff and ionization Qeff of the N-O
mixtures with xO = 50% by matching the g(r) of HNC calculations
with the results of AIMD. For comparison, the ionization QS-D ob-
tained by Smith–Drude model is also listed.

ρ(g/cm3) T (kK) �N �O �eff Qeff QS-D

4.50 80 8.70 9.90 9.30 2.209 2.703
120 7.50 8.20 7.85 2.487 2.992

8.00 80 14.00 18.00 16.00 2.630 3.186
120 11.80 14.20 13.00 2.906 3.331

for N-O mixtures. Table I lists the coupling coefficients and
effective ionization of the N-O mixtures with xO = 50%,
which are obtained by matching the g(r) of HNC calculations
to that of the AIMD simulations. At the same time, the ef-
fective ionization of the AIMD simulation obtained via the
Smith–Drude model [60] is also given for comparison. Here,
the Smith–Drude model is used to fit the real part of the
frequency-dependent conductivity to obtain the delocalized
electron density ne (a representative fit can be found in Fig. S8
[36]), and the ionization state QS-D of N-O mixtures can be
estimated by ne/ntot, where ntot is the ionic density of the sys-
tem, see details in the SM [36]. Both the ionization calculated
by HNC and by the Smith–Drude model indicate a feature
of strongly correlated particles in the N-O mixtures at the
temperatures used. The ionization increases with increasing
temperature and density. The ionization states produced by
these two methods are in general agreement with each other,
but an accurate theoretical determination of this parameter
in the WDM regime remains an open question. The Smith–
Drude model only gives the effective ionization of the system,
while the HNC calculations can give the coupling parameters
of each species in N-O mixtures ranging from 7.5 to 18, which
can be used as an input to predict the transport coefficients in
the PIJ Model.

The transport coefficients for N-O mixtures obtained with
different concentrations by the PIJ model are compared with
AIMD results in Fig. 5. The self-diffusion coefficients of
N and O obtained by both the PIJ model and AIMD sim-
ulation remain essentially constant as the proportion of O
elements varies, as shown in Figs. 5(a) and 5(b). The cou-
pling coefficients of the particles are close and the collision
frequency does not change significantly in the quasisymmetric
N-O system, which is definitely different from the asymmetric
mixtures [22,23]. In our temperature scope, the PIJ model pre-
dicts reasonably well the results of AIMD at the low density
corresponding to a small coupling coefficient, whereas the dif-
fusion of nitrogen is overestimated at high density. In contrast
with the self-diffusion coefficients, the mutual-diffusion coef-
ficients change more obviously with concentration, as shown
in Fig. 5(c). The mutual-diffusion in the PIJ model follows
the behavior predicted by the Darken relation, interpolating
between the self-diffusion of N and O. The Darken relation
broadly approximates to the mutual diffusion, with deviations
typically within 7% of the AIMD results at low density, but
is no longer effective at high density due to overestimation of
the self-diffusion of nitrogen. For viscosity [Fig. 5(d)], the PIJ
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(a) (b) (c) (d)

FIG. 5. Comparison of AIMD simulations (symbols) with the PIJ model (solid lines) for ionic transport properties in N-O mixtures under
different concentrations: Self-diffusion for (a) nitrogen DN and (b) oxygen DO, (c) mutual-diffusion DM, and (d) viscosity η.

model shows not globally well agreement with the results of
AIMD. The PIJ model significantly overestimates the viscos-
ity, and the maximum deviations at low density reach 10%.
Our current results show that the PIJ model provides, to some
extent, an effective alternative approach with relatively small
computational costs to calculating the diffusion of warm dense
N-O systems in the strong-coupling region, and the viscosity
obtained by the PIJ model requires careful consideration due
to larger deviations.

IV. CONCLUSIONS

We perform extensive AIMD simulations to explore the
transport properties of N-O mixtures with various proportions
(from 0% to 100%) in the WMD regime. The numerically
converged self-diffusion and mutual-diffusion generally in-
crease with temperature, and the viscosity increases with
density and has a local minimum in the present tempera-
ture range. Unlike asymmetric mixtures, the diffusion and
viscosity coefficients show no significant dependence on the
concentration of elemental oxygen. The HNC equations give
the method of searching for the coupling parameters and the
global input of PIJ models, and the AIMD results are then
used as a benchmark to validate the present PIJ models. The

PIJ model successfully reproduced these transport properties
where ionization has occurred, which shows broadly con-
sistent with the diffusions of AIMD at the low density. It
provides an effective alternative way to determine the ionic
transport coefficients of N-O mixtures with reduced AIMD
computational cost. These results reveal that the transport
properties of quasisymmetric mixtures are not as sensitive
to concentration as symmetric mixtures, and demonstrate the
PIJ model to be a possible way to determine the transport
coefficient of quasisymmetric mixtures in the WDM region.
Besides binary quasisymmetric mixtures, it is our intention to
show in future work how these mixing processes of ternary
quasisymmetric mixtures, such as C-N-O mixtures, directly
simulate and model the deep interiors of planets.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (Grants No. 11872057 and No.
12074274), and the Foundation of National Key Labora-
tory of Shock Wave and Detonation Physics (Grant No.
JCYKS2020212009). We also acknowledge the support for
the computational resources of the Shanghai Supercomputer
Center in China.

[1] R. Betti and O. A. Hurricane, Nat. Phys. 12, 435 (2016).
[2] P. E. Tremblay and P. Bergeron, Astrophys. J. 672, 1144

(2008).
[3] M. S. Lee and S. Scandolo, Nat. Commun. 2, 185 (2011).
[4] V. A. Smalyuk, L. J. Atherton, L. R. Benedetti, R. Bionta, D.

Bleuel, E. Bond, D. K. Bradley, J. Caggiano, D. A. Callahan,
D. T. Casey, P. M. Celliers, C. J. Cerjan, D. Clark, E. L.
Dewald, S. N. Dixit, T. Doppner, D. H. Edgell, M. J. Edwards,
J. Frenje, M. Gatu-Johnson et al., Phys. Rev. Lett. 111, 215001
(2013).

[5] J. Daligault, S. D. Baalrud, C. E. Starrett, D. Saumon, and T.
Sjostrom, Phys. Rev. Lett. 116, 075002 (2016).

[6] S. Gopalakrishnan and R. Vasseur, Phys. Rev. Lett. 122, 127202
(2019).

[7] J. Hughto, A. S. Schneider, C. J. Horowitz, and D. K. Berry,
Phys. Rev. E 82, 066401 (2010).

[8] D. Bruno, C. Catalfamo, M. Capitelli, G. Colonna, O. De
Pascale, P. Diomede, C. Gorse, A. Laricchiuta, S. Longo, D.
Giordano, and F. Pirani, Phys. Plasmas 17, 112315 (2010).

[9] Z.-G. Li, W. Zhang, Z.-J. Fu, J.-Y. Dai, Q.-F. Chen, and X.-R.
Chen, Phys. Plasmas 24, 052903 (2017).

[10] F. Soubiran, B. Militzer, K. P. Driver, and S. Zhang,
Phys. Plasmas 24, 041401 (2017).

[11] G.-J. Li, Z.-G. Li, Q.-F. Chen, Y.-J. Gu, W. Zhang, L. Liu,
H.-Y. Geng, Z.-Q. Wang, Y.-S. Lan, Y. Hou, J.-Y. Dai, and X.-R.
Chen, Phys. Rev. Lett. 126, 075701 (2021).

[12] C. Ticknor, L. A. Collins, and J. D. Kress, Phys. Rev. E 92,
023101 (2015).

[13] R. Chau, S. Hamel, and W. J. Nellis, Nat. Commun. 2, 203
(2011).

[14] R. Helled, N. Nettelmann, and T. Guillot, Space Sci. Rev. 216,
00660 (2020).

015201-7

https://doi.org/10.1038/nphys3736
https://doi.org/10.1086/524134
https://doi.org/10.1038/ncomms1184
https://doi.org/10.1103/PhysRevLett.111.215001
https://doi.org/10.1103/PhysRevLett.116.075002
https://doi.org/10.1103/PhysRevLett.122.127202
https://doi.org/10.1103/PhysRevE.82.066401
https://doi.org/10.1063/1.3495980
https://doi.org/10.1063/1.4983057
https://doi.org/10.1063/1.4978618
https://doi.org/10.1103/PhysRevLett.126.075701
https://doi.org/10.1103/PhysRevE.92.023101
https://doi.org/10.1038/ncomms1198
https://doi.org/10.1007/s11214-020-00660-3


YANG-SHUN LAN et al. PHYSICAL REVIEW E 105, 015201 (2022)

[15] L. Liu, Z. G. Li, J. Y. Dai, Q. F. Chen, and X. R. Chen,
Phys. Rev. E 97, 063204 (2018).

[16] F. Lambert and V. Recoules, Phys. Rev. E 86, 026405 (2012).
[17] C. Wang, Y. Long, X. T. He, J. F. Wu, W. H. Ye, and P. Zhang,

Phys. Rev. E 88, 013106 (2013).
[18] Z. Q. Wang, J. Tang, Y. Hou, Q. F. Chen, X. R. Chen, J. Y. Dai,

X. J. Meng, Y. J. Gu, L. Liu, G. J. Li, Y. S. Lan, and Z. G. Li,
Phys. Rev. E 101, 023302 (2020).

[19] J. Dai, Y. Hou, D. Kang, H. Sun, J. Wu, and J. Yuan, New J.
Phys. 15, 045003 (2013).

[20] A. J. White, C. Ticknor, E. R. Meyer, J. D. Kress, and L. A.
Collins, Phys. Rev. E 100, 033213 (2019).

[21] J. Clerouin, P. Arnault, B. J. Grea, S. Guisset, M.
Vandenboomgaerde, A. J. White, L. A. Collins, J. D. Kress, and
C. Ticknor, Phys. Rev. E 101, 033207 (2020).

[22] C. Ticknor, J. D. Kress, L. A. Collins, J. Clerouin, P. Arnault,
and A. Decoster, Phys. Rev. E 93, 063208 (2016).

[23] A. J. White, L. A. Collins, J. D. Kress, C. Ticknor, J. Clerouin,
P. Arnault, and N. Desbiens, Phys. Rev. E 95, 063202 (2017).

[24] P. Arnault, High Energy Density Phys. 9, 711 (2013).
[25] N. Nettelmann, K. Wang, J. J. Fortney, S. Hamel, S. Yellamilli,

M. Bethkenhagen, and R. Redmer, Icarus 275, 107 (2016).
[26] C. Dalou, M. M. Hirschmann, A. von der Handt, J.

Mosenfelder, and L. S. Armstrong, Earth Planet. Sci. Lett. 458,
141 (2017).

[27] X. Jiang, G. Chen, X. Cheng, Y. Li, and F. Guo, J. Phys. Chem.
C 120, 13366 (2016).

[28] N. Goldman and S. Bastea, J. Phys. Chem. A 118, 2897 (2014).
[29] Y.-S. Lan, Z.-Q. Wang, L. Liu, G.-J. Li, H.-Y. Sun, Z.-J. Fu,

Y.-J. Gu, G. Yang, L.-N. Li, Z.-G. Li, Q.-F. Chen, and X.-R.
Chen, Phys. Rev. B 103, 144105 (2021).

[30] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
[31] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[32] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[33] S. Nosé, J. Chem. Phys. 81, 511 (1984).
[34] N. D. Mermin, Phys. Rev. 137, A1441 (1965).
[35] B. Militzer, F. Gygi, and G. Galli, Phys. Rev. Lett. 91, 265503

(2003).
[36] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.105.015201 for results of pair correlation
functions gr , autocorrelation function, structure comparison
of hypernetted chain equations and AIMD simulations, and
electronic density of states and ionization, which includes
Refs. [61–66].

[37] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, Oxford, 2017).

[38] E. R. Meyer, J. D. Kress, L. A. Collins, and C. Ticknor,
Phys. Rev. E 90, 043101 (2014).

[39] G.-J. Guo, Y.-G. Zhang, K. Refson, and Y.-J. Zhao, Mol. Phys.
100, 2617 (2002).

[40] J. F. Springer, M. A. Pokrant, and F. A. Stevens, J. Chem. Phys.
58, 4863 (1973).

[41] K. Ng, J. Chem. Phys. 61, 2680 (1974).
[42] K. Wunsch, J. Vorberger, and D. O. Gericke, Phys. Rev. E 79,

010201(R) (2009).
[43] R. Bredow, T. Bornath, W. D. Kraeft, and R. Redmer,

Contrib. Plasma Phys. 53, 276 (2013).
[44] K. Wunsch, P. Hilse, M. Schlanges, and D. O. Gericke,

Phys. Rev. E 77, 056404 (2008).
[45] J. M. J. van Leeuwen, J. Groeneveld, and J. de Boer, Physica

25, 792 (1959).
[46] J. De Boer, J. M. J. Van Leeuwen, and J. Groeneveld, Physica

30, 2265 (1964).
[47] J. P. Hansen and I. R. Mcdonald, Theory of Simple Liquids,

3rd ed. (Elsevier, London/Burlington, MA, 2006).
[48] H. Iyetomi, S. Ogata, and S. Ichimaru, Phys. Rev. A 46, 1051

(1992).
[49] A. Diaw and M. S. Murillo, Astrophys. J. 829, 16 (2016).
[50] Y. Hou, Y. Jin, P. Zhang, D. Kang, C. Gao, R. Redmer, and J.

Yuan, Matter Radiat. Extrem. 6, 026901 (2021).
[51] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon

Press, Oxford, 1981).
[52] A. Decoster, P. A. Markowich, B. Perthame, and P.-A.

Raviart, Modeling of collisions, Series in Applied Mathematics
(Gauthier-Villars, Paris, 1998).

[53] L. G. Stanton and M. S. Murillo, Phys. Rev. E 93, 043203
(2016).

[54] G. Kagan and X.-Z. Tang, Phys. Lett. A 378, 1531 (2014).
[55] J. D. Huba, 2013 NRL Plasma Formulary (Naval Research

Laboratory, Washington, D.C., 2013).
[56] J. Daligault, Phys. Rev. Lett. 96, 065003 (2006).
[57] S. Bastea, Phys. Rev. E 71, 056405 (2005).
[58] R. M. More, Adv. At. Mol. Phys. 21, 305 (1985).
[59] B. Boates and S. A. Bonev, Phys. Rev. Lett. 102, 015701 (2009).
[60] N. Smith, Phys. Rev. B 64, 155106 (2001).
[61] K. P. Driver and B. Militzer, Phys. Rev. B 93, 064101 (2016).
[62] K. P. Driver, F. Soubiran, S. Zhang, and B. Militzer, J. Chem.

Phys. 143, 164507 (2015).
[63] R. S. McWilliams, D. A. Dalton, M. F. Mahmood, and A. F.

Goncharov, Phys. Rev. Lett. 116, 255501 (2016).
[64] L. E. Crandall, J. R. Rygg, D. K. Spaulding, T. R. Boehly, S.

Brygoo, P. M. Celliers, J. H. Eggert, D. E. Fratanduono, B. J.
Henderson, M. F. Huff, R. Jeanloz, A. Lazicki, M. C. Marshall,
D. N. Polsin, M. Zaghoo, M. Millot, and G. W. Collins, Phys.
Rev. Lett. 125, 165701 (2020).

[65] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[66] D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

015201-8

https://doi.org/10.1103/PhysRevE.97.063204
https://doi.org/10.1103/PhysRevE.86.026405
https://doi.org/10.1103/PhysRevE.88.013106
https://doi.org/10.1103/PhysRevE.101.023302
https://doi.org/10.1088/1367-2630/15/4/045003
https://doi.org/10.1103/PhysRevE.100.033213
https://doi.org/10.1103/PhysRevE.101.033207
https://doi.org/10.1103/PhysRevE.93.063208
https://doi.org/10.1103/PhysRevE.95.063202
https://doi.org/10.1016/j.hedp.2013.08.001
https://doi.org/10.1016/j.icarus.2016.04.008
https://doi.org/10.1016/j.epsl.2016.10.026
https://doi.org/10.1021/acs.jpcc.6b03423
https://doi.org/10.1021/jp501455z
https://doi.org/10.1103/PhysRevB.103.144105
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1063/1.447334
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRevLett.91.265503
http://link.aps.org/supplemental/10.1103/PhysRevE.105.015201
https://doi.org/10.1103/PhysRevE.90.043101
https://doi.org/10.1080/00268970210133477
https://doi.org/10.1063/1.1679070
https://doi.org/10.1063/1.1682399
https://doi.org/10.1103/PhysRevE.79.010201
https://doi.org/10.1002/ctpp.201200117
https://doi.org/10.1103/PhysRevE.77.056404
https://doi.org/10.1016/0031-8914(59)90004-7
https://doi.org/10.1016/0031-8914(64)90054-0
https://doi.org/10.1103/PhysRevA.46.1051
https://doi.org/10.3847/0004-637X/829/1/16
https://doi.org/10.1063/5.0024409
https://doi.org/10.1103/PhysRevE.93.043203
https://doi.org/10.1016/j.physleta.2014.04.005
https://doi.org/10.1103/PhysRevLett.96.065003
https://doi.org/10.1103/PhysRevE.71.056405
https://doi.org/10.1016/S0065-2199(08)60145-1
https://doi.org/10.1103/PhysRevLett.102.015701
https://doi.org/10.1103/PhysRevB.64.155106
https://doi.org/10.1103/PhysRevB.93.064101
https://doi.org/10.1063/1.4934348
https://doi.org/10.1103/PhysRevLett.116.255501
https://doi.org/10.1103/PhysRevLett.125.165701
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1088/0370-1328/71/4/306

