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The effect of rotation on small-scale characteristics and scaling law in the mixing zone of the three-
dimensional turbulent Rayleigh-Taylor instability (RTI) is investigated by the lattice Boltzmann method at small
Atwood number. The mixing zone width h(t ), the root mean square of small scale fluctuation, the spectra,
and the structure functions are obtained to analyze the rotating effect. We mainly focus on the process of the
development of plumes and discuss the physical mechanism in the mixing zone in rotating and nonrotating
systems. The variation of kinetic energy spectra Eu and temperature energy spectra Eθ with the dimensionless
rotation �τ demonstrate the suppression effect of rotation. Two scaling laws between the mixing layer width h(t )
and dimensionless time t/τ are obtained at various Coriolis forces(

√
h(t ) � t0.9 and

√
h(t ) � t0.35). The rotation

increasingly suppresses the growth of the mixing layer width h(t ). The velocity and temperature fluctuations are
also suppressed by the rotation effect. The relation between the Nusselt number (Nu) and the Rayleigh number
(Ra) indicates that the heat transfer is suppressed by the rotation effect in the rotating RT system. The width of
the inertial subrange increasingly narrows with increasing �τ .
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I. INTRODUCTION

It is well known that the Rayleigh-Taylor instability (RTI)
mainly occurs at the interface of the density gradient of two
different fluid densities or the superior temperature gradient
of one fluid [1–6]. The instability gradually develops into
a fully turbulent flow with time evolution [2]. The unstable
layered interfaces widely occur in nature. Mixing of fluid
introduced by RTI and turbulence is characteristic of many
systems [3]. The RTI of multiwavelength occurs in geology
to reveal the polydiapirs evolution [4]. The RTI of flame
acceleration appears in astrophysics [5]. The acceleration can
make flame speed up. Moreover, the RTI brings the orogeny
of the intraplate in the lithosphere beneath the Earth’s mantle
[6]. The RTI mixing evolution is studied by numerical and
experimental works under various physical conditions [7,8].
RTI also occurs in different kinds of significant circumstances
relating to the engineering processes and inertial confinement
fusion. The turbulent fluctuations of small scales for RTI were
widely studied over the past several decades [6,9]. Flow char-
acteristics of small scale and increasingly larger scales occur
at a transitionally chaotic state induced by the instability in
RTI [10]. Chertkov et al. [9] proposed a theoretical model of
the energy transport processes. It was found that the temporal
behavior of a large-scale relation was induced by the energy
balance between the buoyancy term and the temporally deriva-
tive term. Zhou et al. [1,7] studied the scaling behavior of
small-scale turbulent properties with temporal evolution, the
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thermal and kinetics dissipation properties, and scale-to-scale
energy and enstrophy characteristics. Zhou et al. [10–13] re-
viewed RTI and introduced the key issues and recent research
progress of RTI. Zhou et al. [10] argued that the small-scale
properties of fully RT turbulence in the mixing process is a
well-known problem in its own right. Zhou et al. [11,12] also
reported the scaling property of the mixing layer width mainly
occurs at the nonlinear mixing stage, the developing late-time
phase in RTI. Meanwhile, small-scale fluctuation is affected
by combustion, reaction, and rotation [6]. The fluctuations of
turbulent temperature in RTI rea separated by a thin active
interface and eliminated by combustion. The speed and ampli-
tude of the mixing zone are weakly influenced by the reaction
in RTI [10–14].

The effect of rotation on the RTI has attracted increasing
attention [6,15,16]. The rotating RTI is based on adding the
Coriolis force 2ω × u (|ω| = �/2) to the equation of RTI
[17,18]. The stabilizing effect of the Coriolis force on the RTI
was studied in previous works [15,16,19,20]. Both the linear
and the weakly nonlinear stages are influenced in the per-
turbation evolution [20]. The Coriolis force can suppress the
flow instability in rotating systems. Chandrasekhar [21] first
considered the effect of rotation on RTI. Carnevale et al. [20]
confirmed these predictions by numerical simulations. Tao
et al. [19] also demonstrated the conclusion of the slowing-
down effect on the mixing zone of RT turbulence. Baldwin
et al. [15] further demonstrated the prediction by an exper-
imental test. Recently, Boffetta et al. [6,16] argued that the
heat transfer efficiency and the temperature growth rate are
suppressed by the rotation in the RT mixing layer.
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Based on the above retrospective analysis of RTI, we ex-
tended the previous works [16] by making a high-resolution
numerical simulation of three-dimensional (3D) RT turbu-
lence in this paper. Our main aim is to investigate the velocity
and temperature fluctuations, the mixing layer width h(t ),
the scaling law of small scales, and the intermittency prop-
erties with increasing �τ at the same characteristic time. It
is observed that the spatial intermittency fluctuations of the
velocity and temperature are increasingly suppressed by the
rotation. The remainder of this paper is organized as follows.
Section II describes the thermal lattice Boltzmann method
(LBM) in the rotating system and we introduce the basic idea
of thermal LBM model with the Coriolis force. Section III
demonstrates some numerical results of 3D rotating RT turbu-
lence to illustrate the effect of rotation on the slope of mixing
width h(t ), heat transfer efficiency, and small-scale features.
Finally, a summary is presented in Sec. IV.

II. NUMERICAL METHODOLOGY

A. Hydrodynamicequations of rotating Rayleigh-Taylor
turbulence

The hydrodynamic equations of rotating RTI for incom-
pressible velocity and temperature fields are introduced in the
Boussinesq approximation [6,16]

∂ (u)

∂t
+ u · ∇(u) + 2ω × u = −∇(P) + ν∇2(u) − gβθ,

(1)

∂ (θ )

∂t
+ u · ∇(θ ) = κ∇2(θ ), (2)

where u = (u, v,w) is the velocity of fluid, θ is the temper-
ature of the fluid, the plane z = 0 is the initial interface at
t = 0, and ω = (0, 0,�/2) denotes the uniform rotation. The
Boussinesq approximation is an efficient simplification for
simulating the RTI at small Atwood number. However the RTI
at large Atwood number needs to be simulated with variable
density Navier-Stokes equations.

In the rotating RTI, an important dimensionless parameter
is the Rossby number. Its expression is as follows [16]:

Ro = U/(2�Lz ), (3)

where the Rossby number Ro denotes the relative strength
of the inertial forces to the Coriolis force. The characteristic
velocity U equals to

√
gβ	Lz and Lz is the height of the

computational domain. In the initial time, the effect of rotation
can be negligible, thus Ro = 1/(�t ) is obtained.

B. Lattice Boltzmann method

To solve Eqs. (1) and (2) the double distribution approach
(DDF) [22] of LBM is implemented in this paper. Instead of
solving the governing equations directly, it solves two cou-
pled distribution functions: the density distribution function
( fi) and internal energy distribution function (gi). These two
distribution functions will be introduced in the following sub-
section. The mesoscopic evolution equation for the flow field
is [23,24]

fi(x + ci
t, t + 
t ) − fi(x, t )

= −ω f
[

fi(x, t ) − f (eq)
i (x, t )

] + Fi
t, (4)

where fi is the density distribution function, f (eq)
i is the equi-

librium function, ci is the i the discretized velocity vector, ω f

is relaxation parameter [25,26], and Fi is the discrete force
term. The evolution equation illustrates a relaxation process.
The density distribution function fi relaxes towards the equi-
librium distribution function f (eq)

i . The equilibrium function
for flow field has the second-order Maxwell distribution form,
which can be expressed as

f (eq)
i (x, t ) = wiρ

[
1 + ci · u

c2
s

+ uu
2c2

s

:

(
cici

c2
s

− I
)]

, (5)

where cs is the sound speed and wi is the weight coefficient.
The D3Q19 model is defined as

ci =c

⎡
⎣0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1

⎤
⎦,

cs = 1√
3


x


t
, wi =

⎧⎨
⎩

1
3 i = 0,
1
18 i = 1 ∼ 6,
1
36 i = 7 ∼ 18.

(6)

The relation between the relaxation parameter ω f and kine-
matic viscosity ν is

ν = c2
s

(
1

ω f
− 1

2

)

t, (7)

where the macroscopic density and velocity are calculated by

ρ =
∑

i

fi, ρu =
∑

i

fici. (8)

The force model proposed by He et al. [27] is adopted by
the following formula:

Fi =
(

1 − ω f

2

) (ci − u) · G
ρc2

s

f (eq)
i , (9)

where G is the external force. With the consideration of force
model [28,29], the velocity u = ∑

i fici + G
t
2ρ

. In this paper
the external force is consist with both buoyancy and Coriolis
force.
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FIG. 1. Snapshots of the temperature field for five simulations with (a) �τ = 0, (b) �τ = 5, (c) �τ = 10, (d) �τ = 15, and (e) �τ = 20
at time t/τ = 4. White (black) denotes the hot (cold) fluid.

The mesoscopic evolution equation of the temperature field
is

gi(x + ci
t, t + 
t ) − gi(x, t ) = −ωg
[
gi(x, t ) − g(eq)

i (x, t )
]
,

(10)

where the equilibrium distribution function g(eq)
i for the tem-

perature field is given as [25]

g(eq)
i = wiρθ

[
1 + ci · u

c2
s

+ uu
2c2

s

:

(
cici

c2
s

− I
)]

. (11)

The macroscopic temperature (θ ) can be calculated by

θ = 1

ρ

∑
i

gi. (12)

The relation between the relaxation parameter ωg and ther-
mal diffusivity κ is

κ = c2
s

(
1

ωg
− 1

2

)

t . (13)

Using the Chapman-Enskog technique, one may obtain the
traditional governing equations Eqs. (1) and (2) from Eqs. (4)
and (10), under the approximation of incompressible flow.

The thermal lattice Boltzmann method is used to simulate
the rotating RTI and numerically investigate the small-scale
characteristics and scaling law of the rotation effect on the 3D
turbulent RTI. To quantitatively discuss the mixing process,
results are made dimensionless by the height of computational
domain Lz and the dimensionless time τ = √

2Lz/(gβ	). The
rotation is quantified by the dimensionless rotation �τ . Sim-
ulations at Ra = 109 and Pr = 1, when the �τ = 0, 5, 10,
15, and 20 are implemented. The initial temperature field is
defined in Eq. (14)

θ (x, y, z, t = 0) = −sgn(z − Lz/2)	/2, (14)

where sgn(x) is the sign function. It gives the Atwood number
[30] A = β	/2. In all simulated cases AgLz is kept at 0.0033
and the resolution is set to 256 × 256 × 512(Lx × Ly × Lz ).
The dimensionless initial temperature of the bottom half is
equal to 1 and the dimensionless initial temperature of top
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FIG. 2. Schematic of the perturbation evolution in Rayleigh-Taylor system. Panel (a) is a nonrotating system. Panel (b) is a rotating system

half is equal to −1. The boundary conditions of all cases
are as follows. The bottom and top boundaries are isothermal
nonslip walls. The implementation of this boundary condition
in DDF can be expressed as

fī(x, t + 
t ) = f +
i (x, t ), (15)

gī(x, t + 
t ) = 2wiρθw − g+
i (x, t ), (16)

where cī represents the inverse direction of velocity ci, i.e.,
cī = −ci. The subscript + represents the density distribution
function after the collision step and before the streaming step.
θw is the specific temperature at the isothermal wall. The
left, right, front, and back boundaries are periodic boundaries.
Taking the density distribution function fi as an example, it
can be expressed as

fi(x, t + 
t ) = f +
i (x − ci
t + Lxnx, t + 
t ), (17)

where nx is the unit vector along the x axis.

III. RESULTS AND DISCUSSIONS

The temperature, the mixing zone width h(t ), the root
mean square (RMS) of velocity and temperature, the the heat
transfer efficiency, energy spectra, and structure function will
be discussed with increasing �τ in the rest of this section.

A. Snapshot of temperature

Figure 1 describes the snapshots of the temperature field
for four simulations obtained at time t/τ = 4 and at �τ = 0,
�τ = 5, �τ = 10, �τ = 15, and �τ = 20. As shown in
Fig. 1, the rotation produces clear qualitative effects on the
temperature field. The thermal plumes with the plume size
decrease geometrically and the mixing layer increasingly de-
creases with increasing �τ . It is more coherent and elongated
for thermal plumes in the vertical direction while their ver-
tical velocity is suppressed. Meanwhile, the thickness of the
mixing layer decreases with the increase of �τ at the same
evolution time, which reveals that the effect of rotation is
to reduce the growth of the mixing layer, a feature which is
consistent with previous studies [16,20]. Boffetta et al. [16]
argued that when the thickness of the rotating system (�τ =

20) is equal to that of the nonrotating RT turbulence, the
rotating system takes much longer than that of the nonrotating
RT turbulence.

At first the stability of the interface is broken by high wave-
number perturbations (see Fig. 2). As a result, in the early
stage, a large number of small-scale plumes form at the inter-
face. With the mixing process of the RTI developing, small
plumes are stretched, warped, and merged with each other
and form large plumes. The wave length of the large plume
is the scale of the energy injection. In the rotating system,
under the action of Coriolis force, the horizontal stream bends,
thus the horizontal growth of plumes is limited. As a resulte,
the wave numbers of large plumes are smaller than that of
the nonrotating system. As the horizontal growth of plumes
is limited in the rotating system, the plumes can only be
stretched in the vertical direction, and then the aspect ratios of
plumes increase with the increase of �τ . With the convection
of the rotating system further developing, the vertical growth
of plumes is suppressed due to high aspect ratio.

To quantitatively analyze the rotation effect on the growth
of the mixing zone, we use the mixing zone width h(t ) based
on the mean temperature 〈θ〉x,y [31,32],

h(t ) = 6

	

∫ Lz

0

(
〈θ〉x,y + 	

2

)(
	

2
− 〈θ〉x,y

)
dz, (18)

in which 〈·〉x,y denotes the average number on the xOy plane.
In this paper, four independent realizations of 3D RT evolution
were performed to assess the repeatability of the statisti-
cal quantities by adding different perturbed interfaces. The
mixing layer width h(t ) increases with time evolution. The re-
lation between the h(t ) are time t can be obtained by using the
assumption in the nonrotating system [33,34]. Its expression
is as follows: √

h(t ) =
√

h0 + t
√

αAg, (19)

in which α denotes a dimensionless value [6,7], A is the
Atwood number (A = β	/2), and h0 denotes the width of
the initial temperature jumping zone. To obtain the effect
of rotation on the global quantities in the turbulent RT
mixing zone, the mixing zone width h(t ) is studied at various
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FIG. 3. Temporal growth of the mixing zone width h(t ) at �τ =
0, �τ = 5, �τ = 10, and �τ = 20.

�τ . Figure 3 displays the temporal growth of the mixing
zone width h(t ) at �τ = 0, �τ = 5, �τ = 10, �τ = 15,
and �τ = 20. It is demonstrated that a linear slope 1 of the
mixing zone width

√
h(t )/Lz − √

h0(t )/Lz and the parameter
α = 0.032 under the nonrotation condition is obtained in a
range with time evolution (1.8 < t/τ < 5.6), which is con-
sistent with previous work [6,7,30,35]. The t0.9 scaling law
for the mixing zone width

√
h(t )/Lz − √

h0(t )/Lz at �τ = 5
and �τ = 10. The t0.35 scaling law for the mixing layer width√

h(t )/Lz − √
h0(t )/Lz at �τ = 20 is obtained. The mixing

zone width h(t ) decreases with the increase of �τ at the
same time, which reveals that the rotation suppresses the
mixing layer width h(t ). In the inset of Fig. 3, we can see
that the time region of satisfying a slope 0.9 of the mixing
zone width for �τ = 10(2.5 < t/τ < 4.5) is less than that
of �τ = 5(2 < t/τ < 5), which reveals that the time in the
region meeting this scaling law is gradually narrowing. The
above phenomenon further indicates that the isotropic con-
vective mixing dominates at �τ = 0. However, in the rotating
system, the mixing layer is transverse isotropic. The behavior
of h(t ) follows the t0.9 scaling law in the early time, which can
be seen in Fig. 3. The 0.9 scaling law can be obtained as√

h(t ) =
√

h0 + t0.9
√

αAg. (20)

The 0.9 scaling law range becomes narrow with the increment
of �τ . When �τ is higher than 15, the 0.9 scaling law range
disappears. The parameter α is 0.029, 0.021 and 0.0166 for
�τ = 5, 10, and 15, respectively. The 0.9 scaling law can
hardly be found when �τ = 20.

Figure 4 indicates the t0.35 scaling law for the mixing layer
width h(t ) when t/τ is higher than 7. The new scaling law is√

h(t ) =
√

h0 + t0.35
√

αAg. (21)

The parameter α equals to 0.193, 0.137, 0.102, and 0.09 for
�τ = 5, 10, 15, and 20, respectively. As analyzed before,
the Coriolis force in a rotating system suppresses the hori-
zontal development of fluctuations and breaks the spikes into
small wavelength ones. However, the vertical development of
fluctuation is accelerated by the rotating effect. The develop-

FIG. 4. Temporal growth of the mixing zone width h(t ) at �τ =
5, �τ = 10, �τ = 15, and �τ = 20.

ment process of small-scale motion will be analyzed in the
following section in detail. As a result, the fluctuations reach
the bottom and top boundaries and bounce back from the
boundaries earlier in the rotating system. The second scaling
law is formed under all the effects of the buoyancy, the Cori-
olis force, and the reflected fluctuation.

Figure 5 shows the mean temperature profiles of the hori-
zontal surfaces obtained at time t/τ = 4 and at �τ = 0, �τ =
5, �τ = 10, �τ = 15, and �τ = 20. As shown in Fig. 5, the
mean temperature profile 〈θ〉x,y is approximately linear within
the mixing layer at t/τ = 4. With the increase of �τ , the slope
of the temperature profile increases, which reveals that the
convection is suppressed by rotation. In the same sample size,
by comparing the velocity profiles with rotation and without
rotation, it can be seen that the more intense the rotation, the
smoother the statistical results of the velocity profile. It reveals
that the maximum characteristic scale of convection decreases

FIG. 5. Mean temperature profiles 〈θ〉x,y at at t/τ = 4 in cases of
different �τ .
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with the increase of �τ . The effect of rotation on the velocity
and temperature of mixing zone will be further studied in the
following subsection.

B. Effect of rotating on global quantities in mixing zone

The efficiency of heat transfer in the RT turbulence mixing
zone is evaluated by the Nusselt number [6,11,12]

Nu = 1 + 〈wθ〉Lz/(	κ ). (22)

The functional relation between Nu and Ra has been widely
studied by direct numerical simulations in the RT turbulence
[2,4,36].

Nu � Ra1/2Pr1/2. (23)

The Reynolds number is defined as Re =√
u2

rms + v2
rms + w2

rmsh/ν. The relation between Re and
Ra has also been displayed by both two and three direct
numerical simulations in the RT turbulence [1,2,4,7]

Re � Ra1/2Pr−1/2. (24)

In the RT turbulent mixing zone, the turbulent convection
is dominated by the bulk dynamics and the ultimate state
observation is not amazing as upper and lower boundaries
play no role in the mixing zone system [37]. The effect of
rotation on the relations of Nu-Ra and Re-Ra is studied in this
paper. Figure 6 displays the Nusselt number and Reynolds
number as functions of the Rayleigh number for �τ = 0
(black circle and line), �τ = 5 (blue circle and line), �τ = 10
(red circle and line), and �τ = 20 (purple circle and line). The
black solid line represents the theoretical value. As displayed
in Fig. 6, for �τ = 0, the 1/2 scaling law for Nu-Ra and
Re-Ra is obtained in the RT turbulent mixing zone, which is
consistent with the theory proposed by Grossmann and Lohse
[38], and the previous numerical simulations [1,4,7,8]. The
value of Nu as a function of Ra decreases with increasing
�τ , which reveals that the heat transfer efficiency is reduced
by the rotation. We also see that Re also decreases with the
increase of �τ at the same Ra. It is apparent that the relations
of both Nu and Ra as a function of Ra are not increasingly
satisfied with the linear scaling of the ultimate state (Ra1/2),
which is obviously lower than Ra1/2 with increasing �τ . As
Ra increases, the decline gradient of the relations of both
Nu and Ra increases, which reveals that the heat transfer
performance is increasingly suppressed with increasing Ra by
the rotation in the RT mixing zone. The above phenomenon
is also demonstrated by previous direct numerical simula-
tions [16]. The heat transport suppression by the rotation
is qualitatively different from that of rotating Rayleigh-
Bénard (RB) convection by the rotating boundary force
[6,16,36].

The mixedness of the RT system can be measured by the
mixed mass. Based on the definition of mixed mass [14] and
the Boussinesq approximation, the expression can be rewritten
as

� =
∫

V

(
θ + 	

2

)(
	
2 − θ

)
dv∫

V

(〈θ〉x,y + 	
2

)(
	
2 − 〈θ〉x,y

)
dv

, (25)

where subscript V represents the entire computational do-
main. Figure 7(a) shows the temporal evolution of � in the

FIG. 6. (a) Nusselt number and (b) Reynolds number are shown
as functions of Rayleigh number for �τ = 0 (black circle and line),
�τ = 5(blue circle and line), �τ = 10 (red circle and line), and
�τ = 20 (purple circle and line). The black solid line represents the
theoretical value.

cases of different �τ . At first, the mixed mass � for the
nonrotating system decreases rapidly and reaches the mini-
mum point of about 0.55 at t/τ = 1.5. After that, � increases
to about 0.8 and then becomes stable. This agrees well with
previous studies [14]. In the rotating system, the evolution
of � is essentially the same as that in a nonrotating system,
except all periods are delayed. The relation of mixed mass
versus the height of the mixing layer is also shown in Fig. 7(b).
Except for �τ = 5, � in other systems reaches the minimum
value at about h/Lz = 0.1. We also believe that, with enough
resolution, the mixing mass � in the case of �τ = 5 will
reach the minimum value at about h/Lz = 0.1. It illustrates
the existence of an initial acceleration mixing period. The
period exceeds the equilibrium state and then returns back to
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FIG. 7. Temporal evolution of mixed mass for different �τ .
Mixed mass are shown as functions of (a) dimensionless time t/τ
and (b) dimensionless height of mixing layer h/Lz.

the equilibrium state. Figure 7(b) proves that the initial period
is related to the height of the mixing layer.

The temporal evolution of the skewness for different �τ ,
which is shown in Fig. 8, also proves the existence of the
initial acceleration process. The definition of skewness is [16]

Sω =
〈
ω3

z

〉
〈
ω2

z

〉3/2 . (26)

The dimensionless time of the initial period shown by the
skewness in Fig. 8 is consistent with that shown by the mixed
mass in Fig. 7. In the initial period, the mixed mass and skew-
ness first developed gently. After a while, the skewness jumps
to the maximum value under the Coriolis force. Meanwhile,
the mixed mass continually gets smaller. With the mixing
process further developed, the mixed mass reaches its mini-
mum value and the skewness keeps rapidly getting smaller.
At the end of the initial period, both the mixed mass and

FIG. 8. Temporal evolution of the skewness for different �τ .

the skewness approach a stable number. The stable skewness
increases with the increase of �τ .

C. Root mean square of velocity and temperature fluctuation

To better understand the behavior of the temporal evolution
of the rotating RT system, the comparison of the RMS of
the velocity fluctuation between the rotating and nonrotating
systems are shown in Fig. 9.

Figure 9 describes the mean vertical profiles of the RMS of
horizontal velocity (u, v)rms and the RMS of vertical velocity
wrms obtained at time t/τ = 4 in the cases of �τ = 0, �τ =
5, �τ = 10, and �τ = 20, where irms =

√
〈(i − 〈i〉V )2〉 is the

RMS of i with i = u, v,w or θ . As described in Fig. 9, it is
seen that the amplitudes of the (u, v)rms and wrms obviously
decrease with the increase of �τ in the mixing zone. More-
over, the gradients of these quantities sharply decrease with
increasing �τ in the mixing zone, which further demonstrates
that the growth of the mixing layer is reduced by the rota-
tion. In Fig. 9(a) The effect of rotation on the propagation of
the horizontal perturbation is further illustrated by compar-
ing the RMS of the horizontal velocity fluctuation between
the rotating system and nonrotating system. The horizontal
propagation of the horizontal fluctuation is suppressed by
the Coriolis force. With the increment of �τ , the RMS of
horizontal fluctuation decreases in the mixing zone. The ver-
tical propagation of the horizontal fluctuation is motivated by
both vertical perturbation and horizontal shear force. From
Fig. 9(b), it is seen that the vertical perturbation is also sup-
pressed by the rotation effect. The RMS of the horizontal
fluctuation near the bottom and top boundaries in Fig. 9(a)
shows the rotating effect on the vertical propagation of hori-
zontal perturbation. When �τ is less than 10, the shear force is
strengthened by the rotation effect. Compared with the shear
force strength, the intensity of the vertical fluctuation sup-
pression is smaller. The propagation process is accelerated by
the rotating effect. When �τ further increases, the influence
of the vertical fluctuation suppression increases. The vertical
propagation process is suppressed.
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FIG. 9. The comparison of the RMS between (a) horizontal ve-
locity (u, v)rms and (b) vertical velocity wrms at t/τ = 4 in cases of
different �τ .

Figure 10 displays the mean vertical profiles of the RMS
of temperature θrms and the heat flux 〈wθ〉x,y obtained at time
t/τ = 4 in the cases of �τ = 0, �τ = 5, �τ = 10, and �τ =
20. As displayed in Fig. 10, it is clearly observed that the
amplitudes of the RMS of temperature θrms and the amplitudes
of the heat flux 〈wθ〉x,y obviously decrease with the increase
of �τ in the mixing zone. Moreover, the gradients of these
quantities sharply decrease with increasing �τ in the mixing
zone, which further demonstrates that the temperature growth
of the mixing layer is reduced by the rotation.

D. Probability density function of velocity
and temperature fluctuations

The Kolmogorov-Obukhov theory of Navier-Stokes tur-
bulence can be obtained based on an assumption in three

FIG. 10. Mean vertical profiles of the RMS of (a) temperature
fluctuation θrms, (b) the heat flux fluctuation 〈wθ〉x,y at t/τ = 4 in
cases of different �τ .

dimensions. The velocity fluctuation δur is named the iner-
tial interval in a range of scales η � r � L(t ). Figure 11
illustrates the probability density functions of the horizontal
and vertical velocity fluctuations at different �τ = 0, �τ =
5, �τ = 10, and �τ = 20 at time t/τ = 4. As illustrated
in Fig. 11, the horizontal velocity fluctuation gradually de-
creases with the increase of �τ , and the vertical velocity
fluctuation also decreases with increasing �τ , which reveals
that the rotation effectively suppresses the turbulent veloc-
ity fluctuations. Meanwhile, the distribution function of the
probability density function (PDF) for the vertical velocity
fluctuation is increasingly concentrated in the central core.
The decrease of the above velocity fluctuation can be caused
by increasing Coriolis force 2ω × u. The Coriolis force ac-
celerates the large-scale vortex breaking to the small-scale
vortex.
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FIG. 11. Probability density functions of (a) horizontal velocities
fluctuation and (b) vertical velocities fluctuation in cases of different
�τ at time t/τ = 4.

Figure 12 displays the PDF of the temperature fluctuation
at different �τ when dimensionless time t/τ = 4. It is seen
that the distribution function of PDF for the fluctuation of
temperature increasingly concentrates in the central core. The
fluctuation of temperature decreases with the increase of �τ ,
which reveals that the fluctuation of temperature is suppressed
by the rotation. In the following section, the energy spectrum
of velocity and temperature fluctuations is further studied at
different �τ .

E. Kinetic and temperature energy spectra

Chertkov [9] proposed a theory of turbulent fluctuations for
RT turbulence, predicted a Kolmogorov-Bukhov (K41) sce-
nario for velocity and temperature spectra in 3D space, and a
Bolgiano-Obukhov-like (BO59) scenario in two-dimensional

FIG. 12. Probability density functions of temperature fluctuation
at �τ = 0, �τ = 5, �τ = 10, �τ = 15, and �τ = 20.

(2D) space [7]. The dimensional predictions of the spatial
and temporal domains can be obtained for both velocity and
temperature fluctuations by the relationships of scaling in
Eqs. (27) and (28) for the 3D case [6]. These predictions can
be obtained to build the scaling laws of isotropic spectra by
neglecting possible fluctuations of intermittency. The kinetic
and temperature energy spectra are obtained in the 3D case [6]

Eu(k) ∼ (βgθ0)4/3t2/3k−5/3, (27)

Eθ (k) ∼ θ2
0 (βgθ0)−2/3t−4/3k−5/3. (28)

Figure 13 shows the kinetic energy spectra Euv and Ew

obtained in the mixing zone at time t/τ = 4 under �τ = 0,
�τ = 5, �τ = 10, and �τ = 20. As displayed in Fig. 13,
the values of the kinetic energy spectra Euv and Ew obviously
decrease with the increase of �τ in the mixing zone. The wave
number of the energy injection peak gradually increases with
the increase of �τ , which reveals that the energy injection
scale decreases with the increase of �τ . The energy injection
scale is related to the wave length of the large plumes. The de-
crease of the energy injection scale further proves the physical
mechanism of the rotation effect suppressing the horizontal
development of plumes, which is shown in Fig. 2.

Figure 14 illustrates the temperature energy spectra Eθ (k)
obtained on the middle horizontal plane when h/Lz ≈ 0.7 in
the cases of �τ = 0, �τ = 5, �τ = 10, and �τ = 20. As
illustrated in Fig. 14, it is clearly observed that the values of
the temperature energy spectra Eθ (k) obviously decrease with
increasing �τ in the mixing zone. The scale of the energy
injection decreases due to the rotation effect. Meanwhile, the
dissipation scale, i.e., the Kolmogorov scale η increases with
the increase of �τ . From the following relation, one may
conclude that the turbulence dissipation rate ε decreases with
the increase of �τ :

η ∼
(

ν3

ε

)1/4

. (29)

Thus, the width of the inertial subrange with power of
−5/3 for Eu(k) dramatically narrows at t/τ = 4. The thermal
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FIG. 13. Compensated kinetic energy spectra of (a) horizontal
velocity Eu(k) and of (b) vertical velocity Ew (k) for �τ = 0, �τ =
5, �τ = 10, and �τ = 20.

spectra Eθ (k) shows the same characteristics as the kinetic
spectra, which further demonstrates that the turbulence inten-
sity is suppressed by the rotation.

F. Spatial scaling law of structure function

In the nonrotation RT turbulence, Zhou et al. [1] provided
a deep analysis on the distribution of the local dissipation
scale in 2D RT turbulence. Zhou et al. [7] studied the second,
fourth, and sixth order structure functions of the velocity and
temperature, and the curves for the second structure functions
were closely consistent with the Chertkov [9] theory for both
the spatial and temporal scaling in 2D space. Biferale et al. [4]
and Zhou [7] confirmed these corrections of intermittency by
direct numerical simulation (DNS) in 2D space. Nevertheless,
the velocity and temperature structure functions for velocity

FIG. 14. Compensated temperature energy spectra Eθ (k) for
�τ = 0, �τ = 5, �τ = 10, and �τ = 20.

and temperature fluctuations are given, neglecting the possible
intermittency fluctuations in the 3D case [4]

SU
p (r) =

〈[
[u(r, t ) − u(0, t )] · r

r

]p〉
� (βgθ0)−2p/3t p/3rp/3,

(30)

Sθ
p(r) = 〈{[θ (r, t ) − θ (0, t )]}p〉 � θ

p
0 (βgθ0)−p/3t−2p/3rp/3.

(31)

In this paper, the second, fourth, and sixth order structure
functions of the velocity and temperature are investigated in
3D space. Figure 15 displays the structure function of the
second order velocity SU

2 and the structure function of tem-
perature Sθ

2 obtained in the mixing zones, at time t/τ = 4
and �τ = 0, �τ = 5, �τ = 10, and �τ = 20, where these
values are obtained by space averages in the mixing zone
under the small-scale isotropy and homogeneity hypothesis.
As displayed in Fig. 15, one can see that for nonrotation
(�τ = 0), two scaling laws of 2/3 for the second order ve-
locity and temperature structure functions appear in a range
scale, and closely agree with the theory proposed by Chertkov
[9] for the spatial scaling in 3D space, respectively. Mean-
while, it is also observed that the values of the velocity and
temperature second structure functions gradually decrease
with the increase of �τ , which reveals that the spatial in-
termittency fluctuations of the velocity and temperature are
increasingly suppressed by the rotation. Interestingly, it is
found that the scale satisfying the linear relationship (2/3
scaling law) for second order velocity and temperature struc-
ture functions is gradually narrowing with increasing �τ at
time t/τ = 4.

Figures 16 and17 show the structure function of fourth (SU
4 )

and sixth order velocities (SU
6 ) and the structure function of

fourth (Sθ
4 ) and sixth order temperatures Sθ

6 obtained in the
mixing zones at time t/τ = 4 and �τ = 0, �τ = 5, �τ =
10, and �τ = 20, respectively. In the nonrotation (�τ = 0)
system, two scaling laws of 4/3 for the fourth order velocity
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FIG. 15. Second structure function of (a) the velocity SU
2 . (b) Second structure function of the temperature Sθ

2 when �τ = 0, �τ = 5,
�τ = 10, and �τ = 20.

and temperature structure functions appear in a range scale, a
scaling law of power 2 is obtained for the sixth order velocity
and temperature structure functions in a range scale, which is
consistent with the theory proposed by Chertkov [9] for the
spatial scaling in 3D space, respectively. Nevertheless, with
the increase of �τ , the fourth and sixth order velocity and
temperature structure functions gradually decrease at the same
scale. In addition, the width of the linear relationships for the
fourth and sixth order velocity and temperature structure func-
tions decreasingly narrow with increasing �τ . This further
demonstrates that the spatial intermittency fluctuations of the
velocity and temperature are increasingly suppressed by the
rotation. These phenomena may be due to inhibiting the speed

mixing of RT turbulence by rotation, which makes the mixing
thickness narrow at the same time.

IV. CONCLUSION

In this paper, the evolution of plumes, small-scale fluctua-
tion, and scaling laws of mixing in 3D rotating turbulent RTI
are studied. The main conclusions are included as follows.

The size of the thermal plumes and the width mixing layer
increasingly decrease with the increase of �τ . The horizon-
tal development of the plumes is suppressed in the rotating
system. Thus, the aspect ratio of plumes increase with the
increase of �τ .

FIG. 16. (a) Fourth structure function of the velocity SU
4 . (b) Fourth structure function of the temperature Sθ

4 when �τ = 0, �τ = 5,
�τ = 10, and �τ = 20.
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FIG. 17. (a) Sixth structure function of the velocity SU
6 . (b) Sixth structure function of the temperature Sθ

6 when �τ = 0, �τ = 5, �τ = 10,
and �τ = 20.

The velocity and temperature fluctuations are increasingly
reduced with the increase of Coriolis force in the mixing zone.
The heat transfer performance is increasingly suppressed with
increasing Ra by the rotation in the RT mixing zone. The
mixing layer width h(t ) gradually decreases with increasing
�τ and the rotation suppresses the mixing layer width h(t ).
We find two scaling laws in the rotating system. The 0.9
scaling law for the mixing zone width

√
h(t )/Lz − √

h0(t )/Lz

at �τ = 5, �τ = 10, and �τ = 15, and a scaling law of
power 0.35 for the mixing zone width

√
h(t )/Lz − √

h0(t )/Lz

at �τ = 5, �τ = 10, �τ = 15, and �τ = 20 are obtained
with time evolution.

The energy spectra indicates that the energy injection scale
decreases and the Kolomogrov scale η increases with the
increase of �τ . Thus, the width of the inertial subrange nar-
rows. It further proves the physical mechanism of the rotation
effect, suppressing the horizontal development of plumes and
reducing the energy dissipation.

Scaling laws for the second, fourth, and sixth order velocity
and temperature structure functions are obtained in the iner-
tial subrange, and closely agree with the theory proposed by

Chertkov [9] in the nonrotating system (�τ = 0). The scales
satisfying the linear relationship for second, fourth, sixth order
velocity and temperature structure functions gradually narrow
with increasing �τ at the same time. The spatial intermittency
fluctuations of the velocity and temperature decrease with an
increase of the Coriolis force.

The time evolution of the Kolmogorov dissipation scale
η(t ), the kinetic-energy dissipation rate εu(t ), and the thermal
dissipation rate εθ (t ) will be studied along with the increase
of �τ in future work.
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