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Quantifying local rearrangements in three-dimensional granular materials: Rearrangement
measures, correlations, and relationship to stresses
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Quantifying the ways in which local particle rearrangements contribute to macroscopic plasticity is one of the
fundamental pursuits of granular mechanics and soft matter physics. Here we examine local rearrangements
that occur naturally during the deformation of three samples of 3D granular materials subjected to distinct
boundary conditions by employing in situ x-ray measurements of particle-resolved structure and stress. We
focus on five distinct rearrangement measures, their statistics, interrelationships, contributions to macroscopic
deformation, repeatability, and dependence on local structure and stress. Our most significant findings are that
local rearrangements (1) are correlated on a scale of three to four particle diameters, (2) exhibit volumetric
strain-shear strain and nonaffine displacement-rotation coupling, (3) exhibit correlations that suggest either
rearrangement repeatability or that rearrangements span multiple steps of incremental sample strain, and (4)
show little dependence on local stress but correlate with quantities describing local structure, such as porosity.
Our results are presented in the context of relevant plasticity theories and are consistent with recent findings
suggesting that local structure may play at least as important of a role as local stress in determining the nature of
local rearrangements.
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I. INTRODUCTION

Macroscopic plasticity in granular materials occurs due to
the accumulation of numerous local particle rearrangements
[1,2]. This feature of plasticity is shared with other amorphous
materials [3,4], including metallic glasses [5], colloids [4],
and emulsions [6]. The locations and magnitudes of local
rearrangements in these materials are thought to be related
to a combination of structural defects and the local stress
state. However, these structural defects and stress states have
been challenging to identify in amorphous materials [7–11].

*rhurley6@jhu.edu

In contrast, dislocations are known to be structural defects
causing plasticity in metals [12].

A major motivation for characterizing local rearrangement
events in amorphous materials is to support the devel-
opment and calibration of continuum models that capture
the role of these rearrangements in macroscopic plasticity.
Free volume theories [13], elastoplastic models [2], shear
transformation zone theory (STZ) [14], and soft glassy rhe-
ology theory (SGR) [15] are among the popular models
linking local rearrangements and macroscopic plasticity in
amorphous materials. These models rely on assumptions
regarding the sizes, induced strains, frequencies, and inter-
actions of rearrangement events, much of which has been
furnished primarily by numerical simulations. For instance,
nonaffine particle translation in metallic glasses and granular
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materials [8,14,16], particle rotations in granular materials
[17,18], and strain fluctuations in colloids [5,16] have been
studied extensively using molecular dynamics and discrete
element method simulations. A small number of experiments
with in situ structure measurements have also provided rich
data on rearrangements in granular materials. For instance,
cyclic compression and shear of submerged 3D granular
media has revealed that macroscopic plasticity is related to
irreversible particle rotations linked to alterations of contact
forces and grain stresses [19,20]. Macroscopic compaction of
vibrated 3D granular media has been shown to be accom-
modated by local transitions through crystal-like structural
configurations [21–23]. Shear band nucleation and propa-
gation in biaxially compressed granular materials has been
linked to isolated events inducing local strains consistent with
the Eshelby solution of a local plastic transformation [1,24].

Recent research has moved closer to identifying local
structural motifs and stress states causing rearrangements
in amorphous materials. Machine learning has been applied
to numerical and experimental data to show that the local
structure is related to local rearrangements in glasses [25],
polycrystals [26], low-dimensional films [27], and granular
materials [28]. For instance, support vector machines (SVMs),
operating on a large set of local structure functions only, have
classified regions of a granular material as “soft,” or prone to
rearrangement or nonaffine motion [4,8].

In this paper we use particle-resolved structure and stress
tensor data obtained using in situ x-ray tomography and
diffraction measurements [29,30] on deforming granular
materials to examine local rearrangements. The local rear-
rangements we examine occur naturally throughout each of
three samples that we subject to distinct boundary conditions.
We examine five measures of local particle rearrangements,
focusing on the statistics, spatial correlations, strain coupling,
contributions to macroscopic deformation, repeatability, and
dependence on local structure and stress. Our analysis sug-
gests that (1) local rearrangements are correlated at a scale
of about three to four particle diameters, (2) rearrange-
ments exhibit volumetric strain-shear strain and nonaffine
displacement-rotation coupling, (3) rearrangements exhibit
correlations that suggest either memory effects (i.e., rear-
rangements can occur in the same location twice) or that
individual rearrangement events may occur over multiple in-
crements of sample strain, and (4) rearrangements show little
dependence on local stress but correlate with quantities de-
scribing local structure. We discuss the implications of our
findings for STZ theory and elastoplastic models of granular
rheology.

Section II provides a description of the experimental
data used for analysis in the remainder of the paper. Sec-
tion III includes a description of rearrangement measures,
their cross-correlations, contributions to macroscopic defor-
mation, repeatability, and dependence on local structure and
stress. Section IV offers a discussion and conclusions.

II. EXPERIMENTS

All experiments examined in this paper took place at beam-
line ID11 of the European Synchrotron Radiation Facility
(ESRF). Experiments were performed on three samples, each

composed of single-crystal ruby spheres (Sandoz Fils SA)
with an approximate diameter of 140–150 μm and a uniform
roughness below 0.008 μm (arithmetic mean height devia-
tion). The three samples A, B, and C investigated in this
study are corresponding to uniaxial, hydrostatic, and triaxial
loading conditions, respectively. Sample A, shown in Fig. 1(a)
and composed of 886 ruby spheres, was prepared by pouring
particles into a 1.5 mm inner diameter aluminum cylinder.
This sample was monotonically compressed via application of
incremental vertical strain (a uniaxial strain test), except for
a brief unloading that is not analyzed further here. Samples
B and C, shown in Figs. 1(b) and 1(c), respectively, were
composed of 877 and 1667 ruby spheres and were prepared
by pouring particles into 1.5 mm inner diameter polymer
sleeves. These samples were first subjected to a hydrostatic
confinement of 3 MPa by pressurizing a fluid surrounding
their polymer sleeves. They were subsequently monotonically
compressed via application of incremental vertical strain.
Load steps reported for these samples in this paper begin after
the application of 3 MPa confinement. The polymer sleeve
used for sample B was significantly stiffer than that used for
sample C and thus caused a lateral confining stress above the
3 MPa imposed by the surrounding confining fluid (see [31]).
Sample B was therefore similar to a hydrostatic stress test
while Sample C was closer to a traditional triaxial stress test.

A. XRCT and 3DXRD measurements

After each increment of vertical strain, samples were ro-
tated 180◦ in 0.1◦ increments to capture 1800 radiographs that
were used to construct XRCT images in PyHST [32]. The
resulting XRCT images had a resolution of 1.543 μm3 per
voxel. Figures 1(a), 1(b), and 1(c) show the XRCT images
at load step 1 for each sample. After the 180◦ rotation, sam-
ples were rotated 360◦ in 0.125◦ increments to capture 1440
2D diffraction patterns that were used in 3D x-ray diffrac-
tion (3DXRD) analysis in ImageD11 [33]. 3DXRD analysis
yielded per-particle strain tensors, orientations, and positions
for each particle that generated at least 24 Bragg peaks in
the 2D diffraction patterns (between 95% and 100% of par-
ticles found in XRCT images at each load step). 3DXRD
analysis yielded per-particle volume-averaged strain tensors
with a resolution of 10−4 per on-diagonal and 5 × 10−5 per
off-diagonal tensor component [30,34], particle orientations
with a resolution of 0.05◦ or better [34], and particle positions
with a resolution of around 10 μm. From per-particle volume-
averaged strain tensors, per-particle stresses were calculated
using the known stiffness tensor of ruby (C11 = 496.8 GPa,
C33 = 498.1 GPa, C12 = 163.6 GPa, C13 = 110.9 GPa, C14 =
23.5 GPa, C66 = (C11 − C12)/2). Individual particle stress
tensors had a resolution of 50 MPa per on-diagonal tensor
component and 23 MPa per off-diagonal tensor component
[35]. Registration was performed between particle centers
in XRCT and 3DXRD measurements and per-particle stress
tensors and orientations were subsequently assigned to each
particle in XRCT images.

B. Global and local strains

Global sample strains, εS
zz, were determined by manually

locating the stainless steel platens in contact with the top
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FIG. 1. [(a)–(c)] XRCT reconstructions of Samples A, B, and C, respectively. Insets show particle kinematics from the start to the end of
each experiment. Each particle center is given a distinct color in these insets. (d) Local tetrahedron-based strains calculated using Eq. (2) for
particles not contacting boundaries in load step 2 of Sample C. The tetrahedron-based vertical strain is indicated by the tetrahdron’s color. The
tetrahedrons used to calculate particle-centered strain are illustrated in the inset. (e) The accumulated global sample strain, εS

zz, as a function
of load step for all samples. [(f), (g)] Average sample stresses obtained from Eq. (3). (h) An illustration of a local averaging region of radius
r = 3rp.

and bottom of samples in XRCT images. The vertical sample
strains are shown in Fig. 1(e). Symbols in this figure indicate
the strains at which XRCT and 3DXRD measurements were
made.

To obtain each particle’s kinematics, XRCT images were
first segmented to separate individual particles and obtain their
center of mass positions [31]. Position resolution with this
approach is thought to be as good as 0.05 pixels [36]. To track
3D particle displacements, ui (a displacement vector in index
notation), the distance between the center of mass position
of each particle in a given load step and all particles in the
preceding load step was first calculated. The particle in the
preceding load step with the smallest distance was assumed to
be the same particle. Particle displacements throughout each
experiment are shown as insets in Figs. 1(a), 1(b), and 1(c).

To calculate local strains, a Voronoi tessellation was com-
puted at each load step using particle centers and radii [37]
and was subsequently used to construct the Delaunay triangu-
lation, the dual network to the Voronoi tessellation [38]. The
displacement gradient of each tetrahedron t in the Delaunay
triangulation, ut

i, j , was then calculated by

ut
i, j = 1

Vt

4∑
k=1

uk
i ak

j , (1)

where Vt is the tetrahedron volume, k is a particle center
forming the tetrahedron, uk

i is the displacement of the particle
at node k between consecutive load steps of an experiment,
and ak

j is a vector with a magnitude equal to the area of
the tetrahedron face not containing node k divided by the

space dimension (three in three dimensions), pointing toward
the tetrahedron interior and perpendicular to the tetrahedron
face not containing node k [39]. The infinitesimal strain and
rotation tensors for each tetrahedron were then computed as

εt
i j = 1

2

(
ut

i, j + ut
j,i

)
and ωt

i j = 1
2

(
ut

i, j − ut
j,i

)
. (2)

Local strains between load steps 2 and 3 of Sample C are
illustrated on a Delaunay triangulation in Fig. 1(d).

C. Sample stresses

Volume-averaged sample stress, σV
i j , was calculated for

each sample at each load step by

σV
i j = NT

NXRD

1

VS

NXRD∑
k=1

σ k
i jVk, (3)

where NT is the total number of particles found in XRCT
images, NXRD is the number of particles with stresses from
3DXRD analysis, VS is the sample volume, σ k

i j is particle
k′s stress tensor from 3DXRD, and Vk is particle k′s volume
from XRCT. The volume-averaged stress evolution for Sam-
ples B and C are shown in Fig. 1(f) and 1(g), respectively.
Experimental challenges made stress tensors for Sample C
unreliable, and they are therefore not examined further here.

D. Interparticle forces

Interparticle forces were inferred at each load step of ex-
periments on Samples A and B, as described in [31]. Force
inference employed the optimization procedure proposed in
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[29] and the assumptions of noncohesive forces and a friction
coefficient of 0.2 for particle-particle and particle-aluminum
contacts and 0.4 for particle-polymer-sleeve contacts. The
force inference procedure required particle volumes, contact
locations, and contact normal vectors from XRCT images, and
per-particle stress tensors from 3DXRD data. Contacts were
identified by first identifying a voxel in segmented XRCT
images for each sample as a contact if the 26-voxel neigh-
borhood around it contained two distinct particles. The center
of the resulting voxel cloud for a given pair of particles was
considered to be the contact location. The contact normal
was assumed to be parallel to a vector pointing between the
corresponding particles’ centers. The reader is directed to [31]
for a visualization of forces at multiple load steps of the exper-
iments on Samples A and B, and for a demonstration of their
use in calculating per-contact energy dissipation. The reader is
directed to [40] for the particle positions, and contact positions
and orientations for all samples, as well as the particle stress
tensors and forces for Samples A and B.

III. REARRANGEMENT ANALYSIS

A. Rearrangement definitions

We computed five measures of local rearrangements and
deformation at each load step of each experiment. These
measures are inspired by prior studies examining local re-
arrangements in metallic glasses and granular materials, for
instance in the context of STZ theory [14,16,41]. Three of
these measures, local shear (γmax), dilation (ε+), and contrac-
tion (ε−), are based entirely on the local strains described in
Sec. II B. These local measures are particularly relevant to
STZ theory and elastoplastic models [14,41]; such theories
assume that macroscopic strain is accommodated by local,
isolated strain events with certain principal directions and
magnitudes. One of the remaining two measures of local rear-
rangement quantifies nonaffine particle translation and is the
popular D2

min metric introduced in the original paper describ-
ing STZ theory [14]. The final measure of local rearrangement
quantifies relative rotation of a particle with respect to its
neighbors and the rigid-body rotation of the material. This re-
arrangement measure is intended to capture relative rotations,
which are known to be a signature of plasticity in cyclically
sheared granular media but may not be identified by analyzing
local strains or D2

min [19,20].
We first define local averaging regions as regions of radius

r = Nrp, where N is an integer, centered on the center of
mass of a particle with mean radius rp. Prior work in metal-
lic glasses [14], colloidal glasses [5], and granular materials
[8] suggest that local, isolated rearrangement events can be
identified with D2

min when the local averaging region under
consideration is between r = 2rp and r = 3rp. We therefore
choose r = 3rp for most analysis in this paper and note
that changing r between 2rp and 4rp does not qualitatively
change any of our results. A schematic illustration of a local
averaging region of radius r = 3rp is shown in Fig. 1(h).
Figure 2 provides a schematic illustration of the rearrange-
ment measures defined in this subsection, also provided for
r = 3rp.

FIG. 2. Illustration of particle rearrangements in local averaging
regions centered around particle i. (a) Maximum shear strain, γmax.
(b) Volumetric strain, εvol. (c) Nonaffine motion, D2

min. (d) Relative
rotation, θ . All rearrangements defined in the text.

To compute local shear, dilation, and contraction, we first
compute the strains in all tetrahedrons for which a particle is
a node, which we call the particle-centered strain [38], as

εc
i j = 1

Vc

Nc
t∑

t=1

εt
i jVt , (4)

where t is the index of a tetrahedron for which a particle is
a node, Nc

t is the number of all such tetrahedrons for particle
c, Vt is the volume of tetrahedron t , εt

i j is the strain tensor of

tetrahedron t , and Vc = ∑Nc
t

t=1 Vt is the sum of all tetrahedrons
with volumes Vt contact particle c. An illustration of the tetra-
hedrons involved in calculating the particle-centered strain for
a particle within Sample C is given in the inset to Fig. 1(d).

Next, we compute the local strain in the averaging region
by

εl
i j = 1

Vl

Ne
p∑

c=1

εc
i jVc, (5)

where c is the index of a particle partially or fully within the
local averaging region, Vc is the volume of the particle within
the region, Nc

p is the number of particles fully or partially

in the region, and Vl = ∑Nc
p

c=1 Vc is the sum of all particle
volumes within the local averaging region. For particles par-
tially in the local averaging region, Vc is calculated using a
sphere-sphere intersection formula [42]. Finally, we compute
the local shear, dilation, and contraction in the local averaging
region as

γmax =εl
1 − εl

3

2
,

εvol =εl
1 + εl

2 + εl
3,

(6)

where εl
1, εl

2, and εl
3 are the principal strains in the local aver-

aging region, calculated from an eigenvalue decomposition of
εl

i j . A local region can exhibit either a local dilation (εvol > 0),
in which case it is labeled ε+, or a local contraction εvol < 0),
in which case it is labeled ε−.
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To compute D2
min for particle i between two load steps, s

and s + 1, we calculate

D2
i,min(s, s + 1) = min

εkl

1

Ne
p

Ne
p∑

j=1

[
�di j

k (s + 1) − εkld
i j
l (s)

]
,

(7)
where di j

k (s) = r j (s) − ri(s) is the relative position of parti-
cles i and j at step s, �di j

k (s + 1) = di j
k (s + 1) − di j

k (s), εkl is
a strain tensor, and N j

p is the number of particles j around
a central particle i in the local averaging region [8,14,16].
Minimization in Eq. (7) is performed over the strain tensor
εkl . This definition of D2

min is analogous to the one proposed
in [8,16].

Finally, to compute the relative rotation of a particle, θrel,
with respect to its neighbors and the surrounding rigid-body
rotation, we employ both 3DXRD and rigid-body rotations
calculated using Eq. (2). A rotation matrix describing the
rotation of particle i′s crystal orientation is denoted Rxrd (i).
This rotation maps a vector aligned with a crystallographic
direction in a particle to the same crystallographic direction
in the next load step; it includes both the relative rotation of
the particle and the local rigid-body rotation of the material.
To account for the rigid-body rotation, we first calculate the
particle-centered rigid-body rotation analogously to Eq. (4),

ω
Ve
i j = 1

Vc

Nc
t∑

t=1

ωt
i jVt . (8)

From ω
Ve
i j , we formulate the rotation matrix describing

rigid-body rotation associated with ω
Ve
i j for particle i as

Rcell(i) ≈ ω
Ve
i j + I, where I is the 3D identity matrix. The

product Rcell(i)−1Rxrd (i) removes the rigid-body rotational
component from Rxrd (i), leaving only the rotation of a par-
ticle in a local frame which rotates rigidly with the material.
Finally, we evaluate the rotation matrix describing the relative
rotation of particle i to its neighbor j by

Ri j = (Rcell( j)−1Rxrd ( j))−1Rcell(i)−1Rxrd (i). (9)

If particles i and j each rotate identically and share the same
local rigid-body rotation, then Rxrd (i) = Rxrd ( j) and Eq. (9)
yields Ri j = I. If, on the other hand, the particles rotate rela-
tive to one another, have differing local rigid-body rotations,
or both, Eq. (9) will not be the identity matrix. An axis-angle
calculation from Eq. (9) yields the rotation of particle i relative
to particle j, θ

i j
rel, and the final relative rotation of particle i in

a local region is given by

θrel(i) = 1

Ne
p

N j
p∑

j=1

θ
i j
rel, (10)

where N j
p is the number of particles in the local averaging

region.
We note that sums in Eqs. (5), (7), and (9) are taken over all

particles, including those contacting boundaries. However, be-
cause we analyze local regions with r = 3rp in this paper, we
do not consider rearrangement measures centered on particles
contacting boundaries in any statistical analysis throughout
the paper. Ignoring such regions prevents local regions from

extending into the void space outside of the samples and
also eliminates some of the influence of boundaries on rear-
rangements, which may vary across samples because of the
differences in boundary material (aluminum in Sample A and
membranes in Samples B and C).

B. Rearrangement normalization and statistics

To compare rearrangement measures across samples and
load step increments, we first normalize them. Letting e(i)
represent any of the five rearrangement measures around
particle i calculated between any two consecutive load step
increments, the normalized measure is calculated by

e(n)(i) = e(i) − 〈e(i)〉
std(e(i))

, (11)

where 〈e(i)〉 is the average rearrangement magnitude over all
particles considered within a specific sample and load step
increment and std(e(i)) is the standard deviation of rearrange-
ment magnitude over the same particles.

Figure 3 illustrates the distributions of normalized rear-
rangement measures using r = 3rp, calculated for all particles
not in contact with sample boundaries. Each curve in Fig. 3
represents the statistics of rearrangements in each sam-
ple between two consecutive load steps. All normalized
rearrangement measures greater than zero represent rear-
rangements with magnitudes that are greater than the mean
in a set of consecutive load steps; normalized rearrangement
measures less than zero represent rearrangements with mag-
nitude less than the mean. Although samples and load step
increments feature distinct incremental strains in Fig. 1(e),
normalization appears to collapse γ (n)

max and ε
(n)
vol onto like

curves for all samples and load step increments. Normaliza-
tion collapses θ

(n)
rel and D2(n)

min onto like curves but with more
variability than the collapsed curves for γ (n)

max and ε
(n)
vol .

We examine the relative broadness and the variance of
the normalized distributions in Figs. 3(e) and 3(f), which
illustrate the slope of exponential fits to the shaded portions
of the curves in Figs. 3(a)–3(d). We note that the tails of
the distributions in Figs. 3(a)–3(d) are only approximately
exponential. The exponents in Fig. 3(e) and 3(f) are given as
a function of the increment of global sample strain between
consecutive load steps s and s + 1 analyzed for rearrange-
ments, �εS

zz(s, s + 1), or as a function of the hydrostatic
sample stress, σV

h (s) = 1
3σii, in the first of consecutive load

steps analyzed. Exponents are calculated by first binning the
counts of normalized rearrangements for a given sample and
load step in bins of width 0.05 to 0.6 (in increments of 0.05)
within the shaded regions of Fig. 3(a)–3(d), and then perform-
ing least-squares fitting to a straight line in log-linear space.
Symbols in Fig. 3(e) and 3(f) represent the average of the 12
resulting exponents for each sample and load steps; error bars
represent the standard deviation of all exponents for different
bin sizes.

Figures 3(e) and 3(f) illustrate that ε (n)
+ decays most steeply,

having the largest exponent by absolute value, and is therefore
the most homogeneous of all the rearrangements. This finding
may be related to the compression boundary conditions in all
experiments, which may limit the extreme values of ε

(n)
+ that

may be achieved. Figures 3(e) and 3(f) also show that the
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FIG. 3. Probability distributions of normalized rearrangements
across all load samples and load steps. Each curve corresponds to re-
arrangements calculated between consecutive load steps s and s + 1.
(a) γ (n)

max, (b) ε
(n)
vol , (c) D2(n)

min , and (d) θ
(n)
rel . Shaded regions are used to

compute exponents of exponential fits described in the text. Dashed
vertical lines and arrows indicate the 15% largest rearrangements
by magnitude for each rearrangement measure. Panel (b) features
two shaded regions and two dashed lines and arrows because we
consider ε− (εvol < 0) and ε+ (εvol > 0), as described in the text.
The exponents from exponential fitting are given in (e) as a func-
tion of incremental sample strain between consecutive load steps,
�εS

zz(s, s + 1), and (f) as a function of the hydrostatic sample stress
at the first load step of consecutive steps used for calculating rear-
rangements, σV

h (s).

other four rearrangements exhibit roughly similar exponents
(around 0.5 in absolute value) and therefore similar hetero-
geneity.

The dashed curves in Fig. 3(e) and 3(f) are least-squares
fitted slopes between the exponents calculated for every load
step increment of every sample and �S

zz(s, s + 1) or σV
h (s).

Slight trends towards more heterogeneous distributions (ex-
ponents closer to zero) are observed for θ

(n)
rel , D2(n)

min , and ε
(n)
+

in Fig. 7(e) below as �εS
zz(s, s + 1) increases in magnitude,

suggesting that for larger incremental strains it may be in-
creasingly common to find rearrangements significant above
the mean. The opposite trend is observed for ε

(n)
+ in Fig. 3(f) as

σV
h (s) decreases: under more intense hydrostatic confinement,

ε
(n)
+ becomes more homogeneous. On the other hand, θ

(n)
rel

becomes more heterogeneous with decreasing σV
h , suggesting

that more intense hydrostatic confinement my cause more
significant, localized relative rotation events.

C. Rearrangement spatial distributions and length scales

Figures 4–6 illustrate the location and magnitude of rear-
rangements within Samples A, B, and C. For each image in
Fig. 4, rearrangements are calculated using consecutive load
steps. Particles centered in local averaging regions featuring
the largest 15% (by magnitude) γ (n)

max, ε
(n)
+ , or D2(n)

min , and the
most negative ε

(n)
− are rendered with color representing their

relative magnitude within the 15% tail of the distribution;
the typical location of these top 15% rearrangements within
the tails of the distributions are shown with dashed lines and
arrows in Fig. 3. Particles centered on local averaging regions
for which rearrangements are calculated but are not in the
largest (or most negative) 15% are rendered in translucent
grey. Particles touching boundaries, included in calculations
of local rearrangements but not featured at the center of local
averaging regions, are rendered in translucent blue.

Rearrangements demonstrate variable spatial clustering
and isolation depending on the sample, load step, and re-
arrangement measure. For instance, in Samples A (Fig. 4)
and C (Fig. 6), γ (n)

max and ε
(n)
− cluster near the top or lateral

boundaries across most load steps. On the other hand, D2(n)
min

does not repeatably cluster in any sample, but demonstrates
both spatial clustering and isolation in all samples depending
on load step. Some localized rearrangements clearly span
multiple load steps or occur in repeatable locations across
multiple load steps, as demonstrated by regions of large D2(n)

min

and θ
(n)
rel highlighted with black arrows in Fig. 4 for Sample

A, by regions of large ε
(n)
+ highlighted with black arrows in

Fig. 5 for Sample B, and regions of large ε
(n)
− highlighted

with black arrows in Fig. 6 for Sample C. Such observations
are consistent with those from the prior studies which find
that STZs or avalanches identified by D2

min can span multiple
time steps of a simulation and can activate nearby STZs and
avalanches [14,43]. Some rearrangement measures are also
spatially correlated with others, as is the case for D2(n)

min and
θ

(n)
rel in Sample C, as shown in Fig. 6. The following paragraphs

and subsections examine spatial autocorrelations of rearrange-
ments, coupling between rearrangements, and repeatability of
rearrangements in more quantitative terms.

To confirm that rearrangements are not significantly
correlated beyond r = 3rp, we calculate the spatial auto-
correlation between rearrangements occurring in consecutive
load step increments, s to s + 1, within a certain distance
of one another. We first order rearrangements calculated
between steps s and s + 1 for each sample from largest
(1%) to smallest (100%) for γ (n)

max, ε
(n)
+ , D2(n)

min , and θ
(n)
rel ,

and from most negative (1%) to most positive (100%)
for ε

(n)
− . Within only the largest 15%, 30%, or 45% of

rearrangements for γ (n)
max, ε

(n)
+ , D2(n)

min , and θ
(n)
rel and most neg-

ative 15%, 30%, or 45% of rearrangements for ε
(n)
− , we

compute the mean-squared value 〈(e(n) )2〉, where e corre-
sponds to any of the five rearrangement measures. Next,
we compute the covariance of the rearrangement mea-
sure for each particle pair i and j within the largest
(or most negative for ε

(n)
− ) 15%, 30%, or 45% of
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FIG. 4. Rendering of Sample A with particle-centered regions exhibiting the largest 15% of rearrangements (or most negative 15% for
ε

(n)
− ) by magnitude for six load step increments. (a) γ (n)

max, (b) ε
(n)
+ , (c) D2(n)

min , (d) θ
(n)
rel , and (e) ε

(n)
− . Colors indicate magnitude of normalized

rearrangement from the largest (1%) to the smallest (15%) within the top 15%. Particles centered on local averaging regions for which
rearrangements are calculated are rendered in translucent gray. Particles touching boundaries, included in calculations of local rearrangements
but not featured at the center of local averaging regions, are rendered in translucent blue. Black arrows highlight regions that experience
recurring rearrangements between distinct load step pairs or rearrangement events that span multiple load steps, as described in Sec. III F.

rearrangements with centers separated by less than Rsc in
step s as 〈(e(n)

i − 〈e(n)〉)(e(n)
j − 〈e(n)〉)〉. Finally, we divide the

covariance by the mean-squared value to yield the spatial
correlation coefficient

Scorr (Rsc, s, s + 1) =
〈(

e(n)
i − 〈e(n)〉)(e(n)

j − 〈e(n)〉)〉

〈(e(n) )2〉 . (12)

Figure 7 shows the spatial autocorrelation coefficient for
the top 15%, 30%, and 45% of rearrangements as a function
of Rsc/rp for load step 9 of Sample A [in Figs. 7(a), 7(b), and
7(c)], for load step 8 of Sample B [in Figs. 7(d), 7(e), and
7(f)], and for load step 3 of Sample C [in Figs. 7(g), 7(h),
and 7(i)]. These load steps were chosen arbitrarily but were
found to be representative of the autocorrelation coefficients
for each of the three samples. For load step 9 of Sample
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FIG. 5. Rendering of Sample B with particle-centered regions exhibiting the largest 15% of rearrangements (or most negative 15% for
ε

(n)
− ) by magnitude for five load step increments. (a) γ (n)

max, (b) ε
(n)
+ , (c) D2(n)

min , (d) θ
(n)
rel , and (e) ε

(n)
− . Colors indicate magnitude of normalized

rearrangement from the largest (1%) to the smallest (15%) within the top 15%. Particles centered on local averaging regions for which
rearrangements are calculated are rendered in translucent gray. Particles touching boundaries, included in calculations of local rearrangements
but not featured at the center of local averaging regions, are rendered in translucent blue. Black arrows highlight regions that experience
recurring rearrangements between distinct load step pairs or rearrangement events that span multiple load steps, as described in Sec. III F.

A, rearrangements appear correlated for Rsc < 3rp, which is
expected because local averaging regions used to calculate re-
arrangements around contacting particles (Rsc � 2rp) overlap
and thus share many similar terms in the sums in Eqs. (5), (7),
and (9). For load step 9 of Sample A, rearrangement measures
decay quickly for Rsc > 3rp, suggesting that rearrangements
separated by more than three particle radii do not share similar
magnitudes. The decay is most pronounced for the rearrange-
ments in the top 15% by magnitude. This pronounced decay
can be also found for load step 3 of Sample C. For load step
8 of Sample B and load step 3 of Sample C, similar trends are
observed for most rearrangements in the top 30% and 45%
by magnitude. However, correlations are found to be weaker
for D2(n)

min and θ
(n)
rel even for Rsc < 3rp, suggesting that these

rearrangement measures are highly localized in space to a
greater degree than for Sample A. For all other load steps for
Samples A, B, and C, correlations are either minimal even at
Rsc = 2rp or decay rapidly above Rsc = 3rp, as in Figs. 7(a),
7(b), and 7(c). We conclude from this analysis that a local
averaging region of radius r = 3rp is sufficiently large to

capture local, isolated rearrangements that are not correlated
over larger length scales.

D. Rearrangement correlations within regions

In the original STZ theory, STZ strains are oriented along
the same principal axes as macroscopic stress, which con-
strains their shear and dilational strain coupling [14]. Here
we examine the coupling between local shear and volumet-
ric strain, γ (n)

max and ε
(n)
± , as well as other coocated pairs of

rearrangement measures. We examine this coupling by calcu-
lating the correlation coefficient between rearrangements. In
particular, we first-order rearrangements calculated between
load steps s and s + 1 for a specific sample from largest
(1%) to smallest (100%) for γ (n)

max, ε
(n)
+ , D2(n)

min , and θ
(n)
rel , and

from most negative (1%) to most positive (100%) for ε
(n)
− .

We refer to these ordered rearrangements as e(i, s, s + 1)(n) or
g(i, s, s + 1)(n), where e and g refer to distinct rearrangement
measures. We then compute
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FIG. 6. Rendering of Sample C with particle-centered regions exhibiting the largest 15% of rearrangements (or most negative 15% for
ε

(n)
− ) by magnitude for three load step increments. (a) γ (n)

max, (b) ε
(n)
+ , (c) D2(n)

min , (d) θ
(n)
rel , and (e) ε

(n)
− . Colors indicate magnitude of normalized

rearrangement from the largest (1%) to the smallest (15%) within the top 15%. Particles centered on local averaging regions for which
rearrangements are calculated are rendered in translucent gray. Particles touching boundaries, included in calculations of local rearrangements
but not featured at the center of local averaging regions, are rendered in translucent blue. Black arrows highlight regions that experience
recurring rearrangements between distinct load step pairs or rearrangement events that span multiple load steps, as described in Sec. III F.

ρg
e (s, s + 1) =

∑N%
i=1[e(i, s, s + 1)(n) − 〈e(s, s + 1)(n)〉][g(i, s, s + 1)(n) − 〈g(s, s + 1)(n)〉]√∑N%

i=1[e(i, s, s + 1)(n) − 〈e(s, s + 1)(n)〉]2
√∑N%

i=1[g(i, s, s + 1)(n) − 〈g(s, s + 1)(n)〉]2
, (13)

where N% is the number of rearrangements in the top N% as
ordered by e(n). With ρ

g
e (s, s + 1) computed for each pair of

consecutive load steps (s, s + 1) for all samples, we take an
average to obtain the values shown in Fig. 8.

Figure 8 shows the average ρ
g
e across all samples and load

steps. Some notable coupling between rearrangements can be
observed. For instance, Fig. 8(a) orders regions within a sam-
ple and load step increment by magnitude of γ (n)

max. The curve
with circular symbols in Fig. 8(a) conveys the correlation be-
tween γ (n)

max and ε
(n)
vol in these regions. In other words, the local

regions exhibiting the top 5% of γ (n)
max demonstrate a negative

correlation (coefficient around −0.26) with volumetric strain,

ε
(n)
vol ; this is conveyed by the data point highlighted with an

arrow in Fig. 8(a). This indicates that regions undergoing the
largest shear strains tend to demonstrate volumetric contrac-
tion. On the other hand, correlations between γ (n)

max and D(n)
min or

γ (n)
max and θ

(n)
rel , represented by curves with square and upward

triangular symbols, respectively, are small for regions under-
going the largest shear strains. As another example, Fig. 8(c)
shows that regions exhibiting the largest 5% of D2(n)

min tend to
feature correlations (coefficient around 0.2, black diamonds)
between D2(n)

min and θ
(n)
rel . This correlation grows as we exam-

ine the top N > 5% of rearrangements ordered by D2(n)
min in
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FIG. 7. Spatial correlation coefficient between rearrangements between load steps 9 and 10 of Sample A (top row), load steps 8 and 9 of
Sample B (bottom row), and load steps 3 and 4 of Sample C (bottom row), as described in the text. In all cases, rearrangements are computed
with r = 3rp and correlation coefficients are calculated using Eq. (12). Correlations are plotted as a function of the maximum distance between
rearrangements, Rsc, and by considering only rearrangements within that maximum distance with the largest [(a), (d), (g)] 15%, [(b), (e), (h)]
30%, and [(c), (f), (i)] 45% of rearrangements by magnitude.

Fig. 8(c). As a final example, consider Fig. 8(e), which shows
that regions exhibiting the largest volumetric contraction also
exhibit strong correlations (coefficient around −0.37, blue
circles) with shear strain.

To further examine rearrangement coupling and to distin-
guish features of this coupling that differ between samples,
we next order regions within a given sample and load step in-
crement by local strain εzz(i, s, s + 1) computed using Eq. (5)
from most negative (1%) to most positive (100%). The sum of
all such local strains for a sample and consecutive load step
furnishes the macroscopic strain increment in Fig. 1(e),

�εS
zz(s, s + 1) ≈ 1

Vr

Nr∑
i=1

εzz(i, s, s + 1)Vi, (14)

where Nr is all local regions for which rearrangements are
calculated, Vi is the Voronoi cell volume around a particle in

region i, Vr is the sum of the Nr volumes Vi, and “≈” reflects
the slight deviation of the sum from the global strain because
particles contacting boundaries are not considered as local re-
gions for which rearrangements are calculated [44]. We again
obtain the correlations shown in Fig. 9 by using Eq. (13) with
these ordered regions. Unlike in Fig. 8, we do not average over
all samples but only over all load step increments within sam-
ples. We observe significant differences between samples and
also higher correlation coefficients than when samples were
analyzed together in Fig. 8. In particular, while correlations
between rearrangements ordered by strains in Fig. 9 do not
exceed 0.3 in Sample A, we observe correlations between 0.25
and as high as 0.55 between D2(n)

min and θ
(n)
rel , γ (n)

max and θ
(n)
rel ,

and γ (n)
max and D2(n)

min in Samples B and C for regions with the
most negative εzz(i). This suggests that regions contributing
the most to the macroscopic compaction in Samples B and
C feature correlations between nonaffine displacement and
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FIG. 8. Correlation coefficients between colocated rearrangements in the top N% of all rearrangements for a specific load step, averaging
over all samples and load step pairs, as ordered by (a) γ (n)

max, (b) ε
n)
+ , (c) D2(n)

min , (d) θ
(n)
rel , and ε

(n)
− . In each case the symbols in the legend correspond

to the e and g used in Eq. (13).

FIG. 9. Average correlation coefficients between colocated local strains εzz(i) in the top N% (from greatest to least) and local rearrange-
ments between consecutive load steps for (a) Sample A, (b) Sample B, and (c) Sample C. In each case the symbols in the legend correspond to
the e and g used in Eq. (13).
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relative rotation, and nonaffine displacement or relative rota-
tion and shear strain.

In summary, our most notable findings from this subsection
are that regions exhibiting the largest (by magnitude) shear
strains tend to exhibit non-negligible correlations with the
large dilatational or contractile strains, and regions exhibiting
the largest dilatational or contractile strains (by magnitude)
tend to exhibit non-negligible correlations with the large shear
strains. Similarly, regions exhibiting the largest D2(n)

min tend to
exhibit non-negligible correlations with the large θ

(n)
rel . Fur-

thermore, regions contributing the most to the macroscopic
sample compaction tend to exhibit coupling between non-
affine motion or relative rotation and shear strain, particularly
for Samples B and C.

Despite our observations, the distinct locations of rear-
rangements in Figs. 4–6, and the fact that ρ

g
e remains below

0.55 in Figs. 8 and 9 suggests that although rearrangement
measures are correlated, they provide distinct information
about behavior in local averaging regions. It is most clear from
Figs. 4–6 that extreme values of rearrangement measures,
such as θ

(n)
rel , are able to isolate regions of local deformation

that are not isolated by examining extreme values of D2(n)
min

or ε
(n)
− , and vice versa. To supplement our investigation of

rearrangement coupling in Fig. 9, we next investigate how
regions identified by the largest values of each rearrangement
measure contribute to the macroscopic sample compaction.

E. Contributions of rearranging regions to
macroscopic sample strain

Measures such as D2(n)
min are frequently and effectively used

to identify regions of a material experiencing more nonaffine
motion than surrounding neighborhoods [14,16,43]. It is not
clear, however, how significantly regions with elevated D2(n)

min
magnitudes, or elevated magnitudes of other rearrangement
measures, contribute to macroscopic strain of materials un-
der various boundary conditions. In the idealized form of
the original STZ theory, STZs should account for all of the
inelastic deformation of a solid undergoing pure shear [14].
Quantitative contributions of STZs to inelastic deformation
in various geometries and for various boundary conditions
therefore deserves further study.

Here we examine the contribution of local regions ex-
hibiting specific rearrangements to the macroscopic sample
strain increment. In particular, we first order rearrangements
calculated between load steps s and s + 1 by magnitude, from
largest (1%) to smallest (100%) for γ (n)

max, ε
(n)
+ , D2(n)

min , and θ
(n)
rel ,

and from most negative (1%) to most positive (100%) for ε
(n)
− .

We then select regions exhibiting the largest (or most negative
for ε

(n)
− ) N% to (N + 10)% of rearrangements for each load

step increment, where N varies from 0 to 90 in increments of
10. Let there be Nrr such regions for a given load step incre-
ment and let �εS

zz(s, s + 1) denote the sample strain between
those steps, s and s + 1. The fractional contribution of these
regions to the sample strain increment is given by

ν(e, s, s + 1, N%) ≈
1

Vrr

∑Nrr
i=1 εzz(i, s, s + 1)Vi

�εS
zz(s, s + 1)

, (15)

where εzz(i, s, s + 1) is the particle-centered strain tensor
component zz at the center of region i computed from Eq. (5),
Vi is the rearrangement volume [4/3π (3rp)3], Vrr is the sum
of the Nrr volumes Vi. If all regions exhibit the same strain
(i.e., the deformation is affine or uniform), then ν(e, s, s +
1, N%) = 0.1 for each value of N% in Eq. (15). If, on the other
hand, all macroscopic strain between s and s + 1 is furnished
by the top 10% of rearrangements, ν(e, s, s + 1, 0%) = 1.0
and ν(e, s, s + 1, N%) = 0.0 for all N �= 0.

Figure 10 shows the result of Eq. (15) as a percentage (ν ×
100%). From the leftmost column of Fig. 10, we observe that
regions experiencing the largest 10% of shear strain between
consecutive load steps contribute between 15% and 25% of
the incremental macroscopic sample strain, depending on the
specific sample and load step. Similar trends are observed in
the three rightmost columns of Fig. 10 for rearrangements
ordered by D2(n)

min , θ
(n)
rel , and ε

(n)
− , but to a lesser extent, surpris-

ingly even for ε
(n)
− . The second column in Fig. 10 shows that,

as expected, regions experiencing the largest ε
(n)
+ contribute

the least to incremental macroscopic sample strain. This is
expected because samples undergo macroscopic compaction
in all cases considered here, which are not accommodated at
all by ε

(n)
+ .

We interpret the results of our calculations in this subsec-
tion to suggest that local regions exhibiting the largest shear
strain, γ (n)

max, are those that also contribute most significantly
to the macroscopic sample compaction, at least for the ge-
ometries and boundary conditions considered in this paper.
Regions exhibiting the largest values of D2(n)

min also contribute
more to macroscopic sample strain than expected from an
affine deformation, but do not contribute as significantly as
regions exhibiting the largest shear strains. This finding sup-
ports our approach of evaluating multiple measures of local
rearrangements, each of which contributes in a different man-
ner to the macroscopic strain.

F. Rearrangement repeatability

An important question is whether rearrangements events
can occur repeatedly in a single local region, or whether, once
a rearrangement occurs in a local region, that region can no
longer undergo a rearrangement event. This question is central
to ideas in STZ theory and elastoplastic models; in the latter,
it is hypothesized that local plastic events lead to a complete
relaxation of the local stress [41], thus requiring further strain
or significant activation from nearby plastic events to recur
in the same location. Our measurements allow us to study
the repeatability of rearrangements in local regions; however,
as we will show by the end of this subsection, we do not
have the ability distinguish between events that recur in the
same regions and events that span multiple macroscopic strain
increments. In contrast, in simulations one may examine the
cascade of avalanches by examining progressively finer time
intervals (e.g., [14,43]).

To compute the repeatability of rearrangements, we calcu-
late the autocorrelation of rearrangement magnitude in every
region between steps s and s + 1 (called s1) with rearrange-
ment magnitude in the same region (i.e., having the same
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FIG. 10. Fractional contribution of regions exhibiting the top N% to (N + 10)% of rearrangements [or the most negative N% to most
negative (N + 10)% in the case of ε

(n)
− ] to the macroscopic sample strain, as calculated by Eq. (15) and described in the text. Each curve

represents rearrangements calculated between steps s and s + 1. Curves are labeled by step s in each row. The dashed blue curve represents
the expected distribution in the scenario in which regions featuring rearrangements of all sizes contribute equally to the macroscopic strain.

central particle) between steps s − 1 and s (called s2). We also
repeat this calculation for rearrangement magnitudes between

steps s and s + 1 and those between s − 2 and s − 1 and s − 3
and s − 2 (also called s2). The calculation is performed by

ρ
e(s2)
e(s1) =

∑Nr
i=1[e(i, s1)(n) − 〈e(s1)(n)〉][e(i, s2)(n) − 〈e(s2)(n)〉]√∑Nr

i=1[e(i, s1)(n) − 〈e(s1)(n)〉]2
√∑Nr

i=1[e(i, s2)(n) − 〈e(s2)(n)〉]2
, (16)

where e(i)(n) is a normalized rearrangement around particle
i and Nr is all such rearrangements considered for a given
sample and load step. Figure 11(a) shows the result of this
calculation as a function of the increment in sample strain
between the first load step of s2 and s1. Figure 11(b) shows
the result of the calculation as a function of the hydrostatic
sample stress at the first load step of s1. Dashed lines are least-
squares fits between the correlation coefficients computed
for all possible pairs s1 and s2 and �εS

zz [Fig. 11(a)] or σV
h

[Fig. 11(b)].
In Fig. 11(a) we observe that strain-based rearrangements

(γ (n)
max, ε

(n)
+ , and ε

(n)
− ) either recur in a region when incremental

strains are close to zero, or occur over multiple sample strain
increments. These two scenarios are not distinguishable from
our data. As sample strain increases between the first step
of the two strain increments from which rearrangements are
calculated, the autocorrelation decreases for all rearrangement
measures. The measures D2(n)

min and θ
(n)
rel do not possess a cor-

relation greater than about 0.3, suggesting that they are either

less likely to recur in a region or occur over smaller sample
strain increments. Further correlation analysis of ρ

e(s2)
e(s1) with

�εS
zz in Fig. 11(a) is carried out for each rearrangement mea-

sure e and yields correlation coefficients of 0.47, 0.52, 0.41,
0.36, and 0.38 for γ (n)

max, ε
(n)
+ , D2(n)

min , θ
(n)
rel , and ε

(n)
− , respectively,

all with p values less than 10−4. Correlation analysis of ρ
e(s2)
e(s1)

with σV
h yields coefficients of −0.47, −0.55, −0.06, 0.06, and

−0.52 for γ (n)
max, ε

(n)
+ , D2(n)

min , θ
(n)
rel , and ε

(n)
− , respectively, all with

p values less than 10−4.
In Fig. 11(b) we observe that strain-based rearrangements

(γ (n)
max, ε

(n)
+ , and ε

(n)
− ) either recur in a region when hydrostatic

sample stress is high, or occur over large sample strain in-
crements. Again, these two scenarios are not distinguishable
from our data. The autocorrelation again decreases for all
rearrangement measures as sample stress decreases. Again,
the measures D2(n)

min and θ
(n)
rel have lower fitted correlation co-

efficients (dashed lines), below about 0.2, suggesting they are
not highly dependent on σV

h .
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FIG. 11. Autocorrelation between rearrangement magnitudes
calculated between load step pairs s1 and s2 using Eq. (16), as
explained in the main text, plotted as a function of (a) �εS

zz between
the first load step of pairs s1 and s2 and (b) σV

h in the first step of s1.

The question of whether a rearrangement event relaxes lo-
cal stress and rearrangements local structure in a manner that
reduces the likelihood of subsequent rearrangements in that
neighborhood is critical for the construction of elastoplastic
theories of flow (e.g., [41]). We conclude that we do not have
sufficient detail from our measurements to provide a definitive
answer to this question, but our results suggest that local
rearrangements may recur in the same local regions over small
strain increments or occur over multiple strain increments, at
least in the geometries and for the boundary conditions studied
here. This conclusion is further supported by visual analysis
of the rearrangements provided in Fig. 4–6 and discussed in
Sec. III C.

G. Dependence of rearrangements on stresses and structure

A striking finding from recent research on rearrangements
in amorphous and granular materials is that the location and
magnitude of rearrangements may be predicted accurately
with only measures of local structure [4,8,45]. Here we show
that for Samples A and B, we observe only a weak dependence
of local rearrangement on local stress prior to rearrangement
and a stronger dependence on local structure; however, we
stop short of performing any machine learning for “softness,”
as was done in [45].

We compute the correlation of the stress in a region with
the magnitude of a rearrangement event by first ordering rear-
rangements for a specific sample and load step increment s to
s + 1 by magnitude, from largest (1%) to smallest (100%) for
γ (n)

max, ε (n)
+ , D2(n)

min , and θ
(n)
rel , and from most negative (1%) to most

positive (100%) for ε
(n)
− . Within the regions corresponding

to the largest N% rearrangements, we then consider three
measures, σ , of the local stress in the region at load step s: the
hydrostatic stress, σ (n)

h , the angle between the maximum shear
stress and strain directions, θ

τmax(n)
γmax , and the maximum shear

stress, τ (n)
max. For θ

τmax(n)
γmax , γmax is computed between steps s − 1

and s. Like the rearrangements, the stress measures are also
normalized in each sample and load step by subtracting their
mean and dividing by their standard deviation, as in Eq. (11)
for e. We compute the correlation between the stress measure
σ at step s with the rearrangement magnitude between s and
s + 1 by

ρ
e(s,s+1)
σ (s) =

∑N%
i=1[e(i, s, s + 1)(n) − 〈e(s, s + 1)(n)〉][σ (i, s)(n) − 〈σ (s)(n)〉]√∑N%

i=1[e(i, s, s + 1)(n) − 〈e(s, s + 1)(n)〉]2
√∑N%

i=1[σ (i, s)(n) − 〈σ (s)(n)〉]2
, (17)

where N% is the number of rearrangements in the top N%
as ordered by magnitude of rearrangement measure e(s, s +
1)(n). Figure 12 shows the correlation coefficients calculated
using Eq. (17). The striking finding from this figure is that
stress immediately prior to rearrangements it not noticeably
correlated with rearrangement magnitude as measured by any
of the five rearrangements we consider here. On the other
hand, we repeated the calculation of Eq. (17) but by replacing
stress measures σ by local porosity in an averaging region,
φ, which is calculated by the total volume of voids (volume
minus grain volume) in the region divided by the total volume
of the region. The resulting correlations, ρ

e(s,s+1)
φ(s) , are shown

in Fig. 13.
Unlike in Fig. 12, in Fig. 13 we observe moderate cor-

relations between local porosity in a region in step s and
rearrangement between steps s and s + 1. The correlations
coefficients range from 0.2 to 0.3 for the largest values
of D2(n)

min and ε
(n)
+ for Samples A and C, are around 0.2

for D2(n)
min for Sample B. Other rearrangements feature lower

correlation coefficients with porosity immediately prior to
rearrangements.

IV. DISCUSSION AND CONCLUSIONS

We systematically studied local rearrangements in three
samples of deforming 3D granular materials by using in situ
x-ray measurements of particle positions and stresses. We de-
fined five distinct rearrangement measures and examined their
statistics, interrelationships, contributions to macroscopic de-
formation, repeatability, and dependence on local structure
and stress. The most significant findings of our study are that
(1) local rearrangements are correlated at a scale of about
three to four particle diameters, (2) rearrangements exhibit
volumetric strain-shear strain and nonaffine displacement-
rotation coupling, (3) rearrangements exhibit correlations that
suggest either memory effects (i.e., rearrangements can occur
in the same location twice) or that individual rearrangement
events may occur over multiple increments of sample strain,
and (4) rearrangements show little dependence on local stress
but correlate with quantities describing local structure.

The finding that rearrangements are correlated at a scale of
three to four particle diameters is consistent with prior work
in metallic glasses [14], colloidal glasses [5], and granular
materials [8]; however, while prior studies primarily examined
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FIG. 12. Correlation between local stress measures at load step s, σ (s) and local rearrangements between load steps s and s + 1, as
calculated by Eq. (17) and described in the text. The top row shows results for Sample A, and the bottom row shows results for Sample B.
Stress measures are (a, d) hydrostatic sample stress, σ

(n)
h , (b, e) the angle between the maximum shear strain and stress directions, θτmax (n)

γmax , and
(c, f) the maximum shear stress, τ (n)

max. In all cases, rearrangements are considered only in the top N%, as ordered from largest (1%) to smallest
(100%) for γ (n)

max, ε
(n)
+ , D2(n)

min , and θ
(n)
rel and from most negative (1%) to most positive (100%) for ε

(n)
− .

macroscopic pure or simple shear, we have shown here that
this finding also holds for confined geometries in uniaxial,
hydrostatic, and triaxial compression (Samples A, B, and C,
respectively).

The coupling between volumetric and shear strain of in-
dividual regions experiencing rearrangements is related to
assumptions of STZ theories [14] and deserves further study
in other loading geometries. Our analysis suggests that al-

though such a coupling exists, there is a broad distribution of
event types with no single event being “typical,” as reflected
by the low correlation coefficients in Figs. 8 and 9 and dis-
cussed in Sec. III D.

Our analysis suggests that rearrangements, as measured by
local strain (γ (n)

max, ε
(n)
+ , and ε

(n)
− ), either can recur in the same

location twice or can occur over multiple quasistatic strain
increments. Rearrangements measured by D2(n)

min or θ
(n)
rel appear

FIG. 13. Correlation between local porosity at load step s, φ(s) and local rearrangements between load steps s and s + 1, as calculated by
Eq. (17) and described in the text. Results are averaged for all consecutive load steps of (a) Sample A, (b) Sample B, and (c) Sample C. In all
cases, rearrangements are considered only in the top N%, as ordered from largest (1%) to smallest (100%) for γ (n)

max, ε
(n)
+ , D2(n)

min , and θ
(n)
rel and

from most negative (1%) to most positive (100%) for ε
(n)
− .
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to be more localized in sample strain and are less likely to
occur over multiple quasistatic strain increments. This find-
ing supports the notion that our five rearrangement measures
offer distinct views of the nature of local deformation ac-
commodating macroscopic strain. We save for future work
the study of whether individual rearrangements are reversible
under reversals of strain or repeatable under strain cycles at
certain strain magnitudes, which may provide further insight
into strains required for retention of “memory” and transitions
to “chaotic” behavior (e.g., see [46–48]).

Finally, our analysis suggests that no single stress or local
structure measure is significantly correlated to rearrangement
magnitude, although local porosity did appear to correlate
more highly than local hydrostatic or shear stress. This find-
ing may reflect resolution limitations of stress measurements
by 3DXRD, but may also suggest a more complex set of
structure indicators is needed to predict rearrangement loca-
tion and magnitude. The latter idea is aligned with recent
work showing that local structure indicators like “softness,”
a machine-learned function of pair-correlation functions, or
steric bond order do provide very accurate predictions of
local rearrangement location and magnitude [4,8,45]. We save
application of those tools to our data for future work.

We conclude here by noting that our measurements provide
a unique, experimental view of local rearrangements in 3D
granular materials in various geometries and under various
loading conditions. Our results highlight the various roles of

local rearrangements and their coupling in furnishing macro-
scopic strain. Our findings also contribute to the ongoing
search for a combination of structural defects and stress states
that promote local rearrangements in granular and amorphous
materials.
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