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Lifespan dynamics of cluster conformations in stationary regimes in granular materials
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We examine stationary regimes in granular materials from a dynamical systems theory perspective. The
aim is to enrich the classical view of the critical state regime in granular materials, and more broadly, to
improve the fundamental understanding of the underlying mesoscale mechanisms responsible for macroscopic
stationary states in complex systems. This study is based on a series of discrete element method simulations, in
which two-dimensional assemblies of nonuniformly sized circular particles are subjected to biaxial compression
under constant lateral confining pressure. The lifespan and life expectancy of specific cluster conformations,
comprising particles in force chains and grain loops, are tracked and quantified. Results suggest that these
conformational clusters reorganize at similar rates in the critical state regime, depending on strain magnitudes
and confining pressure levels. We quantified this rate of reorganization and found that the material memory
rapidly fades, with an entirely new generation of force chains and grain loops replacing the old within a few
percent strain.
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I. INTRODUCTION

Stationary regimes exist in a great variety of complex
systems, which comprise large numbers of interacting units
[1–3]. At the macroscopic scale, such systems may be char-
acterized by statistical descriptors that remain constant over
time, while underlying local scale interactions between com-
ponents continually change. In the case of granular materials,
where the internal degrees of freedom are large, a multitude
of conformations (arrangements of particle structures) and
conformational transitions [4–12] exist for which the macro-
scopic stress and porosity remain constant under continuous
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shearing. Such macroscopic states, called critical states (CSs)
in the geomechanics community, form the focus of critical
state theory (CST) [13–15], which stands as a cornerstone of
constitutive theory for granular materials. Constitutive laws
built on CST are, however, phenomenological and cannot
account for the underlying conformational transitions which
are responsible for the emergence of critical states. In this
respect, only multiscale models may capture the underlying
microscale detailed balance. But, many aspects of these tran-
sitions remain poorly understood, and no multiscale model
exists in which (i) the minimal set of conformational tran-
sitions responsible for the emergence of critical states, and
(ii) the rate of reorganization are embedded. Indeed, novel
structures, transitions, and regimes are still being uncovered
in granular materials under shear, mostly thanks to the use
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of discrete element modeling (DEM), as well as advanced
experimental equipment [16].

One line of advance, which is pursued in this study, is to
adopt a dynamical systems theory (DST) approach to improve
the fundamental understanding of the critical state by focusing
on conformational transitions from the perspective of two
important classes of mesostructures, namely force chains and
grain loops [4–6] (see the definitions in Appendix B). Here
we similarly employ a DST approach to uncover insights on
these structures’ lifespan dynamics. Our approach can help
enrich multiscale constitutive models, such as the promising
H-model [17], which can incorporate the physics of grain
loops and force chains to the extent that the emergent critical
states can be reproduced. More broadly, a proper understand-
ing of the birth-death dynamics of these structures benefits a
gamut of applications where granular materials are subjected
to shear, including the reduction of energy consumption and
greenhouse gas emissions in processes such as comminution
[18,19], the discovery and design of granular materials with
enhanced properties, and geohazard forecasting [20], to name
a few examples.

Prior studies have shown that the emergent mesostruc-
tures of force chains and grain loops are important building
blocks for self-organization in two-dimensional (2D) and
three-dimensional (3D) systems [5,6,21–24]. Prior work has
highlighted that some statistical descriptors of the microstruc-
ture (e.g., fabric tensor, proportions of chained particles,
proportions of the different categories of loops, etc.) reach
constant values at the critical state [22,25–30]. Indeed, birth-
death dynamics and related concepts such as “lifespan” are a
promising way to think of the critical-state regime. Granular
shear simulations and experiments, including those focusing
on stick-slip dynamics, have shown that this regime is gov-
erned by the competing mechanisms of growth/birth versus
collapse/death of force chains, and these events drive evolu-
tion towards, and during, stationary states of systems under
shear [4,5,31–33]. Experimental evidence of detailed balance
in sheared dense planar granular systems was recently re-
ported by Sun et al. [34]. On the other hand, a DST analysis
of DEM simulations for a 3D system in the critical-state
regime uncovered bistable dynamics [5], which is governed
by broken detailed balance and underlying conformational
transitions having connections to the rattler dynamics reported
by Wautier et al. [35]. Despite the significant attention paid
to the topic, the following open questions that arise from all
these studies remain: Why do granular systems evolve towards
a stationary limiting state under continued shear? What mech-
anisms attract the system towards the critical state?

To quantify whether jamming dominates unjamming in
evolving systems, the biology-inspired concepts of lifespan
and life expectancy are particularly useful. Starting from
a reference microstructure conformation, the lifespan of a
mesostructure corresponds to the “time” it has continuously
existed since its formation. Its life expectancy corresponds
to the remaining time it will survive before disappearing. By
comparing the distribution of lifespans and life expectancies,
one can assess whether the birth rate of a particular class
of mesostructure dominates its death rate. These concepts
have been applied to granular materials; see, for instance,
Refs. [30,36,37]. Indeed, these concepts enable the quantifi-

FIG. 1. Quasi-2D DEM sample for biaxial tests where loading
parameters are ε2 and σ1. The direction 2 is always the vertical
loading control direction at the representative element volume (REV)
scale.

cation of the renewal rate of the microstructure in both 2D
and 3D conditions under an external forcing time parameter.
Specifically, this quantification measures how fast the system
is losing the memory of its past state under an external forcing.
Consequently, the concepts of lifespan and life expectancy
are particularly well adapted to treat granular materials from
the perspective of dynamical systems with memory. In all
these contexts, the time may correspond to physical time or
any relevant forcing parameter, depending on the system of
interest (for biaxial tests considered in the present study, the
axial strain is the time parameter).

This paper is organized as follows. In Sec. II, the me-
chanical responses of granular samples under biaxial tests
with DEM are analyzed. This is followed in Sec. III by a
discussion on the critical state from a stationarity perspective.
In this respect, the concepts of lifespan and life expectancy
of mesostructures are applied to force chains and grain loops.
Birth and death rates of chained particles and grain loops are
analyzed in Sec. IV. The relations between microstructure
dynamics and loading conditions are presented in Sec. V.

II. NUMERICAL SETUP

The discrete element method (DEM) proposed in Ref. [38]
is widely used to simulate granular materials. The open-source
DEM software YADE [39] is used in this study. The sample
considered is a quasi-2D granular sample subjected to biaxial
loadings under constant lateral pressure. The assembly con-
sists of a single layer of 20 000 spherical particles contained
in planar displacements within a 1-m-wide domain per 1.5 m
high, as shown in Fig. 1. The particle radii are uniformly
distributed with an average diameter d50 = 0.008 m and a
size ratio dmax/dmin = 2. The contact law is described by a
standard cohesionless elastofrictional law. The contact param-
eters between two grains contain normal and tangential linear
springs of respective stiffness kn and kt , as well as a sliding
limit characterized by a friction angle φ = 35◦. E = kn/Ds,
given as 300 MPa, where Ds = 2R1R2/(R1 + R2), and R1, R2

are the radii of particles.
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TABLE I. Different initial confining levels.

Normalized initial
confining pressure A B C

P0 1.3 × 10−4 3.3 × 10−4 1.3 × 10−3

For sample preparation, two schemes can be used to ob-
tain an isotropic compression of the sample in YADE DEM:
the boundary moving scheme and the internal compacting
scheme. In this study, particles are homothetically enlarged,
at first, while keeping the boundary walls fixed to generate a
preliminary sample with a certain level of confining pressure.
Then, to get closer to an experimental setup, the sample un-
dergoes an isotropic consolidation by imposing an equivalent
incremental strain on the boundaries in the vertical and lateral
directions up to a specific consolidation state. Three confin-
ing levels are considered, characterized by a dimensionless

quantity P0 representing the ratio p0

E = σ 0
1 +σ 0

2
2E of the confining

pressure over the stiffness, as shown in Table I. They are
labeled as A, B, and C from the lowest to the highest. To
prepare dense and loose samples, the contact friction angle
is set to 2◦ and 35◦, respectively, during the confining stage.
Dense and loose samples are prepared and named as indicated
in Table II. The initial void ratio e0 and the ratio 〈un〉/d50 of
the average contact overlap and particle size of the samples
prepared are presented. More details about sample preparation
can be found in [8,25].

The stress and strain states are described using dimen-
sionless quantities, the normalized deviatoric stress Q being
defined as Q = (σ2 − σ1)/E , and the volumetric strain being
defined as εv = ε1 + ε2, where σ1 and σ2 are the principal
stresses, and ε1 and ε2 are the principal strains, as shown in
Fig. 1. Axes 1 and 2 refer to lateral and vertical directions,
respectively. Note that stresses σ1 and σ2 are computed in
quasi-2D DEM simulations by introducing an out-of-plane
dimension equal to the largest grain diameter (dmax). If full 2D
framework were preferred, the stress σ would be expressed
in N/m and the dimensionless stresses P0 and Q should be
normalized by Edmax instead of E .

III. THE SO-CALLED CRITICAL STATE

In the literature, it is common to report fluctuations of the
deviatoric stress and the volumetric strain around steady-state
values rather than a smoothly constant evolution under biax-
ial loading. The evolution of micro and meso indices such
as fabric tensor and ratio of loops population also exhibits
fluctuations at the critical state. In this section, macroscopic
stress and strain are considered in relation to the evolution of
force chains and grain loop populations, respectively.

FIG. 2. Evolution of normalized deviatoric stress Q and volumet-
ric strain εv with respect to the axial strain ε2 along biaxial tests. Note
that soil mechanics convention is adopted with positive compression
and positive contraction.

A. Stress-strain analysis

Macroscopic responses of the tested samples are illustrated
in Fig. 2, in which normalized deviatoric stress Q and volu-
metric strain εv evolve with respect to the axial strain ε2. The
figure shows typical stress and strain responses of dense and
loose samples under the biaxial loadings.

In the dense cases, the normalized deviatoric stress Q in-
creases at first and then decreases to a stationary value, while
the sample contracts first and then dilates before reaching a
steady state. With an increase in the confining pressure, there
is an increase in the shear strength and a decrease in the dila-
tion. On the other hand, the normalized deviatoric stress and
volumetric strain in the loose samples evolve monotonously
in the course of loading. It can be observed that, at the critical
state, both the normalized deviatoric stress Q and the volumet-
ric strain εv fluctuate around a constant value. Based on these
mechanical responses, both the stationarity and the dynamical
properties of the CS will be investigated in a micromechanical
framework.

The incremental deviatoric strain distribution can be ana-
lyzed to characterize kinematic patterns, as introduced in the
literature [30,40]. The maps are computed based on the inter-
polation of particle incremental displacements over a meshed
sample [30,41]. When dense samples are considered, shear

TABLE II. Initial void ratios e0 and average overlaps in prepared samples.

Sample A-loose B-loose C-loose A-dense B-dense C-dense

e0 0.267 0.261 0.234 0.197 0.191 0.164
〈un〉/d50 9.2 × 10−4 2.1 × 10−3 7.6 × 10−3 6.6 × 10−4 1.6 × 10−3 5.6 × 10−3
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(a) (b)

FIG. 3. Incremental deviatoric strain (IDS) maps at the critical
states, estimated for axial strain increments of 0.1%. Two samples are
considered: (a) B-dense sample (ε2 = 6.1%) and (b) B-loose sample
(ε2 = 8.02%).

bands may develop, traversing the whole sample as shown in
Fig. 3. It is the spatial domain within shear bands for dense
cases and the whole sample for loose cases that are considered
in this study [26,30]. The spatial extension of the shear band
was determined based on the method proposed in [41].

B. Force chains and normalized deviatoric stress

Force chains have attracted considerable interest due
to their significant role in force transmissions in granu-
lar systems [23,42]. To consider force chains as individual
mesostructures (and not as a network of strong contacts), the
following three conditions were proposed by Peters et al. [43]:

(i) The number of contacting particles in a force chain is
not less than 3.

(ii) The major principal stress in each particle belonging
to a force chain is larger than the averaged assembly particle
major principal stress.

(iii) The major principal stress direction is aligned with the
contact direction with a deviation angle less than 45◦.

In this paper, the particles belonging to force chains are
called chained particles. The proportions of chained parti-
cles is given by rcha = Ncha/Ntot , where Ncha and Ntot are the
number of chained particles and the total number of particles
within the investigated domain, respectively. The ratio within
the shear band r∗

cha and the whole sample rcha are compared
in Fig. 4. It can be seen that the evolution with strain of both
r∗

cha and rcha tends to reach a constant value (with fluctuations)
when the normalized deviatoric stress and the volumetric
strain become constant at CS. r∗

cha is larger than rcha after the
generation of the shear band, with greater fluctuations. This
may result in a stronger rearrangement of chained particles
within the shear band. It is worth noting that the ratio of
chained particles fluctuating around a mean constant value
highlights the fact that important force chain reorganizations
take place at the critical state.

C. Grain loops and volumetric strain

In a 2D granular material, grain loops, enclosed by contact
branches, formed by tessellating the material area. It is usually
categorized according to the edge number (from L3 with three
particles to L6p for loops containing six or more particles),
a factor that has a significant influence on the behavior of
a loop, especially its deformability. The percentage of each
category reaches a steady state that corresponds to the critical
state regime at the sample scale [30]. It is worth noting that
the reason for categorizing L6p is that the percentage of L7p

(percentage of categories with a side number equal to or
greater than 7) evolves in a similar way to that of L6 [30].
In this section, we link the grain loop populations (L3, L4,
L5, L6p) to the volumetric evolution along the biaxial test by
introducing the volumetric strain of the different grain loops.
The incremental strain tensor of each type of loop i can be
expressed as follows:

d ¯̄εLi = 1

|�|
∑

k

∣∣�k
Li

∣∣d ¯̄εk
Li
, i ∈ (3, 4, 5, 6p), (1)

(a) (b)

FIG. 4. Proportions of chained particles. Two samples are considered: (a) B-dense sample and (b) B-loose sample. Note that r∗
cha represents

the value when the spatial domain of a shear band is considered, and rcha represents the value when the whole sample is considered. The
normalized deviatoric stresses are recalled.
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(a) (b)

FIG. 5. Volumetric strain of different types of loops and the global assembly during the biaxial tests in B-dense sample (a) and B-loose
sample (b).

where � is the volume of the global domain considered, and
�k

Li is the volume of a given loop k belonging to the category
Li. The incremental strain d ¯̄εk

Li of each loop k can be computed
assuming a uniform deformation within that loop according to
the strain definition proposed by Liu et al. [41].

The contribution of local incremental strains to the global
incremental strain can be expressed by Eq. (2):

〈d ¯̄ε〉 = 1

|�|
∫

�

d ¯̄εdS = d ¯̄εL3 + d ¯̄εL4 + d ¯̄εL5 + d ¯̄εL6p . (2)

Figure 5 presents the volumetric strain of each category
of loops and their integration during the biaxial loading as
well as the evolution of the global volumetric strain. Fig-
ure 5 shows a good agreement between the macroscopically
computed volumetric strain and the mesoscopically averaged
one. Despite reaching a zero volume change on average, it

can be seen that each loop category reaches constant dilative
or contractive rates at the critical state. The dilatancy from L3,
L4, and L5, and the contractancy from L6p, should be related
to the inherent property of each loop: the grains belonging to
Li (i � 5) have limited space to move inward to induce con-
tractancy, whereas L6p loops have larger void space to move
inward. As a result, the critical state can only be achieved from
a collective process by loops transforming from one category
to another.

IV. HIDDEN DYNAMICS AT THE CRITICAL STATE

As highlighted in the previous sections, the jamming and
unjamming behavior at the critical state (CS) includes dy-
namic mechanisms at the mesoscale [4,31,33,34]. In this
respect, the dynamical rates are investigated in this section
through computing the lifespan and life expectancy of chained

(a) (b)

FIG. 6. Lifespan and life expectancy probability density functions (PDFs) of chained particles in two samples: (a) B-dense sample where
only the spatial domain within the shear band is considered, and (b) B-loose sample with the whole domain considered. For each sample,
two reference conformations belonging to the stationary regime are adopted, labeled as M and N. The normalized deviatoric stress curve
(dot-dashed line) and the volumetric strain (dashed line) curves are recalled.
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FIG. 7. The averaged PDFs of chained particles with respect to
the incremental strain evolution (�ε2), over six microstructure con-
formations at different strain levels belonging to the critical regime
(ε2 = 0.0610, 0.0708, 0.0806, 0.0904, 0.1002, and 0.1100 for the
B-dense sample, and ε2 = 0.0605, 0.0708, 0.0802, 0.0906, 0.1005,
and 0.1106 for the B-loose sample).

particles and grain loops. The incremental evolutions of the
sets of chained particles and grain loops are checked for small
axial strain increments of δε2 = 0.1%.

A. Generating and vanishing process of chained particles

All chained particles are tracked from birth, i.e., the first
time they become part of a given force chain, to death, i.e.,
the first time they no longer belong to any force chain. This
enables us to construct probability density functions (PDFs)
for the lifespan and the life expectancy of chained particles at
any time of the simulation. The lifespan and life expectancy
PDFs are displayed in Fig. 6 for two arbitrary microstructure
conformations (M and N) in the critical state regime. Because
the sample is known to experience shear band localization (see
Fig. 3), the analysis is restricted to particles belonging to the
shear band in Fig. 6.

At the reference conformation M (N) in Fig. 6(a), the
PDFs for the lifespan and life expectancy demonstrate the
generating and vanishing processes of chained particles within
the shear band domain. Few chained particles existing at M
or N come from the initial conformation, which proves that
the initial arrangement of particles has been erased when the
sample reaches CS. The symmetric shape of the lifespan and
life expectancy PDFs shows that the rearrangement of chained
particles reaches an equilibrium at CS, which is expected for
a stationary regime. More interestingly, the shape of the PDFs
for the reference conformations M and N is almost the same.
Force chains are always rearranging at the critical state, and
the rate of renewal of the set of chained particles is constant.
These features can be observed in B-loose with lower renewal
rates from Fig. 6(b). The PDFs have been averaged to get rid
of statistical noise coming from the finite size of the chained
particle population at different strain levels belonging to the
critical regime (ε2 = 0.0610, 0.0708, 0.0806, 0.0904, 0.1002,
and 0.1100 for the B-dense sample, and ε2 = 0.0605, 0.0708,
0.0802, 0.0906, 0.1005, and 0.1106 for the B-loose sample).
Since force chains have a limited life duration at the critical

FIG. 8. The strain magnitudes within the shear band domain
(B-dense*), the whole dense sample (B-dense), and the whole loose
sample (B-loose). The strain magnitude ratio between B-dense* and
B-dense is around 2.8.

state, the six microstructure conformations can be considered
as statistically independent (not correlated), which allows us
to build a single PDF from the six data sets. The corresponding
lifespan and life expectancy PDFs are presented in Fig. 7 with
respect to the incremental evolution of the axial strain (�ε2).
Thus, �ε2 at the current state is 0. �ε2 > 0 and �ε2 < 0
correspond to the lifespan and life expectancy of chained
particles, respectively.

The renewal rate in dense and loose samples appears to
be different at first glance, which would contradict the exis-
tence of a unique critical state regardless of the initial sample
density. To find the origin of the apparent faster renewal
rate within the shear band in the dense sample, it is mean-
ingful to compare the incremental strain magnitude dεm =√

dε2
1 + dε2

2 in the shear band domain for the dense sample to
the incremental strain magnitude in the whole sample domain
for the loose sample. Similar to the incremental strain of
each type of loops computed in Sec. III C, the incremental
strain within the shear band can be computed by averaging

FIG. 9. PDFs for chained particles from the B-loose sample and
from the B-dense sample stretched by the strain magnitude ratio 2.8.
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(a)

(b)

FIG. 10. Lifespan and life expectancy PDFs of grain loops in two samples with respect to the axial strain ε2: (a) B-dense sample where
only the spatial domain within the shear band is considered, and (b) B-loose sample with the whole domain considered. For each sample,
two reference conformations belonging to the stationary regime are adopted. The normalized deviatoric stress curve (dot-dashed line) and the
volumetric strain (dashed line) curves are recalled in the subfigure of Loop 4.

the incremental strains of loops within the shear band over
the area of the shear band. When averaged over the whole
sample domain, dεm is the same in dense and loose samples
at the critical state, as shown in Fig. 8. However, because
of the strain localization in the dense sample, a larger dε∗

m
develops within the shear band. The ratio between 〈dε∗

m〉 and

〈dεm〉 at CS inside the shear band is around 2.8. In other
words, an axial strain increment of 1% from the boundaries
of the sample imposes a strain increment of 2.8% in the shear
band domain because of strain localization. This means that
the actual forcing parameter (the “time”) inside the shear
band is 2.8 times faster than for the whole sample. As a
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FIG. 11. The averaged PDFs of grain loops with respect to the
incremental strain evolution (�ε2), over six microstructure confor-
mations at different strain levels belonging to the critical regime
(ε2 = 0.0610, 0.0708, 0.0806, 0.0904, 0.1002, and 0.1100 for the
B-dense sample, and ε2 = 0.0605, 0.0708, 0.0802, 0.0906, 0.1005,
and 0.1106 for the B-loose sample).

result, the axial strain applied at sample scale is not the right
forcing parameter in the dense case as the strain is 2.8 times
more intense in the shear band domain. To account for this
observation, we need to stretch the curves of B-dense* by
the ratio 2.8 to make the lifespan and life expectancy PDF
comparable between the dense and loose sample cases. Then,
it can be observed in Fig. 9 that the PDF in dense and loose
samples are coinciding. Similar results can be observed for
different confining pressure levels, as shown in Figs. 20 and 21
in Appendix A. It can be concluded that the strain magnitude
(observed in the homogeneous domain of the samples) is the
major factor affecting the rate of rearrangement of chained
particles. The fact that the PDFs coincide also demonstrates
that the strain rate does not affect the reorganization process
(at least for the order of magnitude considered). We can also
conclude that the uniqueness of the critical state (i.e., regard-
less of the initial density, the statistical descriptors converge
towards the same value in biaxial tests of similar confining
pressure) that holds for statistical descriptors also holds for
the underlying dynamical processes.

B. Generating and vanishing process of grain loops

To further understand the critical state dynamics, the gen-
erating and vanishing of grain loops are analyzed for loops
composed of three, four, five, and six or more particles. Lifes-
pan and life expectancy PDFs for grain loops are computed.
Similar observations as reported in the previous subsections
are visible in Figs. 10–12: (i) PDFs show symmetrical shapes
at CS, which suggests that birth and death rates of grain loops
are equal at CS; (ii) PDFs within the shear band from B-dense
sample coincide with those obtained in the loose case after
being stretched by the appropriate ratio of 2.8. These results

FIG. 12. PDFs for grain loops from the B-loose sample and from
the B-dense sample stretched by the strain magnitude ratio 2.8.

extend the conclusion drawn by Zhu et al. [30], i.e., that
the whole loose sample and the inner part of the shear band
of the dense sample share the same statistical distribution
of mesostructures once the critical state regime is reached.
Based on Figs. 6–12, a novel way for understanding CS from
the perspective of a mesoscale dynamics can be inferred: the
critical state results from the generating and vanishing of
mesoclusters until a dynamic equilibrium is reached under
continuous shearing. Even though dynamic rearrangements
permanently occur, at any time, the material admits the same
fabric characterized by the fabric tensor, the distribution of
loop orders, etc. The particle rearrangements at the critical
state can be quantitatively characterized by the lifespan and
life expectancy of force chains and grain loops. These obser-
vations still hold when other confining pressure levels (A and
C) are considered, as shown in Appendix A.

V. MICROSTRUCTURE REORGANIZATION DYNAMICS
UNDER DIFFERENT CONFINING PRESSURE LEVELS

In this section, the influence of the confining pressure on
the dynamics in the three loose samples is analyzed. As shown
in Figs. 13 and 14, the renewal rate decreases with the increase
in the confining pressure. The increase in confining pressure
helps the mesostructures live longer (with respect to the forc-
ing parameter of the system, i.e., the incremental axial strain).
This is consistent with the fact that larger confining pressure
leads to larger elastic energy storage and larger overlap at
contacts, which delays contact opening and contact sliding.

To quantify the rate of microstructure reorganization with
respect to the axial strain, it is interesting to propose a fit for
the PDFs presented so far. As a first simple guess, an expo-
nential fit with one characteristic strain may been proposed
as PDF(�ε2) = a

εc
e−|�ε2|/εc. εc accounts for the typical size

of the axial strain increment �ε2 needed to renew the whole
mesostructures. The smaller εc is, the faster is the microstruc-
ture renewal under the external forcing �ε2. However, such a
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FIG. 13. Lifespan and life expectancy PDFs for chained particles
under the different confining pressure levels with samples A-loose,
B-loose, and C-loose considered.

fit cannot capture well the shape of the whole PDFs. Depend-
ing on εc, the fit is able to account either for the beginning or
for the tail of the PDFs. This observation motivated the use of
a double exponential fit in the following form:

PDF(�ε2) = Pc
1

εc1
e− |�ε2 |

εc1 + (1 − Pc)
1

εc2
e− |�ε2 |

εc2 , (3)

where εc1 and εc2 (εc1 < εc2) correspond to two characteristic
strains accounting for the dynamic evolution of the system.
εc1 and εc2 account for the typical amplitude of the axial
strain increments �ε2 needed to renew the mesostructures on
the short term and long term, respectively. The characteris-
tic probability Pc ∈ [0, 1] can show the relative contribution
of the short- and long-term mechanisms. When Pc < 0.5, it
is the long-term mechanism that dominates; the short-term
mechanism will be more important when Pc > 0.5; the two

FIG. 14. Lifespan and life expectancy PDFs for grain loops with
respect to the incremental strain evolution (�ε2) under the different
confining pressure levels with samples A-loose, B-loose, and C-loose
considered.

FIG. 15. Double-exponential fits given for the chained particle
PDFs with respect to the absolute value of incremental evolution
|�ε2| under the different confining pressure levels.

mechanisms are evenly matched when Pc = 0.5. Figures 15
and 16 show that a double exponential fit is able to account
for the shape of all the lifespan and life expectancy PDFs. The
values of εc1 and εc2 for different confining pressure levels are
presented in Table III and shown in Fig. 17 with respect to the
normalized critical mean stress P = σ1+σ2

2E .
As shown in Table III and Fig. 17, large loops (L5 and

L6p) live shorter (faster reorganization) than small loops (L3

and L4) and force chains. It is consistent with the assump-
tion that loops connected to force chains open prior to force
chain bending [44]. When it comes to the effect of confining
pressures, the renewal rate of mesostructures which can be
characterized by 1

εc1
and 1

εc2
decreases with the increase in

FIG. 16. Double-exponential fits given for the loop PDFs with
respect to the absolute value of incremental evolution |�ε2| under
the different confining pressure levels.
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FIG. 17. Two characteristic strains (εc1 and εc2), the characteristic probability (Pc), and the ratio εc1
εc1

with respect to the normalized mean

stress (P) at the critical state. The normalized critical mean stress under the different confining pressure levels (A, B, and C) is 1.97 × 10−4,
4.77 × 10−4, and 18.63 × 10−4, respectively.

the confining pressure. This effect differs according to the
type of mesostructures. L3 and L4 seem to be more sensi-
tive to the confining pressures, especially in the long-term
mechanism, which could be due to the fact that these small,
less compressible loops can store larger (stabilizing) elastic
energy before breaking. On the other hand, large loops (L5

and L6p) are more compressible, and therefore less sensitive to
confining pressure, as the increase in p does not have as much
stabilization effect as for smaller loops. As for chained parti-

TABLE III. The fitting parameters for different confining pres-
sure levels.

Chained
Sample Parameters particles L3 L4 L5 L6p

A-loose εc1 0.25% 0.30% 0.33% 0.30% 0.25%
εc2 2.29% 1.61% 1.92% 1.81% 1.59%
Pc 0.165 0.229 0.228 0.288 0.290

εc1/εc2 9.02 5.44 5.78 5.97 6.41
B-loose εc1 0.35% 0.43% 0.41% 0.34% 0.34%

εc2 3.30% 2.57% 2.79% 2.40% 2.25%
Pc 0.146 0.205 0.162 0.209 0.271

εc1/εc2 9.35 5.92 6.89 7.03 6.71
C-loose εc1 0.61% 0.77% 0.64% 0.59% 0.50%

εc2 5.33% 5.56% 5.60% 4.35% 3.73%
Pc 0.129 0.124 0.113 0.169 0.209

εc1/εc2 8.76 7.25 8.74 7.41 7.52

cles, even though force chains can share particles with large
loops, their stability (and thus lifespan) is strongly dependent
on the existence of small order loops around them. Thus, the
effect of confining pressure on force chain lifespan stems from
the different responses of loops under the confining pressure
according to their category (small versus large ones), which
may explain why the slope of the εc1 and εc2 for chained
particles is smaller than that for small loops but larger than
that for large loops. In addition, the long-term mechanism
has an increasingly dominant effect, since Pc, always being
less than 0.5, decreases with the growth of critical pressures.
The form of the proposed fit may appear arbitrary at first
glance, but a double exponential PDF is the signature of
the existence of two mechanisms responsible for microstruc-
ture reorganization acting over two different “time” scales.
A first mechanism provokes microstructure reorganizations
over small axial strain scales of typical magnitude εc1, while
a second mechanism induces microstructure reorganizations
over much larger axial strain scales of typical magnitude εc2.
The existence of two reorganization mechanisms is indeed
consistent with the visualization of the incremental deviatoric
strain map in Fig. 3 for the loose sample. The map is far from
being homogeneous over the whole sample domain, and zones
with large increments of deviatoric strain are visible (in the
form of red zones in Fig. 3). Contrary to shear bands, these
zones do not persist when the axial strain increases as shown.
Indeed, these zones may be seen as shear transformation zones
(STZs) [45], and they are characterized by the recent concept
of shear chain [46]. As a result, we conjecture that εc1 relates
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(a) (b)

FIG. 18. Color maps of the lifespan of grain loops for the reference axial strain ε2 = 8.02%. Two thresholds are considered corresponding
to the two characteristic strains: (a) 0.4% and (b) 3%.

to the axial strain needed for a shear transition zone to de-
velop, while εc2 > εc1 corresponds to the axial strain needed
to develop shear transition zones everywhere in the sample
domain. This conjecture can be initially verified by the color
maps of lifespan and life expectancy of loops in the sample
B-loose, as shown in Figs. 18 and 19, respectively.

The short and long thresholds are set to 4δε2 and 30δε2,
respectively. In Fig. 18(a), red loops are newly generated at
the current conformation. The loops that have lived longer
than 4δε2 are filled in gray. Figure 18(a) shows that the
microstructure is experiencing a series of localized reorga-
nizations (visible as clusters of loops of the same colors)
affecting a limited proportion of the sample domain. In the
long term, these series of reorganizations will affect the whole
sample domain as shown in Fig. 18(b), where loops that have

existed not less than 30δε2 are very limited. In Fig. 19(a), gray
loops are those that will live longer than four steps. It can also
be observed in Fig. 19(b) that beyond the long threshold, only
a small part of the loops will still be alive.

VI. CONCLUSION

We revisit the critical state, which has been emphasized
as a stationary state in geomechanics, and we characterize
it using a dynamical system analysis of grain structures and
their rearrangements. We have shown that the critical state
results from a balance between the birth and death of meso-
clusters. We have established that force chains and grain loops
have a regular, short life duration (0.4–3% compared to the
whole 15% loading) at the critical state, corresponding to a

(a) (b)

FIG. 19. Color maps of the life expectancy of grain loops for the reference axial strain ε2 = 8.02%. Two thresholds are considered
corresponding to the two characteristic strains: (a) 0.4% and (b) 3%.
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(a) (b)

FIG. 20. PDFs for chained particles under two confining pressure levels: (a) A, PDFs from the A-dense are stretched by strain magnitude
ratio 1.9; (b) C, the C-dense stretched by 3.2.

rapid fading of the material memory along its loading history.
The critical state “forgot” not just the initial microstructure
conformation but its recent past in a sample under contin-
uous shearing. We have shown that the uniqueness of the
critical state that holds for statistical descriptors also holds
for the underlying dynamical processes. By fitting the data,
we have shown that force chains and loops of different sizes
have different lifespan and life expectancy, which increases
with the normalized mean stress level. Larger loops have a
shorter life due to their deformability, and the force chain life
duration is similar to the life duration of small order loops,
which is consistent with the known relationship between force
chains and their small order supporting loops. Moreover, the
microstructure reorganization has been proved to rely on two
mechanisms that act over very different axial strain incre-
ments. A local mechanism related to sheared mesostructures
provokes a rapid (i.e., for small axial strain increments) re-
organization of the microstructure, while the characteristic
strain that relates to the nucleation of new sheared mesostruc-
tures accounts for the reorganizations over larger axial strain
increments. The recent concept of shear chain [46] may also
shed further light on the elastic and plastic mechanisms re-
sponsible for the observed dynamics of the critical state. The
velocity of strain waves in the sample merits future investiga-
tion, since the dynamic load transfer characteristics can also
be interpreted within the context of wave propagation theory
[47]. In particular, such work may help elucidate whether
the unjammed microstructure retains a partial memory of its
previous jammed state. The findings presented in this paper
also provide further clues on how to explicitly incorporate CS
features in micromechanical constitutive models, as well as to
limit the number of different loading paths needed to construct
the database in data-driven models because of the limited
hysteresis effect. In relation to a particular micromechanical
model, it would be possible to consider the rearrangement
of the hexagonal loop mesostructures relied on within the
H-model [17,48] to achieve a better description of the critical
state, based on the renewal rate of mesostructures as quanti-
fied in this study. Although the present study deals with the
critical state dynamics in granular materials, the concepts and

methodology proposed here are generic and may be applied to
uncover the hidden dynamics of many other complex systems.
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APPENDIX A: COMPLEMENTARY RESULTS
ON CRITICAL STATE DYNAMICS

In addition to the results presented in the main part of the
paper, Figs. 20 and 21 provide complementary results on (a)
the detailed balance achieved at the critical state for varying
confining pressure levels, and (b) the uniqueness of the PDF
for lifespan and life expectancy in dense and loose samples
provided the strain rate is rescaled in the dense case to account
for strain localization.

APPENDIX B: GLOSSARY OF TERMS

In this Appendix, we provide definitions of the main terms
used in this paper.

1. Lifespan and life expectancy

The lifespan of a mesostructure corresponds to the time it
has continuously existed since its appearance, where time here
is characterized by axial strain increments. Life expectancy
corresponds to the remaining time the mesostructure survives
before its disappearance. These concepts can be applied for
mesostructures in both 2D and 3D cases.
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(a) (b)

FIG. 21. PDFs for grain loops under two confining pressure levels: (a) A, PDFs from the A-dense are stretched by strain magnitude ratio
1.9; (b) C, the C-dense stretched by 3.2.

2. Grain loop

Grain loop, enclosed by contact branches, is formed by
tessellating the material area in 2D granular materials. The
term “grain loop” refers here to the concept of minimal cycles
in graph theory. In 2D, grain loops enclose polygons that form
a partition of the sample domain that is able to characterize
the dilatant/contractive behavior of granular materials. Even
if cycles exist in 3D, the bijective link with a partition of the
material volume is lost, which restricts the definition of grain
loops to 2D conditions. Current work is aimed at generalizing
the definition of such mesostructures to both 2D and 3D
conditions [49]. The difference from the minimal cycles in
the literature [22] is that grain loops have the connotation of
volume.

3. Force chain

A force chain consists of a set of particles within a com-
pressed granular material that are held together and jammed
into place by a network of mutual compressive forces [43]. To
consider force chains as individual mesostructures (and not as

a network of strong contacts [42]), the definition used in the
paper includes three thresholds, as detailed in Sec. III B.

4. Critical state

A critical state in soil mechanics is a macroscopic state
where the stress and porosity of a material remain constant
under continuous shearing. In standard soil mechanics, a set of
critical state points forms a line in the (e, p, q) space (e being
the void ratio, p the mean stress, and q the deviatoric stress),
known as the critical state line. From a statistical physics
viewpoint, the critical state is a steady state that relies on
equivalent microstructure conformations. Macroscopic vari-
ables (such as stress or void ratio) computed on these different
microstructure conformations are equal.

5. Conformation

Conformation is used to describe any spatial arrangement
of grains in a given structure, while a conformational transi-
tion is a change in the conformation [4].
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