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Two-dimensional crystalization on spheres: Crystals grow cracked
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Here we study how curvature affects the structure of two-dimensional crystals growing on spheres. The
mechanism of crystal growth is described by means of a Landau model in curved space that accounts for the
excess of strain on crystal bonds caused by the substrate’s curvature (packing frustration). In curved space
elastic energy penalization strongly dictates the geometry of growing crystals. While compact faceted crystals
are observed when elastic energy contribution can be neglected, cracked crystals with ribbonlike forms appear
as the main mechanisms to reduce elastic frustration for highly curved systems.
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I. INTRODUCTION

The growth of a two-dimensional (2D) crystal layer on a
planar substrate is dictated by the competition between an
energy gain, obtained by forming a piece of the equilibrium
crystal, and a line tension penalty due to the interface of the
nuclei with the surroundings [1,2]. This free-energy compe-
tition produces a critical size for crystal growth. Only those
nuclei overcoming this critical size can grow by adding crystal
particles to their surface. Sub-critical nuclei collapse by sur-
face tension. In addition to this simple mean-field description
of the nucleation and growth, some complexities may arise
from different energy exchange mechanisms, limited parti-
cle’s diffusion, and anisotropic nuclei line tension, between
other effects, which can lead to a variety of dynamics and
nuclei shapes [1,2].

On the contrary, it could be simply impossible to grow a
perfect crystal on a curved substrate [3]. This is because the
underlying curvature may induce distortions of the crystal lat-
tice, increasing its strain energy (an effect known as geometric
frustration) [4,5]. In this sense, depending on the underlying
geometry, a crystal may need to be highly deformed to wrap
on the curved surface, increasing thus the elastic energy of
the lattice structure. For example, the free energy of a perfect
circular crystal of size R growing on a sphere of radius a
(spherical cap) has been modeled through the free energy
[6,7]:

�Fcap = 2πRγ − π |� f |R2 + π

384
Y

R6

a4
, (1)

where Y is the two-dimensional Young’s modulus of the crys-
tal, � f is the energy difference between crystal and melt, and
γ is the line tension of the interface between the two regions.

In this equation, the first two terms represent the com-
petition between surface and line tension energies discussed
above. The last term is a free-energy penalization induced
by the substrate’s nonplanar geometry, which inhibits fur-
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ther growth of the nuclei beyond the equilibrium size Req ∼
(� f /Y )

1
4 a [7]. In a planar domain, it is also possible to

frustrate a crystal under stress if the intrinsic curvature is
associated with the interactions of the particles [8].

However, growing nuclei on curved surfaces could reduce
the elastic frustration in two ways. One possibility is by the
inclusion of topological defects while growing [9,10]. This is
because topological defects can contribute to reducing elastic
distortions on the lattice, allowing further propagation. The
other possibility is by changing the shape of the crystal to
ribbonlike or ramified structures, which has been recently
observed in experiments with colloidal crystals growing in
spheres [7], in Monte Carlo simulations of self-assembly of
viral capsids [11], and phase field simulations [12,13].

In this work, we study the process of isothermal crystalliza-
tion on spherical substrates by using a free-energy functional
which takes into account the elastic stress induced by ge-
ometric frustration. We show that elastic stress dictates the
growth pathway. Growing crystals may change their shape and
also crack, depending on the substrate’s curvature and lattice
rigidity.

II. MODEL

In Landau’s theory of phase transitions, the free-energy
functional of the system is expanded in terms of an ap-
propriate order parameter �(r), which is mainly related to
the underlying symmetries of the system [14]. In studies of
crystallization, the complex order parameter � is commonly
chosen as scalar function representing the local density and
orientation of the material, and the dynamics of the phase
transition can be studied through a relaxational equation of
the form [15]

∂�

∂t
= −μ

δF

δ�
, (2)

where μ is the mobility coefficient of the system, F depends
on the details of the system studied, and δF/δ� is the func-
tional derivative of F in terms of the complex order para-
meter �.
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In this work, we study crystallization on curved surfaces
by using a complex order parameter �(r) = φ(r)ei�(r). The
parameter field φ (hereafter, order parameter) is a measure
of the degree of local order in the system during the phase
transition. Its values range from 0, when the system is locally
fully disordered in the liquid phase, to 1 when the system is
locally fully ordered in a crystalline phase. The phase �(r)
defines the local orientation of the crystal which takes values
over the range of −π to π . Crystal have a N-fold symmetry
CN that restricts the domain of � to lie in the irreducible range
−π/N < � � π/N [16,17].

Points on the surface of the substrate are specified by
curvilinear coordinates r = (x1, x2); therefore, the metric of
the surface takes the form ds2 = gi jdxidx j , where gi j is the
metric tensor [18]. In the plane, the lattice orientation can
be defined as the angle between a crystallographic direc-
tion and a unit basis vector corresponding to a particular
axis. The same notion can be applied to curvilinear coordi-
nates. Note, however, that as in general the unit basis vector
orientations are functions of the local position, the relative
orientation between the crystal and the bases vector changes.
Thus, in non-Euclidean spaces, at different positions physi-
cally equivalent crystallographic directions result in different
crystallographic orientations [17].

Here we use a variation of the Kobayashi-Warren-Carter
(KWC) model, which can be used to study crystallization
on curved geometries. This model has been widely used
to study isothermal grain growth and grain boundary for-
mation and evolution [16,17,19,20] in both 2D and 3D
Euclidean systems and in planar conical systems [17]. The
KWC model is composed on an interfacial energy FI =∫

e(∇φ,�)|∇φ|2dS, bulk energy FB = ∫
f (φ)dS, and elastic

energy FE = ∫
(s0φ

2|∇� − �| + t0φ2|� − �|2)dS.
The total free-energy functional in the KWC model is given

by

F =
∫

{e(∇φ,�)|∇φ|2 + f (φ)

+ s0φ
2|∇� − �| + t0φ

2|� − �|2} dS. (3)

On curved geometries, the gradient and surface element are
written in curvilinear coordinates as ∇ = gi j∂ j , where gi j =
(g−1)i j , g is the determinant of the metric tensor and ∂

∂xi
= ∂i,

and dS = √
gdx1dx2.

Note that in this expression the gradient for the crystal
orientation � is ∇� → ∇� − �, where � is the spin-
connection which takes into account the space variation of
basis vectors due to the non-Euclidean geometry. The spin-
connection can be viewed as the “geometric vector potential,”
since the curl of the spin-connection is the Gaussian cur-
vature ∇ × �(r) = G(r)n̂ in the same way as the curl of
the electromagnetic vector potential A is the magnetic field
∇ × A(r) = B(r), where n̂ is the surface normal.

In the free-energy functional Eq. (3) f (φ) represents the
local free energy of an homogeneous system having an or-
der parameter φ. Within the frame of the Guinzbug- Landau
theories of phase transitions, this free-energy contribution is
considered as a polynomial expansion in terms of the order
parameter φ. This approach has been extensively used in
the literature to describe a wide diversity of crystal forming

systems, ranging from self-assembling soft block copolymer
hexagonal patterns up to hard-crystals (see, for example,
Refs. [10,21–23] and references therein).

To model first order phase transitions f (φ) needs to have
the form of an asymmetrical double-well potential, where
each local minimum represents one of the equilibrium phases
(the local minimum of highest energy is located at the initial
disordered state φ = 0, and the other absolute minimum is
located at the final crystal state φ = 1) [21]:

f (φ) = w

4
φ4 −

(w

2
− m

3

)
φ3 +

(w

4
− m

2

)
φ2, (4)

where the parameter m controls the driving force to the crystal
phase and w controls the strength of the double-well barrier.
For adiabatic crystal growth, m is a function of the temper-
ature [24]. In this work we consider an isothermic growth,
therefore, m is a constant. To facilitate the crystal growth we
set m = 0.5, i.e., we set the temperature of the system where
f (φ) becomes a single-well potential with an inflection point
at φ = 0. The parameter w controls the height of the activation
barrier between the two phases at the melting temperature.
Therefore, this sets the interface width W , by the relation
W ∼ √ e

w
[20]. In addition, w is a measure of the latent heat

per area of solidification. Here we have also set w = 1.
The term e(∇φ,�) in Eq. (3) represents the penalization to

form interfaces. In the specific case of a liquid-solid interface,
the parameter e(∇φ,�) represents the surface tension of the
crystal that depends on the crystal orientation. In curvilinear
coordinates, the crystal orientation is defined by the angle
ψ that the crystal growth front (−∇φ) makes with the x̂1

versor, i.e., tan(ψ ) = (
−∂x2 φ/

√
g22

−∂x1 φ/
√

g11
). It can also be defined as

the relative orientation α that is the difference of ψ with the
orientational map �, thus,

α = ψ − �. (5)

For crystals having N-fold symmetry, this needs to be reduced
to principal domain [−π

n , π
n ). Taking this into account, the

e(α) parameter can be defined as

e(α) = 1
2 {e0[1 + δ0cos(nα)]}2, (6)

where e0 controls the magnitude of line tension penalization,
n represents the N-fold symmetry CN of the system (n = 4 for
a square, n = 6 for a hexagon, and so on), and δ0 controls the
strength of the anisotropy.

The third and fourth terms in the free-energy functional
in Eq. (3) ensure the formation and motion of stable grain
boundaries of finite width, respectively [16,17]. The coeffi-
cients are written such that variations in the lattice orientation
are penalized for a well-ordered phase. The fourth term in the
free-energy functional, related to the motion of grain bound-
aries, is needed in the case of studies concerning the long-time
grain growth and coarsening in polycrystalline systems. Here,
for simplicity, we consider the case t0 = 0. As expected, we
have found similar numerical results for the growth of a single
crystal seed on a sphere for t0 �= 0.

For the KWC model, the relaxational equations which
describe the dynamics of the phase transition take the

014801-2



TWO-DIMENSIONAL CRYSTALIZATION ON SPHERES: … PHYSICAL REVIEW E 105, 014801 (2022)

FIG. 1. Spherical crystal and geometric parameters describing its
shape. This figure shows the computational grid used to solve the
equation in spherical coordinates. The parameters l and w represent
the length and the width of the ribbonlike crystal cap, respectively.

form:

μφ

∂φ

∂t
= −δF

δφ
,

μ�

∂�

∂t
= − δF

δ�
, (7)

where μφ and μ� are the kinetic scaling factors of the system.
Defining the free energy F as F = ∫

L(φ,∇φ,�,∇�)dS,
the functional derivatives are written

δF

δφ
= ∂L

∂φ
− ∇ ·

( ∂L

∂∇φ

)
,

δF

δ�
= ∂L

∂�
− ∇ ·

( ∂L

∂∇�

)
, (8)

where the divergence operator in curvilinear coordinates is
written ∇· = 1√

g∂i
√

g.
For the KWC model these derivatives take the form

δF

δφ
= −

[
2∇e(α) · ∇φ + 2e(α)∇2φ + e′(α)

∂α

∂∇φ
|∇φ|2

]

+ f ′(φ) + 2s0φ|∇� − �|,
δF

δ�
= −∇ ·

[
s0φ

2 ∇� − �

|∇� − �|
]

+ e′(φ)
∂α

∂�
|∇φ|2. (9)

To study isothermal crystal growth on spheres we write the
equations in spherical coordinates, where points on the sphere
are specified by r(θ, ϕ), where x1 = θ ∈ [0, π ] is the polar
angle measured from a fixed zenith direction, and x2 = ϕ ∈
[0, 2π ) is the the azimuth angle (Fig. 1). In these coordinates,
the surface element ds is given by ds2 ≡ |dr|2 = a2dθ2 +
sin(θ )2a2dϕ2. The evolution equations are numerically solved
in Python using a finite-difference scheme, forward in time
and centered in space. As mentioned earlier, the local ori-
entation of the lattice is defined as the angle between the
crystallographic direction and a unit basis vector. Here, for
simplicity, the orientation is measured with respect to the lati-
tudinal axis using the unit basis vector θ̂ . As the initial crystal
seed, we use a small spherical cap having φ = 1, and we set
φ = 0 on the rest of the sphere [25]. Multiple growing nuclei
can be modeled by seeding on different parts of the sphere.
The time position of the interface is identified here as the

region where the order parameter takes its intermediate value
φ = 0.5. For the initial orientational field �, we use a con-
stant orientation inside the crystal seed, and a random phase
for the rest of the sphere. Typically, we set the parameters
e0 = 0.01, μφ = 3 × 10−4, μ� = 3 × 10−5, and δ0 = 0.2, as
used in other numerical studies [16,24]. Due to the spherical
coordinates, our computational grid is not uniform and the
cell size decreases in the polar angle direction until it reaches
a maximum at the equator of the sphere, as can be seen
from Fig. 1. At the pole of the sphere, the element size is
zero, and hence the pole is a singular point. However, due
to the geometric frustration, for the systems studied here the
crystallization is completed without reaching the poles, even
for the cases where the crystal rigidity is small (s0 ∼ 0.01).
To use equivalent grids, we vary the number of grid points for
the different spheres (from nθ × nϕ = 200 × 400 for spheres
of a = 1.5, to nθ × nϕ = 466 × 932 for spheres of a = 3.5).
The angular step are given by �θ = π

nθ −1 and �ϕ = 2π
nϕ−1 .

III. RESULTS

Figure 2 shows the growth of an initial circular nucleus
on a spherical substrate of radius a = 1.5. Here time flows
from left to right, and the top and bottom rows correspond
to the order parameter φ and the crystal orientation � maps,
respectively. In the Supplemental Material, movies show the
growth of the crystal on the surface of the sphere (movie 1),
and as seen through a Mercator projection (movie 2) [26].

From this figure, it is clear that the underlying curvature
largely modifies the process of crystal growth on spherical
substrates. As the nucleus is growing, the substrate’s curva-
ture induces a continuous change in the lattice orientation
(see the first two figures on the bottom row). This variation
in the lattice orientation produces a large increment in the
elastic energy, which inhibits further isotropic growth. Here,
to continue its growth, the nucleus cracks in pieces of ap-
proximately constant orientation (last two columns). Note that
while domain walls can be identified with variations in the
orientational field �, cracks can be identified with regions that
failed to crystallize, such that the order parameter φ remains
near zero, even at long times.

This is a purely geometric effect due to the curvature of the
substrate. Experiments made by Mitchell et al., show similar
crystal patterns when nanoparticles sheets are forced to cover
surfaces with positive Gaussian curvature [27].

Note that the cracks that appear here as a mechanism to
relax the elastic energy are similar to the fractal-like ram-
ification observed in spherical colloidal crystals [7]. Here,
initially the nucleus grows into a sixfold crystallite and cracks
appear on the faces of the hexagon which are regions under
the highest tension, as it is shown in the first column of Fig. 2.
A similar mechanism was observed in simulations of crystal
growth on spheres, based on a different phase field model [12].

To understand the departure from isotropic growth, here
we evaluate the excess of free energy by elastic frustration of
a growing circular nucleus:

FE =
∫

s0φ
2|∇� − |dS ≈ 2

3
πs0

R3

a2
. (10)
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FIG. 2. Crystallization on a sphere. This figure shows the formation over time of domain walls of a rigid crystal with s0 = 0.05 on a sphere
of radius a = 1.5. The first row (a) represents the order parameter φ and the second row (b) represents the orientational field �. The first two
columns represent the view from the normal axes of the initial seed; the third column represents the view of one of the sides of the crystal, and
the last column represents the view from the opposite side of the initial seed.

Thus, different from Euclidean-space, here the homogeneous
crystal growth is frustrated beyond an equilibrium size deter-
mined by

Req ≈ � f +
√

(� f )2 − 4γ s0/a2

2s0/a2
. (11)

Then, when the crystal reaches the size determined by
Req, it cannot grow further without reducing frustration. As
pointed out in the introduction, previously it has been found
that geometric frustration can be alleviated via topological
defects or by changing the shape of the growing crystal. As
noted in Fig. 2, in this model initial isotropic nuclei eventu-
ally acquire a fractured ribbonlike shape. As the degree of
frustration is dictated by the curvature and the rigidity of the
crystal, it can be expected that crystal shape becomes strongly
dependent on these parameters. Figure 3 shows the shape of
the final fractured ribbonlike crystals for different substrates’
curvature and crystal rigidity. Here, the top row [Figs. 3(a)
and 3(b)] compares the effect of the substrate curvature on the
shape of the crystal. Clearly, for higher curvatures (smaller
spherical substrates) the crystals become more fractured and
with an enhanced ribbonlike shape. Similarly, the bottom row
compares the effect of crystal rigidity, for substrates of the
same curvature. Here it is also clear that for more rigid lattices
[Fig. 3(d)], the crystal becomes more fractured and ribbonlike.
Similar ribbonlike patterns were observed in Monte Carlo
simulations of the shell formation of viral protein capsids.

To study the effects of substrate curvature and lattice rigid-
ity, in Fig. 4 we show how the angular width θw, where
w = aθw, of the ribbon crystals varies with the size of the
substrate (top) and the rigidity s0 (bottom), as obtained from
the simulations (black dots). This figure clearly shows that the
width of the ribbonlike crystals gets smaller for higher curved
substrates (smaller a) and more rigid lattices (bigger s0).

To better understand the equilibrium width of crystals on
spheres, we can approximate the free energy [Eq. (3)] for
ribbonlike morphologies of width w = aθw and length l , as
shown in Fig. 1 (see Appendix for details). The interfacial
energy [first term of Eq. (3)] of a ribbon crystal on a sphere

can be approximated by

FI =
∫

e(∇φ,�)|∇φ|2dS

≈ e
[
2l cos

( w

2a

)
+ 2w

]
, (12)

where e ≈ e2
0

2 is the average of the line tension penalty. Essen-
tially, FI is the surface tension e multiplied by the perimeter

FIG. 3. Effects of substrate curvature and crystal rigidity. In the
top row we compare the crystals morphologies for the same rigidity
s0 = 0.05 and two different substrate sizes a = 1.5 (a) and a = 3.5
(b) (the size of the figure represents the relative size of the substrate).
In the bottom row we compare crystal morphologies to substrates of
the same size a = 1.5, and the different rigidities s0 = 0.015 (c) and
s0 = 0.05 (d).
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FIG. 4. Crystal angular width. These figures show the angular
width of the crystal as a function of sphere radius a (top), and
stiffness s0 (bottom). The “crack-free” theoretical curve corresponds
to the equilibrium angular width for a ribbon without fractures.

of the ribbon. Similarly, the bulk free energy [second term of
Eq. (3)] can be approximated by

FB =
∫

f (φ)dS ≈ −2|� f | la sin
( w

2a

)
, (13)

where |� f | = | f (φ = 1) − f (φ = 0)| = 1
12 . Note that FB is

the difference between the bulk energy densities correspond-
ing ordered and disordered phases, multiplied by the ribbon
area. Finally, the elastic contribution to the free energy for a
ribbon crystal can be approximated by

FE =
∫

s0φ
2|∇� − |dS

≈ 2ls0

[
1 − cos

( w

2a

)
+ sin

( w

2a

)]
, (14)

where it is considered that for the whole crystal φ = 1 and
∇� vanishes in the bulk of the crystal except at the interface,
where it is approximated by a δ function.

Then, the total free energy is obtained by adding the
different contributions F = FI + FB + FE . As here we have
e � |� f | ∼ s0, we can obtain a first look at crystal shape
considering that the energy contribution of the interface to
the total free energy of the ribbon-crystal can be neglected.
In this case, the equilibrium width of crystal can be obtained

by minimizing the free energy ∂�F
∂w

= 0, which leads to

θw = 2tan−1

( |� f |a − s0

s0

)
, (15)

which approximates the width of crystals on spheres without
any contribution from cracks.

Figure 4 also compares this theoretical model (correspond-
ing to the “crack-free” label) with the results obtained from
the simulations, for both, the angular width of the ribbon as a
function of the sphere radius a, and rigidity s0. To obtain the
angular width from the simulations we set φ = 0.5 and aver-
aged θw along the contour. Although this simple model gives
a good approximation to the simulation results, Fig. 4 shows
that the widths of the crystals obtained in the simulations are
smaller. Note also that the deviations increase for substrates of
higher curvatures (smaller sphere radius a) or stiffer crystals.
This is a consequence of neglecting the interfacial free-energy
contribution involved in the cracks, which was not taken into
account in Eq. 15.

Regarding the cracks, Fig. 5 compares the map of the order
parameter φ projection in the θ − ϕ spherical coordinates
for a sixfold crystal growing on a sphere of radius a = 1.5.
For the calculations we have set s0 = 0.01 [Fig. 5(a)] and
s0 = 0.05 [Fig. 5(b)]. From these figures, it can be observed
that the crystal becomes more cracked and irregular as the
crystal rigidity increases. To quantify the departure from the
compact shapes expected for a system without rigidity, here
we calculate the degree of circularity C for crystals with
different values of s0, as shown in Fig. 5(c). The dimensionless
circularity is defined as

C = 4πA

L2
, (16)

where A is the total area and L is the contour length of the
crystal interface. Note that the circularity of a planar circular
nucleus is C ≡ 1, while the circularity of a fractal-like crystal
approaches zero C ≡ 0. As the number of cracks increases,
the crystal becomes more ramified, decreasing the circularity
as shown in Fig. 5. Note that the circularity decreases as s0

increases and that for large values of s0 it approaches zero,
indicating the formation of highly irregular fractal-like nuclei,
similar to the patterns observed in colloidal systems [7].

IV. CONCLUSION

In this work, we have studied the effect of curvature in
two-dimensional isothermal crystal growth on spherical sub-
strates. We used Landau’s free energy expanded in a complex
order parameter defining both local magnitude and crystal
orientation.

As expected, the substrate’s curvature affects the shape
and structure of growing crystals. As a consequence of cur-
vature, cracks (domain walls) are produced due to curvature
induced in-plane elastic strains. Note that while in classical
continuum models cracks are related with singularities of the
stress field around the crack tip, here we identified cracks with
regions that within the time-scale of front propagation cannot
crystallize due to the geometric frustration and remain in the
disordered state.
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FIG. 5. Crystal cracks and dimensionless circularity. This figure shows the effect of the crystal rigidity on the geometry of crystal cracks
as the crystal grows on the sphere. Panels (a, b) compare the profile of the order parameter φ in the θ − ϕ spherical coordinates for a sixfold
crystal growing on a sphere of radius a = 1.5 in grayscale to denote the cracks on the crystal. In the simulation of panel (a) we have set
s0 = 0.01 and in panel (b) we have set s0 = 0.05. Panel (c) shows the dimensionless circularity [Eq. (16)] for different values of s0.

For small spherical substrates (or hard lattices) initial
isotropic nuclei adopt a cracked ribbonlike morphology. We
derived an expression for the leading factors that controls the
geometry of the crystals. Despite its simplicity, the model
captures the leading parameters that dictates the role of elastic
frustration in crystals growing on spheres.
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APPENDIX

In the crystal phase, the model studied here leads to φ ∼ 1
and ∇� ∼ 0. For a circular homogeneous crystal that has
a radius R, on the surface of a sphere of radius a, such as
R << a, the interface energy can be approximated by energy
of a planar circular crystal, i.e., FI ≈ 2πγ R. Similarly, the
bulk energy is given by FB ≈ π� f R2. By adding to these
values the elastic energy of the circular cap [Eq. (10)], the total
free energy is obtained as Fcap = 2πRγ − πR2� f + 2π

3 s0
R3

a2 .
Then, Req is simply calculated by minimizing this free energy
of the crystal cap.

For a defect-free ribbonlike crystal on a sphere of radius
a, we can approximate the interface energy FI in spherical
coordinates as

FI =
∫ θ2

θ1

∫ �ϕ

0
e(α)|∇φ|2a2sin(θ )dϕdθ, (17)

where θ1 and θ2 is the top and bottom polar angle of the
interface of the ribbonlike crystal, respectively, while �ϕ

represents the angular length of the crystal, as shown in
Fig. 1. The parameter e(α) can be approximated by the mean
value defined as e = 1

2π/n

∫ π/n
−π/n

1
2 {e0[1 + δ0cos(nα)]}2dα =

e2
0

4π/n
π
n (2 + δ2

0 ). For the parameters employed in this paper we

have 1 � δ2
0; therefore, e ∼ e2

0
2 .

Since ∇φ vanishes throughout the crystal except at the in-
terface, we can express FI as the as a line tension e multiplied
by the perimeter of the crystal, i.e., FI = e{a�ϕ[sin(θ2) +
sin(θ1)] + 2a(θ2 − θ1)}. Finally, assuming that crystal grows
symmetrically with respect to the equator axis, we can rewrite
θ1 = π

2 − θw

2 , θ2 = π
2 + θw

2 , and let l = a�ϕ; therefore, FI ≈
e[2a�ϕ cos( θw

2 ) + 2aθw] = e[2lcos( w
2a ) + 2w].

The second term of the free-energy integral can be ex-
pressed in spherical coordinates as

FB =
∫ θ2

θ1

∫ �ϕ

0
f (φ)a2sin(θ )dθdϕ. (18)

Since φ ∼ 1 in the bulk of the crystal, we can take it
outside the integral FB ≈ f (φ = 1)

∫
dS and since f (φ =

1) = −|� f | = −| f (φ = 1) − f (φ = 0)| we obtain FB =
−|� f | ∫ θ2

θ1

∫ �ϕ

0 a2sin(θ )dθdϕ. After integration and replac-
ing the angles as a function of θw we obtain FB ≈
−|� f |a2�ϕ 2sin( θw

2 ) = −2|� f | la sin( w
2a ).

Finally, the third term of the free energy can be expressed
in spherical coordinates as

FE =
∫ θ2

θ1

∫ �ϕ

0
s0φ

2|∇� − cot(θ )

a
êϕ|a2sin(θ )dθdϕ. (19)

Due to the assumptions described above, in the bulk of
the crystal, we can approximate the integral to FE ≈
s0a �ϕ

∫ θ2

θ1
|cot(θ )|sin(θ )dθdϕ = as0�ϕ 2[1 − cos( θw

2 )] =
ls0 2[1 − cos( w

2a )]. However, since ∇� vanishes in the whole
crystal except for the interface, we must add to the above
expression the energy evaluated at the boundaries. For sim-
plicity, we only consider the interfaces at θ1 and θ2 and φ ∼
1. Then, at the interface, FB ≈ as0[

∫ �ϕ

0 |cot(θ1)|sin(θ1)dϕ +∫ �ϕ

0 |cot(θ2)|sin(θ2)dϕ] = 2s0�ϕasin( θw

2 ) = 2s0lsin( w
2a ). Fi-

nally, adding the two terms together gives the energy of the
third term of the free energy FB ≈ 2�ϕas0[1 − cos( θw

2 ) +
sin( θw

2 )] = 2ls0[1 − cos( w
2a ) + sin( w

2a )].
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