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Renormalization group study of the dynamics of active membranes:
Universality classes and scaling laws

Francesco Cagnetta ,* Viktor Škultéty ,* Martin R. Evans, and Davide Marenduzzo
SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD Scotland, United Kingdom

(Received 14 November 2020; accepted 24 November 2021; published 27 January 2022)

Motivated by experimental observations of patterning at the leading edge of motile eukaryotic cells, we
introduce a general model for the dynamics of nearly-flat fluid membranes driven from within by an ensemble of
activators. We include, in particular, a kinematic coupling between activator density and membrane slope which
generically arises whenever the membrane has a nonvanishing normal speed. We unveil the phase diagram of the
model by means of a perturbative field-theoretical renormalization group analysis. Due to the aforementioned
kinematic coupling the natural early-time dynamical scaling is acoustic, that is the dynamical critical exponent
is 1. However, as soon as the the normal velocity of the membrane is tuned to zero, the system crosses over
to diffusive dynamic scaling in mean field. Distinct critical points can be reached depending on how the limit
of vanishing velocity is realized: in each of them corrections to scaling due to nonlinear coupling terms must
be taken into account. The detailed analysis of these critical points reveals novel scaling regimes which can
be accessed with perturbative methods, together with signs of strong coupling behavior, which establishes a
promising ground for further nonperturbative calculations. Our results unify several previous studies on the
dynamics of active membrane, while also identifying nontrivial scaling regimes which cannot be captured by
passive theories of fluctuating interfaces and are relevant for the physics of living membranes.
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I. INTRODUCTION

The study of statics and dynamics of fluid membranes, a
classic problem in soft condensed matter, has been rekindled
in the context of cell biophysics. This is due to the paramount
importance of the plasma membrane of eukaryotic cells in
biological processes and the new features it brings to mem-
brane physics. In contrast with a “passive” fluid membrane,
which can be thought of as a d-dimensional fluid fluctuat-
ing in d + 1 dimensions, the plasma membrane is an active
membrane, characterized by the presence of additional active
matter, which is embedded and moves within it. The latter
consists mostly of various kinds of membrane proteins that
actuate and regulate the many biological processes in which
the membrane is involved.

The richness of physical phenomena generated is remark-
able given the relative simplicity of the underlying model
system for an active membrane, which can often be described
by a set of coupled equations for the membrane height and the
density of active proteins [1]. On the one hand, each of these
proteins can be associated with a specific energy-consuming
process which, having a distinct effect on the membrane prop-
erties, must be accounted for. On the other hand, leitmotifs
in the statics and dynamics of living membranes suggest that
some crucial properties of these membranes are caused by the
proteins’ activity per se rather than by the occurrence of a
specific process. For instance, superficially similar transverse
waves, akin to those observed on advancing lamellipodia [2],
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are found with models considering either a thermodynamic
coupling between protein dynamics and interfacial curvature
[3,4] or a kinetic coupling with the interfacial height [5–9],
and it is important to assess whether the two phenomena are
fundamentally different or closely related at a deeper level.

The idea of a deep relation between superficially different
problems is formalized in equilibrium statistical physics with
the concept of universality class, and there is a dedicated set
of techniques aimed at the identification of such classes: the
renormalization group (RG). In fact, RG has proved extremely
influential and instrumental in the attainment of a fundamental
understanding of the possible types of critical points [10–12].
For instance, this program of study has shown that phenomena
as diverse as the order-disorder transition in an Ising magnet
and the liquid-vapor transition of a Lennard-Jones fluid are
characterized by the same critical exponents, hence belong to
the same universality class. In active systems, an analogous
second-order phase transition was first observed in the Vicsek
model [13,14], the RG analysis of which was pioneered in
the work by Toner and Tu on their theory of flocking [15,16].
Since then, universal scaling has been studied in various active
systems, from incompressible polar flocks [17,18] to models
showing motility induced phase separation [19–22]. One of
the special features of these nonequilibrium systems is that
the dynamical critical exponent, describing coupling between
spatial and temporal scales, can attain unusual values [23–25]
with respect to standard models of equilibrium statistical
physics [26].

Our goal in this work is to apply the framework of field-
theoretical renormalization group [27,28] to a generic model
for active membranes, with the aim of classifying its possible
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behavior into classes of models. In doing so, we also link the
active membrane problem to the kinetic roughening literature,
which studies the scale-invariant property of passive inter-
faces, both in and out of equilibrium. In this context, we find
that activity results in novel and unexpected scaling behav-
ior, going beyond that observed in passive interface models
such as the Edwards-Wilkinson (EW) [29] and Kardar-Parisi-
Zhang (KPZ) [30] equations.

Specifically, we analyze the problem of a membrane whose
motion is controlled by activators. Our strategy is to derive
on theoretical grounds the most general coupled system of
equations describing the evolution of the membrane height
and activator density. We identify a crucial term, which
arises geometrically and couples the activator dynamics to
the membrane slope. We then apply a renormalization group
approach to such equations. We adopt a scheme which is
perturbative in nature, which, strictly speaking, gives accurate
results only close to the “naive” upper critical dimension.
Importantly, though, for many relevant sets of parameters this
upper critical dimension is 2, which is the physically relevant
dimension of the problem. We find that the scale-invariant
properties of the system depend on the exact structure of
the activator-membrane interaction, thus generating different
possible phases according to which coupling terms are present
and relevant. The result is a phase diagram in which each
phase is exemplified by a different set of minimal equations.
We then derive the universal properties corresponding to each
phase in the one-loop approximation.

The paper is structured as follows.
(i) In Sec. II we derive general equations of motion for

a membrane driven from within by pointlike activators, then
discuss the relation of such equations to previous works on ac-
tive membranes or general fluctuating interfaces and introduce
our field-theoretic renormalization group approach;

(ii) Section III is devoted to the mean-field theory of the
model, i.e., the study of the linearized equations of motion. In
particular:

(a) we perform a stability analysis of the model in
Sec. III A, which allows us to identify acoustic and dif-
fusive dynamic scaling regimes,

(b) we identify four possible regimes of critical behav-
ior via power counting in Sec. III B, thus building the
mean-field phase diagram of the model (Fig. 2),

(c) for each regime (Secs. III C–III E) we com-
pute mean-field critical exponents and determine the
“naive” upper critical dimension, above which mean-field
precitions should hold exactly;
(iii) In Sec. IV we study in detail the first of the diffusive

regimes—the “active KPZ” model—whose equations consist
of a KPZ equation [30] for the membrane height coupled
quadratically with a diffusing field. By computing one-loop
corrections to model’s vertex functions around the upper crit-
ical dimension d = 2, we extend the roughening transition
scenario of the standard KPZ equation [30] to our active
model and find a novel perturbative fixed point below d = 2
(Fig. 3);

(iv) In Sec. V we study the other two diffusive regimes,
which we call “curvotactic activators” and “passive sliders”
model. For the former, we compute one-loop corrections
to vertex functions and find no perturbative fixed point in

the coupling parameters space, but signs of strong-coupling
behavior. For the latter, we prove nonrenormalizability by
computing the primitive degree of divergence of the correc-
tions to vertex functions.

Finally, Sec. VI contains a discussion of the results and our
conclusions.

II. EQUATIONS OF MOTION AND ACTION
FOR ACTIVE MEMBRANES

In this section we outline the first-principles derivation of
hydrodynamic equations for a fluctuating membrane driven
by an ensemble of activators. Our derivation reveals the
emergence of a coupling between the interface slope and
the activator density which results from geometrical consid-
erations [5,6,31,32] and plays a key role in determining the
universality classes of the system. We also set up, in Sec. II C,
the field-theoretical framework which we will be using for our
renormalization-group calculations.

A. Derivation of the hydrodynamic equations of motion

At lengthscales larger than its own thickness, a mem-
brane can be described as a d-dimensional manifold in a
d + 1-dimensional space. To avoid ambiguity in vector dimen-
sionality, in this section we we will denote d + 1-dimensional
vectors with capital blackboard-bold symbols (X), whereas
vectors in d dimensions are denoted with lowercase bold
symbols (x). The variables describing our system are the
membrane configuration and the position of the activators,
which reside within the membrane. Activators might span the
whole membrane or lie within just one of the two lipid layers:
at the scale of our model, where the membrane thickness is
negligible, these subtle differences are not resolved. A set
of hydrodynamic continuum equations for the membrane and
activator densities can be written by combining conservation
laws with constitutive equations for the forces acting on the
system. This was done, for instance, in Refs. [31,32] for pas-
sive fluid membranes, or in Ref. [6] for membranes coupled to
a network of polymerising actin filaments. In this section we
retrace the key points of the derivation in Ref. [32], extending
it to the case of an active membrane driven by an ensemble of
activators.

We work within the Monge gauge: in the (standard) ap-
proximation that the membrane is nearly flat and there are no
overhangs, the membrane can be parametrized, for each point
x, with the distance h(x) from a reference plane, i.e.,

X(x) = [x1, . . . , xd , h(x)]. (1)

If we denote with {y1, . . . , yN } the positions of the N activa-
tors on the membrane, then we can define a coarse-grained
activator density as follows:

ρ(x, t ) = m√
g

N∑
n=1

δ[x − yn(t )], (2)

where m denotes the activator mass. Note the appearance of
the factor

√
g, with g the determinant of the metric tensor

associated with the membrane manifold, which is required to
ensure that the activator density is invariant with respect to
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FIG. 1. Forces acting on the membrane (yellow) with embedded
activators (blue). The vectors γnv

nN and γtv
aTa represent the normal

and tangential components of the force F .

reparametrizations of the membrane coordinates [31,32]. In
the Monge gauge, g = 1 + (∇h)2.

Let us now consider a force acting on the membrane. Any
such force can be decomposed into normal and tangential
components with respect to the membrane reference plane.
In the Monge gauge, the normal direction is given by the
following d + 1-dimensional vector:

N(x) = 1√
g

(−∂1h, . . . ,−∂d h, 1). (3)

By assuming overdamped motion for both the interface and
the activator proteins within the interface, we can write the
following force-velocity relation (or constitutive equation),

F = γnv
nN + γtv

aTa, (4)

where F is the applied force, γn and γt are the damping
coefficients in the normal and tangential directions, whereas
vn and va (a = 1, . . . , d) are the components of normal and
tangential velocities (see Fig. 1). Summation over the index a
is implied.

Since the activators are constrained to lie within the mem-
brane plane, the only normal motion allowed—for either
membrane patches or activators—is through displacement of
the membrane. Therefore, in the Monge gauge we have

vn = N · ∂tX(x, t ) = 1√
g
∂t h(x, t ). (5)

Equation (5) constitutes the equation of motion for the mem-
brane height h(x, t ).

However, tangential motion comprises both membrane and
activator displacements (see also Ref. [6]). Therefore, the in-
plane activator current, ja, is given by

ρva = ja + T a∂tX(x, t ) = ja + ρ∂ah

g
∂t h. (6)

The first term in the right-hand side of Eq. (6) represents the
motion of the activators relative to the membrane. The second
term, instead, describes the motion of the activators due to the
motion of the membrane—i.e., the membrane motion gener-
ates a kinematic force on the activators which is proportional
to the membrane slope. The hydrodynamic equation for the
activator density ρ(x, t ) has then the form of a covariant
conservation law,

√
g−1

∂t (
√

gρ) + √
g−1

∂a(
√

gja) = 0, (7)

where the flux ja is given by Eq. (6).
To complete the model, we must now specify the force F

in the constitutive Eq. (4). We consider the combination of:
(i) an active force, directed along the membrane normal and
depending on the activator density, (ii) a relaxational force ob-
tained from the functional derivative of a suitable free energy,
and (iii) stochastic forces whose amplitudes are dictated by the
fluctuation-dissipation theorem. Namely, in the Monge gauge,

F =
[

f (ρ) − δF[h, ρ]

δh
+
√

2kBTnγnξn(x, t )

]
N

+
[
−ρ∂a δF[h, ρ]

δρ
−
√

2kBTtγtρξ a(x, t )

]
Ta, (8)

where f (ρ) is the modulus of the active force, F[h, ρ] the free
energy, kB the Boltzmann constant, Tt and Tn the temperatures
of membrane and embedding medium, and ξn and ξa are inde-
pendent space-time white Gaussian noises with zero mean and
unitary variance. Let us stress that active forces acting in the
membrane’s tangent plane can also be considered and might
be relevant in the context of cellular uptake [33] and shape
control [34].

A comparison with Eq. (4) shows that the two terms in
brackets on the right-hand side of Eq. (8) are nothing but
γnv

n and γtv
a. Therefore, starting from Eqs. (5)–(7), and

using ∂a = gab∂b with gab the metric tensor associated with the
membrane manifold, we obtain the following hydrodynamic
equations for the membrane height h(x, t ) and the activator
density ρ(x, t ):

∂t h(x, t ) =
√

g

γn

[
f (ρ) − δF[h, ρ]

δh
+
√

2kBTnγnξn(x, t )

]
; (9a)

∂t (
√

gρ(x, t )) = 1

γt
∂a

{√
ggab

[
ρ∂b

δF[h, ρ]

δρ
+
√

2kBTtγtρξb(x, t )

]}
+ ∂a

[
gab

√
g
ρ(∂bh)∂t h

]
. (9b)

A few comments are in order. First, the height equation
Eq. (9a) resembles Model A of critical dynamics [26] for the
relaxation toward equilibrium of a nonconserved order param-
eter, with an additional constraint of symmetry with respect to
shifts of the height h(x, t ) → h(x, t ) + c. The only changes

with respect to the conventional model A dynamics are the
active force f (ρ) and the factor

√
g multiplying the mobility

γ −1
n . The function f (ρ) remains, for now, unspecified, and

will be further discussed later. Second, the first term on the
right-hand side of the density equation, Eq. (9b), resembles
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model B of critical dynamics [26], which describes the relax-
ation of a globally conserved order parameter. The factors

√
g

in the time-derivative and
√

ggab in the square-bracket term are
required because the density is defined on a curved manifold
rather than in flat space. In addition, the final term in the
right-hand side of Eq. (9b), proportional to ∂t h, represents the
nondissipative kinematic coupling between activator density
and membrane slope generated by the membrane motion [32],
which will play a key role in what follows.

Although Eq. (9b) describes a collection of pointlike acti-
vators, hard excluded volume interactions can be implemented
by replacing the factors of ρ multiplying the free-energy
derivative and the kinetic current and that appearing in the
noise coefficient with ρ(1 − ρ). Similar terms can be obtained
by considering soft interactions via an extra term in the free
energy proportional to the squared density. Additional deter-
ministic terms In Eq. (9b)’s right-hand side might also result
from the inclusion of tangential active forces [33,34]. Finally,
let us remark that the model equations can be readily extended
to describe several possible species of activators, each having
its own density and a distinct interaction with the membrane.

B. Hydrodynamic equations for small density
and height fluctuations

In preparation for our field-theoretical analysis, we now
expand Eq. (9) around the homogeneous solution where the
activators are evenly spread across the membrane. As, in
this solution, ρ(x, t ) = ρ0 = constant, the active force acts
as a passive homogeneous driving force f (ρ0) in this case,
giving rise to an overall movement of the membrane with
velocity λ = f (ρ0)/γn. Small fluctuations about the homoge-
neous solution are accounted for by setting ρ = ρ0 + φ and
h = λt + δh. Consistently with the Monge gauge prescription,
we will also assume the interface slopes to be small, i.e.,
(∂aδh)2 � 1. Choosing to expand the equations around the
flat homogeneous solution is convenient for the nearly-flat
phase analysed in this paper. However, we shall point out
that the interaction between membrane and proteins leads to a
rich phase diagram of possible stationary shapes, both in the
presence and absence of active forces [35–37].

To write down the equations of motion it is also necessary
to specify a functional form for the free energy F[h, ρ].
For the membrane contribution, we consider a simple sur-
face tension term, written in covariant form as ν

∫
dd x

√
g,

with ν the surface tension. For the density-dependent part
we consider the ideal gas entropy, written in covariant form
as kBTt

∫
dd x

√
gρ log ρ. These two contributions give Ffree,

the free energy without interactions, which becomes, in terms
of the height fluctuations δh = h(x, t ) − λt and the excess
density φ = ρ(x, t ) − ρ0,

Ffree = ν

2

∫
dd x (∂aδh)2 + kBT

2ρ0

∫
dd x φ2 + O(∂h4, φ4).

(10)
We now add the contribution to the free energy from in-

teractions. Following classical studies on the relation between
the membrane shape and composition [38], active membrane
theories have typically considered a coupling between the
activator density and the membrane curvature [5,39,40]. This

coupling is inspired by the fact that most of the proteins re-
sponsible for activating the membrane dynamics can be bound
to a particular banana-shaped dimer—known as the BAR
domain—which causes them to acquire an intrinsic curvature
[41,42]. The intrinsic curvature of the activators interacts with
the membrane curvature, so that the free energy is minimized
when activators sit in regions of the membranes with local
curvature close to their intrinsic curvature. While the free-
energy contribution of the BAR domains should also take into
account their strongly anisotropic shape [43], we model this
interaction with the following simplified term, valid for our
isotropic, pointlike activators,

Fcurv = −c
∫

dd x
[(

∂2
a δh)(ρ0 + φ

)]
. (11)

The free energy above can be derived from a microscopic
description of a curved inclusion embedded within the lipid
bilayer, in the limiting case where all the lipids are aligned to
the membrane normal [44–47]. In this case the constant c is
proportional to the activators’ intrinsic curvature. The sign of
c determines whether the intrinsic curvature of the activators
is positive (c > 0) or negative (c < 0). Expanding all the other
terms of Eq. (9) in powers of δh and φ, we obtain our model
equations for excess protein density and fluctuating height.

To simplify the notation, from now on we will replace the
symbol δh with h. The resulting equations read

∂t h = ahφ + α

2
φ2 − ch∂

2
a φ + νh∂

2
a h

+ λ

2
(∂ah)2 +

√
2Dhξn, (12a)

∂tφ = aφ∂2
a h − cφ∂4

a h + νφ∂2
a φ

+ λ∂a(φ∂ah) + ∂a(
√

2Dφξa). (12b)

Regarding the physical interpretation of parameters, we
have already discussed two fundamental ones: the speed of
the membrane λ = f (ρ0)/γt and average density of activators
ρ0. Two other parameters appearing in Eq. (12) are aφ =
ρ0λ, measuring the advection of density fluctuations by the
membrane slopes, and ah = f ′(ρ0)/γn, which quantifies the
additional membrane speed due to fluctuations in the den-
sity profile. In addition, we have νh = ν/γn, νφ = kbTt/γt ,
ch = −c/γn, and cφ = ρ0c/γt . Given that the system is driven
out of thermodynamic equilibrium by the active force f (ρ)
acting on the membrane, Dh and Dφ need not satisfy the
fluctuation-dissipation theorem and instead can be considered
as independent parameters, encoding both thermal fluctua-
tions and those caused by energy-consuming processes. The
term αφ2 in Eq. (12a) comes from the second-order expansion
of f (ρ) about ρ0, with α = f ′′(ρ0)/γn. This term quanti-
fies many-body effects [48] in activator-mediated interface
growth, and would arise physically, for instance, in the case
where activators are dilute (ρ0 � 1) and stimulate growth
only when they dimerise.

However, Eq. (12) is not yet complete. Importantly, we
also need to consider terms which cannot be written as ∂aμeq

with μeq the “equilibrium chemical potential” δF/δρ. We
require two additional terms representing the gradient of a
nonequilibrium current jneq

a . One part of jneq
a can be writ-

ten as the gradient of a “nonequilibrium chemical potential”
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proportional to the squared slope (∂ah)2 considered before
in theories of conserved kinetic roughening (see chapter 5
of Ref. [49] and references therein), whereas another part
is proportional to the Laplacian of h times its gradient (this
term has been considered recently in Refs. [50,51], again in
the context of conserved surface roughening). Including these
terms, our full set of equations reads

∂t h = ahφ + α

2
φ2 − ch∂

2
a φ + νh∂

2
a h

+ λ

2
(∂ah)2 +

√
2Dhξn, (13a)

∂tφ = aφ∂2
a h − cφ∂4

a h + νφ∂2
a φ + λ∂a(φ∂ah)

+ κ

2

{
∂2

a (∂bh)2 − 2∂a
[
(∂ah)∂2

b h
]}

+ ∂a(
√

2Dφξa). (13b)

The coefficient κ of the additional nonlinear terms in
Eq. (13b) cannot be related to any of the other parameters of
the problem since the corresponding term cannot be derived
within the framework of Eq. (9). As we later demonstrate by
analyzing the primitive degree of divergence of perturbative
corrections, any additional nonlinear term in Eq. (13)—such
as those coming from local interactions between activators—
would be irrelevant in the RG sense, irrespective of the scaling
regime considered.

We end this section with a technical note. By construction,
Eq. (9) is invariant with respect to reparametrization of the
membrane within the Monge gauge. Additionally, also trans-
formations of the external, (d + 1)-dimensional, coordinate
system should leave Eq. (9) invariant, provided they do not
break the structure of the Monge gauge. Among these trans-
formations there are infinitesimal membrane tilts [30]. When
the equations of motion are expanded about the homogeneous
solution h(x, t ) = λt , ρ(x, t ) = ρ0, this symmetry is equiva-
lent to the following set of transformations:

x
h(x) → x′ = x − ελt

h′(x′, t ) = h(x, t ) + ε · x. (14)

Care must be taken that the additional nonlinear nonequilib-
rium terms, whose inclusion we have argued is required by the
RG method, satisfy this symmetry—that is how the relative
weight of the two contributions to the κ-term in Eq. (13b)
are fixed. Additionally, the symmetry implies the coincidence
of certain perturbative corrections which can be exploited to
simplify the RG calculations.

C. Field-theoretic formalism

Before proceeding with the analysis of the scale-invariant
behavior of the model summarized by Eq. (13), it is conve-
nient to introduce an equivalent formulation of the model,
based on the functional probability of the fields h and φ

rather than on the stochastic equations of motion. The path
probability can be obtained from that of the noises ξn and ξa,
which is Gaussian, following the procedure used by Onsager
and Machlup for the linear Langevin equation [52,53]. The
resulting probability can then be written in a simpler form, at
the price of introducing one auxiliary field for every field in
the theory. This procedure is commonly credited to Martin,

Siggia, and Rose [54], De Dominicis [55], and Janssen [56]—
the details can be found in critical dynamics textbooks such
as Refs. [27,28]. The result is the path probability of the fields
P[h, φ] written in the following form:

P[h, φ] =
∫

D[ih̃]D[iφ̃]e−S[h̃,h,φ̃,φ], (15)

where the action S[h̃, h, φ̃, φ] is given by

S[h̃, h, φ̃, φ]

=
∫

dd xdt

[
h̃(∂t − νh∇2)h + φ̃(∂t − νφ∇2)φ − Dhh̃2

− Dφ (∇φ̃)2 − h̃(ah − ch∇2)φ − φ̃(aφ − cφ∇2)∇2h

− λ

2
h̃(∇h)2 + λ(∇φ̃) · (φ∇h) − α

2
h̃φ2

+ κ

2
(∇φ̃) · (∇(∇h)2 − 2(∇h)∇2h)

]
. (16)

In the definition above, the first two lines on the right-hand
side correspond to the linearized equation and the last two
to the nonlinear terms. It is worth remarking that Eq. (15),
with the action from Eq. (16), is completely equivalent to the
stochastic PDEs formulation of Eq. (13).

The harmonic, or Gaussian, part of the action, contain-
ing contributions which are at most quadratic in the fields,
corresponds to the linearized stochastic equations. It can be
written compactly in Fourier space as (with k = (k, ω) and
ψ = (h̃, h, φ̃, φ))

S0[ψ] = 1

2

∫
k

ψ(−k) · [A0(k)ψ(k)]. (17)

The linear coupling matrix A0(k) is explicitly given in Ap-
pendix A. The inverse of this matrix yields the correlations of
the Gaussian model via

〈ψi(k1)ψ j (k2)〉0 = (
A−1

0

)
i jδ(k1 + k2)

= C
ψiψ j

0 (k1)δ(k1 + k2), (18)

where δ(k1 + k2) is a shorthand for (2π )d+1δ(k1 +
k2)δ(ω1 + ω2). Eq. (18) can be derived by interpreting e−S[ψ]

as the joint path probability of physical (h and φ) and response
(h̃ and φ̃) fields respectively – i.e., P[ψ] = e−S[ψ]. Introducing
a conjugate current for each of the fields, j = ( jh, jh̃, jψ, jψ̃ ),

and averaging e
∫

dd xdt j·ψ over P[ψ] yields the moment gener-
ating functional of the fields,

Z[ j] =
∫

D[ψ]e
∫

dd xdt j·ψe−S[ψ]. (19)

If the action is quadratic in the fields, then the integral on
the right-hand side of Eq. (19) is a simple Gaussian integral.
Equation (18) then follows by differentiating the result of
the integral twice with respect to the components of j, and
then setting j → 0. While Z[ j] generates the moments of the
fields—i.e., the n-point correlation functions—its logarithm
ln Z[ j] generates the cumulants of the fields—i.e., the n-
point connected correlation functions. The Legendre-Fenchel
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transform of ln Z[ j],

�[ψ] = sup
j

{∫
dd xdt ψ · j − ln Z[ j]

}
, (20)

is the generating functional of n-point vertex functions, usu-
ally referred to as the effective action [12,28]. In general, its
relation to the action functional is the following [12,28]:

�[ψ] = S[ψ] + (loop corrections). (21)

For an action which is at most quadratic in the fields, the
corrections are absent and �[ψ] coincides with the action
itself. The n-point vertex functions can thus be thought of
as the coefficients of the expansion of the action in powers
of the fields. For general nonlinear models, perturbative cor-
rections must be taken into account, which can be computed
from the perturbative corrections to correlation functions (see
Appendix B, Eq. (B1)).

In each of the regimes that will be considered in the re-
mainder of the paper, a simple power counting analysis allows
the identification of the upper critical dimension dc of the non-
linear coupling parameters—the coefficients of the nonlinear
terms in the equations of motion. Above dc, all the nonlinear-
ities in the action are irrelevant from the perturbative point of
view, and the scale-invariant properties of the model are the
same as those of the linearized counterpart. In other words,
mean-field scaling is exact above dc. In contrast, below dc the
mean-field scaling exponents gain nontrivial corrections due
to the nonlinearities of the model. Once dc is identified, the
terms in the action Eq. (16) are split into three classes: relevant
terms, marginal terms, and irrelevant term. The relevant terms
are those which drive the system away from criticality: they
must be set to zero to find scale-invariant behavior; otherwise,
the RG flow takes the system to a different scaling regime. The
irrelevant terms do not influence the critical properties of the
model and the marginal terms are those that actually need to
be accounted for. Close to the upper critical dimension, where
it is reasonable to assume that the coefficients of the nonlinear
couplings are actually small, the effects of the nonlinearities
can be examined with perturbation theory, the details of which
are given in Appendix A. In particular, the marginal terms of
the action acquire perturbative corrections which are generally
expressed as momentum integrals. These momentum integrals
might diverge at the upper critical dimension because of the
large-k properties of the integrand—i.e., they show ultraviolet
(UV) divergences.

The aim of the remormalization procedure is that of ab-
sorbing the UV divergences of perturbative corrections into a
finite set of renormalized coefficents (and fields)—the details
of the procedure are given in Sec. IV in the context of the
active KPZ model. Studying how the renormalized coeffi-
cients vary with the scale of observation ultimately allows
the derivation of flow equations and the identification of the
fixed (scale invariant) points of these equations. The latter
represent different possible universality classes for the model,
to which the model flows (in the renormalization group sense)
depending on the starting value of the original parameters. We
now proceed with a detailed analysis of the scale-invariant
behavior of the active interface model defined by Eq. (13).

III. MEAN-FIELD THEORY OF ACTIVE MEMBRANES

In the present section we will analyze the properties of
the model summarized in Eq. (13) at the mean-field level.
The first step is to determine the conditions under which the
system is linearly stable. This will provide information about
different scaling regimes accessible within our approach, as
well as representing the starting point for beyond-mean-field
calculations.

A. Linear stability

The linearized, noiseless version of Eq. (13) reads

∂t h = ahφ − ch∂
2
a φ + νh∂

2
a h, (22a)

∂tφ = aφ∂2
a h − cφ∂4

a h + νφ∂2
a φ. (22b)

A Fourier-space solution of the linearized equations of
motion, with h(x, t ), φ(x, t ) ∝ ei(k·x−ωt ), yields the following
conditions:

νh + νφ > 0, (23a)

� ≡ νhνφk4 + (ah + chk2)(aφk2 + cφk4) > 0, (23b)

for the linear stability of the kth height and density modes with
respect to perturbations in the height and density profiles. The
dispersion relation, linking mode frequency and wave vector,
is given by

iω = 1
2

[
(νh + νφ )k2 ±

√
(νh + νφ )2k4 − 4�

]
. (24)

The first stability condition Eq. (23a) is satisfied in the phys-
ically relevant case νh > 0 and νφ > 0. The second condition
shows that there is an infrared (k → 0) instability for ahaφ <

0, which can be achieved when f (ρ0) and f ′(ρ0) have oppo-
site signs. This situation can be realized, for instance, with
f (ρ) = a − bρ, where a and b have the same sign and a −
bρ0 > 0. Such a functional form of f (ρ) might be suitable to
describe a membrane driven by a homogeneous force a and an
active force linearly proportional to the activator density, bρ,
which act in opposition to each other. If the instability persists
at the nonlinear level, then the assumption of vanishing slopes
(∂ah)2 � 1 might break down together with the Monge-gauge
description. This would force us to consider a more generic
membrane parametrization X(x), as is done, for instance, in
Refs. [35–37]. Therefore, from now on we restrict our analysis
to the ahaφ � 0 portion of the parameter space in Fig. 2.

Another instability arises from condition Eq. (23b) at in-
termediate wave vectors if νhνφ + ahcφ + chaφ < 0. This type
of instability was discussed in Ref. [3], and arises because of
the mixing between curvature coupling and active growth. For
instance, if ah > 0, activators with negative intrinsic curvature,
i.e., cφ < 0, tend to cluster due to a positive feedback: local-
ized growth causes a bump with negative curvature, which
recruits more activators due to the curvature coupling, which
in turn cause a larger localized growth. This mechanism leads
to an instability when its strength ahcφ = − ah|cφ| exceeds
that of the combination of the activators’ diffusion and surface
relaxation νhνφ . Analogously, activators with positive intrinsic
curvature cluster when ah > 0. Finally, an ultraviolet insta-
bility (k → ∞) occurs when cφch < 0, as is the case since
ch = − c/γn and cφ = ρ0c/γt . The latter instability, which
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FIG. 2. Phase diagram of the active interface model in the ah-aφ

plane. The linearly unstable (second and fourth quadrant) cannot be
accessed within our framework. All membranes with strictly positive
ahaφ can be characterized with the same set of scaling exponents,
to which we refer as the “generic active membrane” universality
class. As shown by the cartoon, the dynamics in this region of the
parameter space is dominated by coupled density and height waves
having speed v ∝ √

ahaφ [5,7]. Tuning the wave speed to zero leads
to new scaling regimes whose properties are discussed in the text.

can be easily cured by adding a bending rigidity term to the
membrane free energy, does not influence the result of this
paper, as in the regimes to be considered ch and cφ do not
simultaneously appear in the equations of motion.

In the cases where �> 0, such that there is no linear
instability in the model, the nature of the dispersion relation
close to k → 0 depends on the value of ahaφ . For ahaφ �= 0
we find an acoustic dispersion law, ω  ±(ahaφ )1/2k, whereas
for ahaφ = 0 we find a diffusive law, ω ∼ k2. This points to
different dynamical scaling regimes in the two cases, to be
discussed below, which will have important consequences for
the critical properties of the system. Even within the diffusive
regime, the other scaling properties depend on how the limit
ahaφ = 0 is approached: either one of the parameters ah or aφ

is being set to zero while the other one is kept finite, or both go
to zero at the same time. Each of these three cases represents
a different instance of the diffusive regime, with, as will be
shown below, different scaling exponents and upper critical
dimension. In total, four classes can be identified:

(1) Acoustic scaling (ω ∼ k in mean field)
(a) Generic active membrane—for ahaφ > 0

(2) Diffusive scaling (ω ∼ k2 in mean field)
(a) Active KPZ—for ah = aφ = 0
(b) Curvotactic activators—for ah = 0, aφ > 0
(c) Passive sliders—for ah > 0, aφ = 0

These scaling regimes are summarized in the phase dia-
gram of Fig. 2.

Before proceeding with the mean-field study of all the
above classes, let us discuss in more detail the relation
of the linear system Eq. (22) with other active membrane

models in the nearly-flat phase. Similar equations, for in-
stance, arise when the membrane is driven by two families
of “active pumps,” with intrinsic curvatures of opposite signs
and pushing the membrane in opposite directions. This model
was studied in Refs. [5,6,39]. In such a model, ρ becomes
the difference in local density of pumps of different kinds,
rather than the absolute density of activators. The analysis
of Ref. [5], which is mostly concerned with the case where
the average density of pumps of the two kinds coincide [cor-
responding to aφ = 0 in Eq. (13)], shows the onset of an
instability driven by the coupling with the curvature. Because
of this instability, pumps of the same kind cluster and the
membrane develops fingerlike protrusions. When, instead,
one species of pumps exceeds the other, perturbations in the
signed density profile travel as waves along the membrane
[5,6].

Subsequent works in the active membrane literature have
focused on the interplay between active forces and curva-
ture coupling. For instance, the model studied in Ref. [3],
which also leads to the intermediate wave-vector instability in
Eq. (23), can be obtained from Eq. (22) by setting aφ and ch

to zero, while having nonvanishing ah and cφ . (However, we
note the limiting case aφ, ch → 0 differs from the equations
in Ref. [3] by a hydrodynamic interaction kernel in the mem-
brane dynamics.) This model describes diffusing activators
which have a preference for a certain sign of membrane cur-
vature, but importantly does not include a coupling between
activator density and interface slope. It shows unstable or
wavelike behavior, depending on the specific value of the
curvature coupling. In particular, in the unstable phase, the
curvature coupling contributes to the phase separation of the
activators [4].

B. Power counting: Acoustic and diffusive scaling

We now begin our renormalization group (RG) study with
a power counting analysis, which allows us to compute the en-
gineering dimensions of fields and parameters. This procedure
is a useful preliminary analysis prior to a full RG calculation:
the engineering dimensions describe the critical behavior, or
scaling, of the model when the effects of nonlinear terms are
neglected. Engineering dimensions are computed by introduc-
ing an arbitrary momentum scale μ such that

[x] = μ−1, [t] = μ−z, [ψ] = μyψ , (25)

where [.] denotes the dimensionality of the object between
brackets and ψ denotes a generic parameter or field. The quan-
tity z is the dynamic exponent, which specifies the relation
between timescales and lengthscales in the thermodynamic
limit x, t → ∞ (or k, ω → 0). Each term of the action of
Eq. (16) has a specific dimensionality which can be obtained
by combining the engineering dimensions of fields, parame-
ters, derivatives, and differentials. The action itself, however,
is dimensionless by definition and so should be each of the
terms it contains. Therefore, every term of the action yields an
algebraic relation between the engineering dimensions which
must be satisfied to render that term dimensionless. For in-
stance, the term

∫
dd xdt h̃∂t h gives the equation yh + yh̃ −

d = 0.
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The inversion of all these algebraic relations yields the
engineering dimensions of all fields and parameters. We be-
gin by inverting the algebraic relations stemming from the
harmonic part of the action, thus determining the mean-
field scaling of the model. The harmonic action contains 10
terms, but 12 fields and parameters. Therefore, the system
of equations that determines the corresponding engineer-
ing dimensions appears at first sight underdetermined. Some
physical considerations come to the rescue. First, the mean-
field value of the dynamical exponent z can be computed
by analyzing the dispersion relation of the linearized model,
Eq. (24). Thus, for ahaφ > 0, we have acoustic behavior, with
ω ∼ k for k → 0, so that z = 1, whereas for ahaφ = 0 we have
diffusive behavior, ω ∼ k2 for k → 0, so that z = 2.

Second, we note that the stochastic terms in the equations
of motion Eq. (13) can be included in scale invariant descrip-
tions of the system only if they are marginal. Otherwise, they
either can be dropped (if irrelevant) or should be tuned to
0 to yield a scale-invariant description (if relevant). As we
are interested in cases where stochastic effects are present,
so that it is meaningful to speak about height and density
correlations, we require in what follows that at least one of the
stochastic terms is marginal. Because the two equations are
coupled, assuming a nonzero value of the noise parameter in
one equation transfers stochastic effects to the other equation
if the appropriate coupling parameter is nonzero. For instance,
if aφ �= 0, then noise in the equation for h causes stochastic
effects in the equation for φ, even if the latter does not itself
include a noise term. In the following discussion, we begin by
assuming both noise terms to be marginal,

yDh = yDφ
= 0, (26)

and later on we show that to encompass all possible scenarios
we also need to consider the cases where only one of the noise
terms is marginal.

Once the engineering dimensions of fields and linear cou-
plings are extracted from the harmonic part of the action,
nonlinear terms dictate the scaling dimensions of the coupling
constants λ, α, and κ , which in turn determine their “naive”
upper critical dimension. We now consider the engineering
dimensions obtained within the acoustic (z = 1) and diffusive
(z = 2) scaling separately and comment on their implications
for the static properties of active membranes.

C. Scaling laws in the acoustic regime:
The generic active membrane model

The acoustic regime corresponds to a dynamic exponent
z = 1, which is physically realized when ahaφ > 0. This cor-
responds to the generic active membrane model in Fig. 2,
and it is the typical situation for positive ah and aφ , which
corresponds to the biophysically relevant case of an advancing
cellular membrane where activators favour membrane growth.
Having set z = 1 and yDh = yDφ

= 0, we can find the engi-
neering dimensions for all other fields in this acoustic regime.
The values are summarized in Table I.

Notably, the engineering dimensions of the nonlinear cou-
pling parameters, such as λ, are negative for all positive d .
Therefore, the mean-field scaling provided by the engineering
dimension is exact in all dimensions. This result is useful, as

TABLE I. Engineering dimensions in the acoustic regime (z = 1,
for ahaφ > 0, corresponding to the generic active membrane case in
Fig. 2). The other nonlinear couplings α and κ , like λ, are irrelevant.
Therefore, the engineering dimensions coincide with the true scaling
dimensions of the fields for this regime.

ψ h̃ h φ̃ φ νh, νφ Dh, Dφ ah, aφ ch, cφ λ

yψ
d+1

2
d−1

2
d−1

2
d+1

2 −1 0 0 −2 − 1+d
2

it means that mean-field theory is sufficient to describe the
generic active membrane model (second and fourth quadrant
in the phase diagram in Fig. 2). Therefore, in the acous-
tic regime, the only couplings which need to be retained in
Eq. (13) are ah, aφ , Dh, and Dφ—all other couplings are ir-
relevant. To reduce the number of effective couplings further,
we perform the following rescaling of the height and density
fields,

h →
√

2Dφ

a2
φ

h, φ →
√

2Dh

a2
h

φ. (27)

Note that this field rescaling is sensible as both Dh,φ and
ah,φ have zero dimensions, so the numerical factors used to
redefine the fields do not change under a momentum (or
space) rescaling—i.e., they are scale invariant. Following the
rescaling in Eq. (27), the critical properties of the model
can be described with the following set of equations in all
dimensions:

∂t h = aφ

√
Dh/Dφ (φ + ξn), (28a)

∂tφ = ah

√
Dφ/Dh

(
∂2

a h + ∂aξa
)
. (28b)

The noiseless version of these equations has been solved
exactly in Ref. [57] and the resulting deterministic acoustic
waves were studied. With the noise, Eq. (28) does not admit
a steady state as height and density fluctuations would grow
without bound. This can be inferred from the divergence of
correlations functions (Eq. (A3)) for νh = νφ = ch = cφ = 0.
As a result, these equations are to be interpreted as an inviscid
limit νh, νφ → 0+. Apart from regularising the divergence of
steady-state correlations, the presence of infintesimally small
viscosities poses some limitations on the range of timescales
over which the acoustic scaling holds, as we now discuss.

Since mean-field scaling is exact in the acoustic regime, the
scaling dimensions of the fields h and φ coincide with their
engineering dimensions,

yh = d − 1

2
, yφ = d + 1

2
. (29)

We first note that the dependence of a generic field ψ on x is
implied by Eq. (25) to be

ψ ∼ x−yψ . (30)

In Fourier space, with the wave vector k = √
k · k, whose

dimension is [k] = [μ], the scaling dimension of the equal-
time height-height correlation 〈h(k, t )h(q, t )〉 is 2yh − 2d (the
term 2yh comes from the two h fields, and the term −2d
arises because each Fourier transform entails a dd x integral
which reduces the scaling dimension by d). This height-height
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correlation is related to the time-dependent structure factor of
the membrane Sh(k, t ) via

〈h(k, t )h(q, t )〉 = (2π )2δ(k + q)Sh(k, t ). (31)

Upon removing the dimension −d of δ(k + q), the scaling di-
mension of the time-dependent height structure factor follows:

[Sh(k, t )] = μ2yh−d ⇒ S(k, t ) ∼ k2yh−dSh,1(kt ), (32)

with Sh,1 a scaling function of the dimensionless argument
kzt and the symbol ∼ denoting asymptotic equivalence for
small wave vectors k. Because of the absence of a steady
state for νh = 0, Sh,1 is only well-defined when the system is
prepared in a specific initial condition at t = 0, and it diverges
for large times. In fact, concerning systems having large but
finite size L with νh begin small but positive, the scaling in
Eq. (32) is relevant for “early times” t ∼ 1/k, whereas, after
t ∼ (νhk2)−1, the system crosses over to a diffusive regime
where Sh(k, t ) ∼ k−2Sh,2(k2t ). Sh,2(k2t ) is another scaling
function which, unlike Sh,1, converges to a well-defined and
time-independent limit as t → ∞. The acoustic behavior at
early times influences macroscopic observables such as the
time-dependent squared width of the interface, which is ob-
tained as

w2(L, t ) = 1

Ld

∑
k �=0

Sh(k, t ). (33)

When starting from a homogeneous, flat membrane, the early-
time acoustic regime leads to width oscillations with period
proportional to the system size which are superposed on the
usual Edward-Wilkinson growth. Such behavior was observed
numerically in Ref. [7] for a single-step growth model with
discrete activators, which is described by the generic-active-
membrane class.

Similar arguments can be applied to fluctuations of the
density φ. In this case, the exponent yφ controls the scal-
ing of the density-density correlation and the scaling of the
corresponding time-dependent structure factor in the acoustic
regime is given by Sφ (k, t ) ∼ k2yφ−dSφ (kt ) = kSφ (kt ). The
integral of the real-space φ-φ correlation over a portion of
space of linear size L gives a measure of fluctuations of the
number of activators, according to the following equation:

δN2(L, t ) =
∫

[0,L]d

dd x
∫

[0,L]d

dd y 〈φ(x, t )φ(y, t )〉. (34)

The right-hand side of Eq. (34) is proportional to the value of
Sφ (k, t ) at k ∼ 1/L times Ld . Then, using the acoustic scaling
of Sφ (k, t ) and substituting the value of yφ from Eq. (29), we
arrive at δN2(L, t ) ∼ Ld−1, in the acoustic limit where t ∼ L.
This is the signature scaling of hyperuniform states [58]. A
point-pattern or density distribution is termed hyperuniform
when its large-scale fluctuations are strongly suppressed—as
in the density distribution of a crystal. The early-time hyper-
uniformity of our activator density results from the activators
clumping together in finite-size clusters which are (statisti-
cally) uniformly distributed over the system (when starting
from homogeneous activators on a flat interface), as discussed
in Ref. [7] within the context of a one-dimensional lattice
model. As with height fluctuations, any nonzero value of

TABLE II. Engineering dimensions in the diffusive regime (z =
2), found under the assumption that yDh = yDφ

= 0, which describes
the active KPZ model (for ah = aφ = 0). The parameter κ , not in-
cluded in the table, is irrelevant.

ψ h̃ h φ̃ φ νh, νφ Dh, Dφ ah, aφ ch, cφ λ, α

yψ
d+2

2
d−2

2
d
2

d
2 0 0 +1 −1 2−d

2

the diffusive term, here νφ , causes a crossover to diffusive
behavior and standard number fluctuations δN2(L, t ) ∼ Ld for
times larger than t ∼ L2.

D. Scaling laws in the diffusive regime: The active KPZ model

In the diffusive regime (z = 2, valid physically for ahaφ =
0), the assumption of yDh = yDφ

= 0 leads to the engineer-
ing dimensions summarized in Table II. In particular, by
requiring adimensionality of the terms νh

∫
dd xdt h̃∂2

a h and
νφ

∫
dd xdt φ̃∂2

a φ, we get the following relation between engi-
neering dimensions:

yνh = yνφ
= z − 2. (35)

Thus, as z = 2, we immediately conclude that the parameters
νh and νφ are marginal in the diffusive regime. The implication
at the level of the equations of motion is that the Laplacian
terms ∂2

a h and ∂2
a φ contribute to the critical behavior of the

system.
We note that the parameters ah and aφ have a positive

dimension. These parameters are therefore relevant and drive
the system away from the diffusive critical behavior. However,
the leading scaling of the dispersion law Eq. (24) is diffusive
as long as ahaφ = 0, hence the system is scale invariant in
three possible cases: (i) either ah = aφ = 0, (ii) or aφ = 0
with ah finite, (iii) or ah = 0 with aφ finite. These three cases
will then correspond to universality classes for the dynamics
of active membranes in the diffusive regime. Cases (ii) and
(iii) cannot be studied directly here, as one of the coeffi-
cients of the linear term would grow without bounds under
the RG transformation. We shall discuss them separately in
the next two sections, where we will revisit the assumption
yDh = yDφ

= 0 made in this section. Here we discuss case (i),
which corresponds to the active KPZ model, or the origin of
the phase diagram shown in Fig. 2. The curvature coupling
terms can be dropped, as ch and cφ have negative engineering
dimension. The nonlinear coupling parameters λ and α (the
other nonlinear coupling parameter κ is always irrelevant in
this regime) have engineering dimension yλ = yα = (2 − d )/2.
The condition yλ = yα = 0 identifies the naive upper critical
dimension of the model as dc = 2.

A minimal active KPZ model can be obtained by the fol-
lowing rescaling of fluctuating fields:

h →
√

2Dh

νh
h, φ →

√
2Dφ

νφ

φ. (36)

As in the acoustic case, such rescaling, which removes the
parameters Dh and Dφ from the theory, is sensible in a renor-
malization group calculation because the rescaling factor is
marginal and does not change when renormalizing the system.
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For d > dc = 2 the nonlinear couplings are irrelevant in the
perturbative RG sense and the large-scale properties of the
system coincide with those of the following simple pair of
equations:

∂t h = νh∂
2
a h + √

νhξn, (37a)

∂tφ = νφ∂2
a φ + √

νφ∂aξa. (37b)

In Eqs. (37) height and density fluctuations are decoupled
and follow simple diffusion equations, with conservative noise
for the density fluctuations. In this case (as in all diffusive
regimes) we can use Eq. (33) to find the steady-state t → ∞
value of the width, w2

∞(L) ≡ L2χ [49], because in this case
the scaling function Sh converges for large times. We can then
identify the scaling dimension yh with the negative rough-
ness exponent, −χ . Height fluctuations therefore display the
Edwards-Wilkinson scaling, with roughness exponent χ =
2−d

2 [29]. Similarly, we can use the t → ∞ limit of Eq. (34)
to find that activator density fluctuations obey the scaling
δN2(L) ∼ Ld , typical of stochastic point processes. However,
at and below d = 2 the nonlinear terms produce corrections to
the mean-field scaling, hence they must be accounted for with
a renormalization group procedure going beyond the power
counting scheme of this section. The equations to consider for
the active KPZ model are thus the following:

∂t h = α

2
φ2 + λ

2
(∂ah)2 + νh∂

2
a h + √

νhξn, (38a)

∂tφ = λ∂a(φ∂ah) + νφ∂2
a φ + √

νφ∂aξa, (38b)

which are studied in Sec. IV.

E. Scaling laws in the diffusive regime:
The curvotactic activators model

The results of Sec. III D are based on the assumption
yDh = yDφ

= 0. This choice (together with z = 2), forced us to
set ah = aφ = 0 for the system to be critical. When relaxing
this assumption, we note that, as anticipated, one of the two
noise coefficients Dh and Dφ should always be assumed to
be marginal, together with one of the couplings ah or aφ ,
otherwise we would end up with a theory where one or both
the equations are deterministic (and height or density fluctua-
tions become meaningless). More precisely, we need to either
assume that both Dh and aφ are marginal, or that both Dφ and
ah are marginal. In this way, noise is transferred from one
equation to the other by the appropriate coupling.

We first consider the case in which yDφ
= yah = 0. This

allows us to describe the aφ = 0 line of the phase diagram—
corresponding to the orange line in Fig. 2, or to the curvotactic
activators model. Here, fluctuations of height and density
show another kind of critical behavior. The engineering di-
mensions of this regime are summarized in Table III.

The salient features shown in the table are that (i) the
only parameter which is always relevant is aφ , with the en-
gineering dimension of a mass, (ii) Dh and ch, i.e., noise
and curvature-coupling in the height equation, are irrelevant,
(iii) the dimensions of the nonlinear couplings λ and κ vanish
at d = 4. Thus, the naive upper critical dimension is dc = 4
for this case. The minimal system of equations to describe
the curvotactic activators model is obtained by the following

TABLE III. Engineering dimensions in the diffusive regime (z =
2), found under the assumption that yDφ

= 0, which describes the
case of the curvotactic activators model (aφ = 0 line in Fig. 2).

ψ h̃ h φ̃ φ νh, νφ ah, Dφ, cφ aφ Dh, ch λ, κ

yψ
d+4

2
d−4

2
d
2

d
2 0 0 +2 −2 4−d

2

rescaling of fields:

h →
√

2Dφ

νφ

ah

νh
h, φ →

√
2Dφ

νφ

φ. (39)

Above d = 4, where the mean-field scaling of Table III should
hold exactly, the nonlinear terms can be dropped and the large-
scale properties of the model (at the scale of Eq. (39)) are
those of the following pair of equations:

∂t h = νhφ + νh∂
2
a h, (40a)

∂tφ = −c′
φ∂4

a h + νφ∂2
a φ + ∂a(

√
νφξa), (40b)

where c′
φ = cφah/νh.

The equations above entail, essentially, the same ingredi-
ents of the model discussed in Ref. [3]. According to our
analysis, the interaction between the activator positions and
the interface curvature becomes marginal, therefore impor-
tant for the scaling of the system, only in the present case,
when the kinematic coupling with the slope, aφ , is made to
vanish. In addition, in this regime, the stochastic fluctuations
of the interface are masked by the active fluctuations coming
from the activator distribution. Thus, the roughness exponent
is χ = 4−d

2 , which is different from that of the Edwards-
Wilkinson model, and this is due to the noise transferred
from the φ equation. Density fluctuations instead obey the
standard central limit theorem scaling, δN2(L) ∼ Ld . Below
d = 4 the nonlinear couplings λ and κ become relevant. A
full renormalization group analysis is required here, and we
discuss it in Sec. V A.

F. Scaling laws in the diffusive regime: The passive sliders model

The scale-invariant properties of the model on the
ah = 0 line, where also z = 2, are highlighted by assuming
yDh = yaφ

= 0. This is the passive sliders model, corresponding
to the blue line in Fig. 2. The engineering dimensions corre-
sponding to this regime are summarized in Table IV.

In the passive sliders model ah is the only parameter which
is always relevant. As Dφ and cφ have negative engineering
dimensions, the density noise and the curvature coupling in
the density equation are irrelevant. The dimension of the non-
linear coupling λ, as in the model of Sec. III B, vanishes at
d = 2. A minimal version of the model can be obtained by

TABLE IV. Engineering dimensions in the diffusive regime (z =
2), found under the assumption that yDh = 0, which describes the
passive slider model (ah = 0 line in Fig. 2).

ψ h̃ h φ̃ φ νh, νφ aφ, Dh, ch ah Dφ, cφ λ

yψ
d+2

2
d−2

2
d+2

2
d−2

2 0 0 +2 −2 2−d
2
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considering the following field rescaling:

h →
√

2Dh

νh
h, φ →

√
2Dh

νh

aφ

νφ

φ, (41)

which causes the coefficients of the Laplacian term ∂2
a φ and

that of the slope-coupling term ∂2
a h in the density equation

to coincide. Above d = 2, the mean-field scaling of Table III
holds and the large-scale properties of the model are described
by the following pair of equations:

∂t h = −c′
h∂

2
a φ + νh∂

2
a h + √

νhξn, (42a)

∂tφ = νφ∂2
a h + νφ∂2

a φ, (42b)

where c′
h = chaφ/νφ .

Interestingly, tuning the coefficient of the active force term
to zero renders the curvature coupling ch a marginal term with
respect to the large-scale properties of the active interface
model. This term models the action of membrane proteins
which, rather than causing displacement of the interface, im-
pose a given local curvature on the region where they sit.
Another interesting feature of this passive sliders regime is
that the stochastic fluctuations of the activators within the
membrane are masked by those caused by the stochastic mo-
tion of the membrane. Thus, the interfacial fluctuations, which
are described by an EW-like roughness exponent, χ = 2−d

2 ,
create anomalous fluctuations in the density, described by a
scaling δN2(L) ∼ Ld+2, larger than expected from the central
limit theorem. We conclude that interfacial fluctuations induce
giant number fluctuations in the density of activators [59].
Below d = 2 the nonlinear terms should be taken into account
with a renormalization group procedure which we discuss in
Sec. V B.

IV. RENORMALIZATION OF THE ACTIVE KPZ MODEL

Let us now discuss in detail the scaling and the critical
properties of the active KPZ model at the ah = aφ = 0 point
of the parameter space. The equations to consider in this case
read (Eq. (38))

∂t h = να

2
φ2 + νλ

2
(∂ah)2 + ν∂2

a h + √
νξn, (43a)

∂tφ = νλ∂a(φ∂ah) + rν∂2
a φ + √

rν∂aξa, (43b)

where we have set νh = ν and νφ = rν, with r measuring
the ratio between the “viscosities” νh and νφ . We have also
conveniently rescaled the coefficients of the nonlinear terms,
α and λ, with ν. Naive power counting tells us that the non-
linear terms influence the critical properties of the model for
d � 2. In this section we study the corresponding shift of the
critical exponents from the mean-field values of Table II, with
the RG method. The main idea is to perform a systematic
renormalization of the UV divergences at the upper critical
dimension dc which, in turn, allows us to study the large scale,
i.e., infrared (IR) limit, in the vicinity of dc due to the relation
between UV and IR limit at d = dc [12,27,28].

A. Primitive degree of divergence of vertex functions and
renormalizability of the model

To show that the model is indeed renormalizable at the
upper critical dimension, let us examine perturbative cor-
rections to a generic vertex functions. An n-point vertex
function �ψ1...ψn is obtained by differentiating the effective
action Eq. (21) of Eq. (20) n times with respect to the fields.
Therefore, its scaling dimension is given by the negative sum
of the scaling dimensions of the fields ψi, plus a factor d +
z = d + 2 from the δ function which imposes conservation
of momentum. Perturbative corrections to �ψ1...ψn generically
include some power of the nonlinear couplings α and λ mul-
tiplied by a momentum integral, which we denote by Iψ1...ψn .
Since perturbative corrections must have the same dimension
of the vertex function itself, the engineering dimension of
Iψ1...ψn must be

δ(Iψ1...ψn ) = d + 2 −
n∑

i=1

yψi − nλyλ − nαyα, (44)

where nλ and nα denotes the number of λ and α factors in the
perturbative correction—i.e., the order of the perturbation.

The left-hand side of Eq. (44) is called the primitive degree
of divergence of the graph associated with Iψ1...ψn . By def-
inition, this quantity determines the power of the superficial
UV divergence of perturbative corrections to a given vertex
function. For the theory to be renormalizable at an integer
dimension d , the number of divergent vertex functions must
be finite and independent of the order of perturbation theory.
The last condition, according to Eq. (44), requires yα, yλ = 0
which means that the theory is renormalizable at d = dc = 2,
where the relation between UV and IR limits exists. Results
can then be analytically continued to the vicinity of dc. Setting
d = 2 in the engineering dimensions of the fields (taken from
Table II) gives

δ(Iψ1...ψn ) = 4 − 2nh̃ − nφ − nφ̃ . (45)

There are infinite vertex functions with a positive δ. However,
one must take into account that there are gradients entering
Iψ1...ψn : as these do not cause UV divergences, such gradi-
ents need to be factored out when assessing renormalizability
[28,51]. In general, each h field appearing in the theory comes
coupled with a gradient, because of translational invariance
along the h direction; φ̃’s are also coupled to gradients because
of the density conservation, and each solitary gradient must
contract with another gradient to preserve rotational invari-
ance. As a consequence, for instance �h̃h has δ = 2, but also
two gradients, so that the degree associated with the factor
multiplying the gradients is 0. The same is true of �φ̃φ̃ . The
important vertex functions to consider are therefore those
for which δ � n∇ , with n∇ denoting the number of spatial
gradients the corresponding term of the action, or twice the
number of time derivatives (as z = 2). The only vertex func-
tions satisfying these conditions are

�h̃h̃, �h̃h, �φ̃φ̃, �φ̃φ, �h̃hh, �φ̃φh, �h̃φφ, (46)

which are the ones required to derive the RG equations and
flow for the active KPZ model. All the vertex functions not
listed in Eq. (46), are not affected by UV-divergent pertur-
bative corrections. Therefore, the associated parameters are
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irrelevant in the RG sense and do not affect the scaling of the
model.

The identification of the exact form of divergent struc-
tures proceeds in a similar fashion as above. We know, for
instance, that every divergent contribution to �h̃h must contain
an extra ∂2 operator, hence the diffusive term will be renor-
malized while the frequency term receives no corrections (cf.
Eq. (B8)). Moreover, as the tilt symmetry Eq. (14) enforces
the frequency term of �h̃h to gain identical corrections as �h̃hh,
the latter is unaffected by the renormalization process. Similar
ideas apply to the density part of the model: in conclusion, the
only terms that require renormalization are

h̃h̃, h̃∂2h, φ̃∂2φ̃, φ̃∂2φ, h̃φ2, (47)

at all orders of the loop expansion. Let us remark that this
does not imply that we may simply omit the KPZ nonlinearity
and the analogous one in the density equation: they are both
marginal in the RG sense and the coupling parameter λ is still
renormalized due to the renormalization of the fields.

B. One-loop renormalization of perturbative corrections

One-loop corrections to the vertex functions listed in
Eq. (46) are computed in Appendix B [Eqs. (B8)–(B12)].
Specifically, dimensional regularization was used to eval-
uate the integrals for any real value of the spatial di-
mension d , so that UV divergences at dc = 2 appear as
1/(2 − d ) poles. The goal of this section is to absorb
these divergent contributions by defining a set of renor-
malized parameters and fields. To this end, it is conve-
nient to denote the coefficients of the bare theory with
a subscript 0, to distinguish them from the renormalized
coefficients (with no subscript). We define renormalized quan-
tities as

ψ0 = Zψψ, λ0 = μ
2−d

2√
Sd

Zλλ, α0 = μ
2−d

2√
Sd

Zαα, (48)

where ψ denotes a generic field/parameter other than a non-
linear coupling constant. The arbitrary momentum scale μ has
been introduced to absorb the engineering dimensions of the
bare nonlinear couplings λ0 and α0, so that the renormalized
couplings are dimensionless. The renormalization constants
Z are chosen to incorporate the UV-divergent corrections in
Eqs. (B8)–(B12). The effective action Eq. (21) then becomes

�[h̃, h, φ̃, φ]

=
∫

dd xdt

[
h̃0(∂t − ν0∇2)h0 + φ̃0(∂t − r0ν0∇2)φ0

− ν0

2
h̃2

0 + r0ν0

2
φ̃0∇2φ̃0 − ν0α0

2
h̃0φ

2
0 − ν0λ0

2
h̃0(∇h0)2

+ ν0λ0(∇φ̃0) · (φ0∇h0)

]
+ one-loop corrections

≡
∫

dd xdt

{
h̃(∂t − ν∇2)h + φ̃(∂t − rν∇2)φ

− ν

2
h̃2 + rν

2
φ̃∇2φ̃ − μ

2−d
2 ν

[
α

2
h̃φ2 − λ

2
h̃(∇h)2

+ λ(∇φ̃) · (φ∇h)

]}
+ UV finite corrections. (49)

The exact form of the renormalization constants is obtained
by adopting the minimal subtraction scheme (MS)—i.e., by
demanding the effective action to be UV-finite in the limit ε =
2 − d → 0, which gives

Zν = 1 − αλ

8rε
, (50)

Zr = 1 − (1 − r)[2λ2 + (r − 1)αλ]

8r(1 + r)2ε
, (51)

Zh̃ = 1 − rλ2 + α2 − αλ

16rε
,

Zh = 1 + rλ2 + α2 − αλ

16rε
, (52)

Zφ̃ = 1 − λ2 − αλ

4(1 + r)2ε
, Zφ = 1 + λ2 − αλ

4(1 + r)2ε
, (53)

Zλ = 1 − rλ2 + α2 − 3αλ

16rε
, (54)

Zα = 1 + (1 + r)2α2 + (9 + 10r − 7r2)αλ

16r(1 + r)2ε

+ (r3 + 10r2 − 7r − 8)λ2

16r(1 + r)2ε
. (55)

C. RG flow and universality

We can now write down the RG equations, which probe
the universal scaling of the system in the IR limit. To do so,
we note that the following relation holds between the bare and
renormalized two-point correlation functions for two generic
fields ψi and ψ j ,

C
ψiψ j

0 (k, ν0, g0, m0) = Zψi Zψ jC
ψiψ j (k, ν, g, m, μ), (56)

where g= {λ, α, r}. As the bare theory is independent of the
arbitrary momentum scale μ, the logarithmic derivative with
respect to μ of Eq. (56) yields(

μ
∂

∂μ
+ βg∂g − γνν

∂

∂ν
+ γψi + γψ j

)

× Cψiψ j (k, ω, g, m, μ) = 0, (57)

where we have introduced beta functions and anomalous di-
mensions as

βg = −g

(
ε

2
+ γg

)
, γψ = μ

∂

∂μ

∣∣∣∣
bare

ln Zψ. (58)

Here ψ denotes a generic field/parameter and derivatives are
taken with the bare parameters ψ0 fixed.

Considering the Z factors in Eqs. (51), (54), and (55),
and replacing α and λ with the bare counterparts μ

d−2
2 λ0 and

μ
d−2

2 α0 (additional Z factors are set to 1 in order to keep the
perturbative expansion first order in the number of loops), the
following β functions are obtained:

βr = (r − 1)[2λ2 + (r − 1)αλ]

8(1 + r)2
, (59a)

βλ = −λ

2

(
ε + rλ2 + α2 − 3αλ

8r

)
, (59b)
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TABLE V. Fixed points of the RG flow at the diffusive scale.
The stability of the fixed point is determined by the sign of the
eigenvalues of ∂iβ j at the fixed point, with i, j = r, λ, α. Because
the relevant limit is the infrared limit (small-momenta/large-scales),
a positive eigenvalue is sign of stability of the corresponding fixed
point.

r λ α e1 e2 e3

P0 (GAUSS) Any 0 0 0 −ε/2 −ε/2
P1 (KPZ) 1 ±√−8ε 0 −ε/2 ε 0
P2 (NEW) Any 0 ±√

8rε 0 −ε ε

βα = α

2

(
ε − (1 + r)2α2 + (9 + 10r − 7r2)αλ

8r(1 + r)2

+ (r3 + 10r2 − 7r − 8)λ2

8r(1 + r)2

)
. (59c)

Because of the definition of β functions, their zeros are the
possible fixed points of a scale transformation parameterized
by the momentum scale μ—i.e., of the RG flow. The fixed
point stability is determined from the eigenvalues of the ma-
trix ∂iβ j ≡ ∂giβg j . In the IR limit k/μ,ω/νμ2, m/μ → 0, so
that a positive eigenvalue signifies stability.

The first, trivial, zero of Eq. (59) is λ = α = 0. This corre-
sponds to the Gaussian fixed point, for which r can assume
any value. This fixed point is stable for ε < 0, i.e., d > dc,
as expected from power counting. Setting λ = 0 yields two
additional fixed points with α = ± 8rε. Such fixed points
only exist for ε < 0—i.e., d > dc—and are saddle points. With
λ �= 0, βr vanishes also at r = 1 or r = (α − 2λ)/α. Setting
r = 1 yields the KPZ roughening transition fixed point dis-
cussed in Ref. [27], with λ2 = − 8ε and α = 0, which exists
only for ε < 0 and is unstable. Setting r = (α − 2λ)/α does
not yield any other fixed points in the physical sector r > 0.
The fixed points of the RG flow are summarized in Table V,
together with the corresponding eigenvalues of the linearized
RG flow.

Let us now discuss the three fixed points in more detail, in
the r-λ-α space. Recall that, since ah = aφ = 0, we are study-
ing the origin of the reduced phase diagram shown in Fig. 2.
We will express directions in the r-λ-α space in terms of the
canonical basis (er, eλ, eα ). The first fixed point we discuss is
the Gaussian fixed point P0: this is the red point in Figs. 3(a)
and 3(b). At P0, the matrix ∂iβ j has two eigenvalues: one is
zero, and the corresponding eigenvector is parallel to er . The
other, degenerate, is proportional to −ε and its eigenvectors
span the λ-α plane. As a result, the Gaussian fixed point is
marginal for all d in the r direction, while, in the λ-α plane, it
is repulsive for d < 2 and attractive for d > 2 (see Fig. 3).

The second fixed point, P1, is that corresponding to the
roughening transition of the KPZ equation in d > dc = 2 [27]
and is marked by a yellow dot in Fig. 3(b). P1 is a saddle-
point: of the three eigenvalues of ∂iβ j , one is positive (with
eigenvector ∝er), one is negative (with eigenvector ∝eλ) and
one is zero (with eigenvector ∝3eλ + 2eα). Therefore, the
roughening transition fixed point is attractive in the r direction
and repulsive in the λ direction. For α = 0, the interface will be
rough in steady state for |λ| > |λc| =

√
8(d − 2) and smooth

otherwise. Because of the marginal direction 3eλ + 2eα , hav-
ing a small α shifts the roughening threshold λc by 3α/2.

The third fixed point P2 is the most important one in our
analysis, as it represents a new kind of universal behavior
for active interfaces. P2 corresponds to the two yellow points
in Fig. 3(a), with identical critical exponents, and it only
exists below d = 2. It has a marginal direction (er , with zero
eigenvalue), an attractive direction (eα , with eigenvalue ε)
and a repulsive one (3eα − 4eλ, with eigenvalue −ε). The
corresponding flow is depicted in Fig. 3(a). For nonzero λ,
the flow drives the model toward larger λ’s, possibly to a non-
perturbative fixed point analogous to the one which describes
the KPZ scaling in one dimension [60,61]. However, if λ is
tuned to zero, then the flow converges onto α2 = 8r(2 − d ),
with r arbitrary. Because λ is related to the average speed of
the membrane, this new fixed point might describe the scaling
of membranes which are stationary on average, but where

FIG. 3. Phase diagram in the α-λ plane of the model described by Eq. (43). For d < 2 (a), there is a perturbative fixed point on the λ = 0
line, marked by the yellow dot. For d > 2 (b) the flow converges onto the Gaussian fixed point along the α direction. The yellow dot on the
α = 0 line marks the IR-unstable fixed point which marks the famous roughening transition of the KPZ equation.

014610-13



FRANCESCO CAGNETTA et al. PHYSICAL REVIEW E 105, 014610 (2022)

inhomogeneities in the distribution of activators can stimulate
membrane growth nonlinearly.

The physical implications of the arisal of the new fixed
point P2 can be made clear by solving Eq. (57) with the
method of characteristics [12,27,28]. The solution shows that,
for all parameters g in the basin of attraction of an IR-stable
fixed point g∗ (such as P2), the following scaling limit holds
[27,28]:

Cψiψ j ∼ k
y∗
ψi

+y∗
ψ j

−d−z∗
C

(
ω

νkz∗ , g∗
)

, (60)

where

y∗
ψ = yψ + γ ∗

ψ, z∗ = 2 − γ ∗
D, γ ∗

ψ = γψ |g→g∗ . (61)

The y∗’s here are the actual scaling dimensions of the fields,
as opposed to the engineering dimensions y which coincide
with the y∗’s only when the nonlinearities are irrelevant. In
the present case, from Eqs. (50), (52), and (53), we obtain

γν = αλ

8r
, γh = αλ − α2 − rλ2

16r
, γφ = λ(α − λ)

4(1 + r)2
, (62)

together with γh̃ = −γh, γφ̃ = −γφ . At the fixed point P2,
λ = 0 and α2 = 8rε, γν = γφ = 0, whereas γh = − ε/2. There-
fore, in the vicinity of d =2, z∗ and y∗

φ remain at their
mean-field values 2 and d/2, respectively. The scaling dimen-
sion of the height, instead changes from −ε/2 in mean-field,
to −ε = d − 2,

yh = d − 2

2
→ yh + γ ∗

h = d − 2. (63)

Below d = 2 the scaling dimension of the height is therefore
reduced, hence the roughness exponent of the interface is
increased. Extrapolating the perturbative result to d = 1, for
instance, gives a roughness exponent of 1, signaling an inter-
face that is rougher than in the mean-field approximation, and
whose fluctuations are not those of a standard KPZ interface.
Although this result holds at one-loop only, it suggests that
the scaling of height fluctuations in the active KPZ model at
λ = 0 follows a new behavior, distinct from those shown by
KPZ interfaces.

We close this section with some comments about possi-
ble strong-coupling behavior. It is clear from the RG flows
depicted in Fig. 3, that a runaway solution exists for both
d < 2, and d � 2 (though there is a region of attraction to the
Gaussian fixed point in the latter case). Based on this feature,
we suspect that the nonperturbative fixed point, the exact form
of which cannot be captured by our perturbative analysis, may
represent a new novel universality class with λ∗, α∗ �= 0, dis-
tinct from the standard KPZ universality class [60,61]. Further
nonperturbative analysis is required to elucidate the properties
of this fixed point.

V. RENORMALIZATION OF OTHER
DIFFUSIVE REGIMES

While Sec. IV has dealt with one of the diffusive regimes,
two more remain, for which our power counting analysis
suggests that a full renormalization group analysis is required.

TABLE VI. Fixed points of the RG flow, and corresponding
eigenvalues, for the curvotactic activators model. The eigenvalues of
the fixed point P2 cannot be written in explicit form for general ε.
However, as P2 lies outside of the stability region of the parameter
space, the flow around P2 does not have physical meaning (hence we
do not show the corresponding eigenvalues).

q c λ κ e1 e2 e3 e4

P0 Any Any 0 0 0 0 −ε/2 −ε/2
P1 0 0 ±√

2ε 0 − ε

2
ε

2
17ε

24 ε

P2 0.5(8) −3.5(0) ±6.8(4)
√

ε 0 – – – –

In both these cases (corresponding to the curvotactic activa-
tors and passive sliders models), the one-loop renormalization
procedure is similar to the one reported above for the active
KPZ model. As the algebra is more cumbersome, we refer to
Appendix C for most of the calculations, and we discuss the
results in this section.

A. Renormalization of the curvotactic activators model

We first consider renormalization of the curvotactic activa-
tors model, corresponding to an active membrane with aφ = 0
(orange line in the phase diagram in Fig. 2). The equations to
consider are

∂t h = qν
(
φ + ∂2

a h
)+ νλ

2
(∂ah)2, (64a)

∂tφ = −νc∂4
a h + ν∂2

a φ + ∂a(
√

2νξa)

+ νλ∂a(φ∂ah) + νκ

2

{
∂2

a (∂bh)2 − ∂a
[
(∂ah)∂2

b h
]}

,

(64b)

where we have set νh = qν and νφ =ν, with q the inverse of
the parameter r of the previous section. We have also rescaled
the coefficients c, λ, and κ with ν. As discussed in Sec. III E,
the upper critical dimension of this model is dc = 4. Recalling
Eq. (44) for the primitive degree of divergence of perturbative
corrections, and using the engineering dimensions of Table III
with d = dc = 4,

δ(I ) = 6 − 4nh̃ − 2nφ − 2nφ̃ . (65)

Taking into account that h and φ′ fields must be coupled with
gradients, the only diverging vertex functions at d = 4 are
found to be

�h̃h, �h̃φ, �φ̃φ̃, �φ̃φ, �φ̃h,

�h̃hh, �φ̃φh, �φ̃hh, �φ̃hhh. (66)

Equation (66) suggests the addition of two new nonlinear
vertices to the action, one proportional to φ̃hh and one
to φ̃hhh. The former simply corresponds to the κ term in
the equations of motion, Eq. (13), the latter is here ex-
cluded because it violates the symmetry for infinitesimal tilt
transformations.

One-loop corrections around d = 4 are computed in
Appendix C. The ensuing β functions, also shown in
Appendix C, display two fixed points (besides the mean-field
one) in the q-c-λ-κ parameter space. The fixed points of
the RG flow are summarized in Table VI, together with the
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FIG. 4. Phase diagram of the curvotactic activators model, for
d < 4, in the q-λ plane (q on the x axis, λ on the y axis). It should
be noted that, as soon as q �= 0, c and κ fly away from the respective
fixed-point values together with λ.

eigenvalues of the linearized RG flow. The projection of
the RG flow onto the q-λ plane for d < 4 is shown
in Fig. 4.

First, we note the presence of the mean-field fixed point
P0, which is repulsive (in the λ and κ directions) for d < 4
and attractive for d > 4. Regarding P2, we recall that, with
the present choice of parameters, the stability condition of
Eq. (23) implies 1 + c > 0. Therefore, the fixed point P2 lies
outside the stability region of the phase diagram. This fixed
point is also repulsive, when the flow is projected on the q-c
plane, thus it does not have any particular implication for
the properties of the system. P1, however, requires a more
detailed analysis.

The sign of the stability matrix eigenvalues at P1 de-
notes the presence of one unstable direction and three
stable ones. The second eigenvector, e2 = (0, 1/

√
2ε, 2, 2),

is the only one having a component in the κ direction. As the
corresponding eigenvalue e2 = ε/2 is positive below dc, we
conclude that the flow around P1 is attractive in the κ direc-
tion. The other two eigenvectors with positive eigenvalue are
e3 = (0, 7/24

√
2ε, 1, 0) and e4 = (0, 0, 1, 0) = eλ, signaling

an attractive flow in the c-λ plane around the fixed point. How-
ever, the last eigenvector e1 = (3

√
2/

√
ε,−3

√
2/

√
ε, 1, 0),

whose eigenvalue e1 is negative below d = 4, has a com-
ponent in the λ direction too, implying that the coupling
λ ultimately flows away toward nonperturbative values. Ad-
ditionally, we expect that any physical realization of the
equations of motion in Eq. (64) will always have r > 0. This
suggests that the scaling laws in the curvotactic activators
model, for d < dc and for parameter values which avoid
linear instabilities, are controlled by a nonperturbative fixed
point.

B. Renormalization of the passive sliders model

We now turn to the passive sliders model, corresponding to
the ah = 0 line of the phase diagram (blue line in Fig. 2). Here,
the equations to consider are

∂t h = −ch∂
2
a φ + νh∂

2
a h + λ

2
(∂ah)2 +

√
2Dhξn, (67a)

∂tφ = aφ∂2
a h + νφ∂2

a φ + λ∂a(φ∂ah). (67b)

Below d = 2 the nonlinear terms should be taken into account
with a renormalization procedure. However, in this case the
model turns out to be nonrenormalizable, as there are an infi-
nite number of marginal terms that require renormalization.

Recalling Eq. (44) for the primitive degree of divergence
of perturbative corrections, using the engineering dimensions
of Table IV and d = 2,

δ(I ) = 4 − 2nh̃ − 2nφ̃ . (68)

The crucial difference between the passive slider model and
previously considered models comes from the absence of the
number of density fields φ in Eq. (68). Although the fields h
and φ′ are still coupled with gradient operators, this does not
apply to φ. Divergent vertex functions at d = 2 are then found
to be

�h̃φi
, �h̃hφ j

, �h̃hhφk
, �h̃h̃φl

, �φ̃φm
, �φ̃hφn

, (69)

for any nonnegative value of i, j, k, l, m, and n. There are then
6 infinite families of terms that would need to be included
in the theory to perform renormalization around d = 2. This
is caused by the engineering dimension of the field φ which,
by vanishing at d = 2, implies a breakdown of the small φ

approximation used in deriving the model.
We note that similar models, but without the curvature term

proportional to ch, have been considered before [62,63], and
have been shown to be associated with “fluctuation-dominated
phase ordering,” where the system evolves to a state with long-
range order and macroscopic fluctuations. While such large
scale fluctuations are in line with our power counting results
in Sec. III F, no definite scaling picture has yet been found
in d = 1, which may be due to the complex RG picture we
find here. Indeed, it was shown that nonrenormalizability may
be associated with nonuniversal behavior [64]. However, the
special case of Refs. [62,63] deserves further analysis from
the RG point of view, as tuning ch = 0 eliminates most of the
diagrams in Eq. (69).

VI. DISCUSSION AND CONCLUSIONS

In this work we have introduced a general continuum
model of the plasma membrane and studied its critical prop-
erties with field-theoretical techniques. The model includes a
field for the height of the membrane, which is assumed to have
no overhangs, and a field for the density of “activators.” The
membrane performs overdamped motion vertically, within the
environment, and the activators perform overdamped motion
horizontally, within the membrane. A coupling between the
density of activators and the local membrane slope arises kine-
matically because of the membrane motion. We performed a
detailed RG analysis of the model, which has allowed us to
identify four different scaling regimes, where the membrane
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and activators dynamics are described by a different pair of
equations for membrane height and density of activators. The
different regimes we unveil encompass and generalise active
membrane models which were introduced previously to de-
scribe specific applications [1,3–8,65,66].

We have shown that the scale-invariant properties of an
active membrane are determined essentially by two param-
eters (see Fig. 2). One is the aforementioned kinematic
coupling between the activator density and the membrane
slope, which we call aφ and is proportional to the aver-
age density of activators and the average vertical velocity
of the membrane (we called this velocity λ throughout the
paper). The other key parameter is ah, which quantifies the
strength of activator-induced interfacial growth. The first uni-
versality class we identify corresponds to the case where
aφah > 0—we call this the “generic active membrane model”
because it is found for any advancing membrane whose
growth is stimulated by activators. This case is typical of
the lamellipodium—a supramembrane structure formed at the
leading edge of eukaryotic cells which has attracted much
attention in biophysics, especially with respect to the obser-
vation of ubiquitous lateral waves traveling along the leading
edge. Indeed we find that the natural scaling regime for this
model is acoustic, i.e., the dispersion relation which links
mode frequency and wave vector is linear in the modulus
of the wave vector when the latter is small. The wave speed
emerging from the dispersion relation is proportional to the
speed of the vertical motion of the membrane, thus establish-
ing a strong and testable link between cell motility and lateral
waves for generic active membranes.

Our RG analysis shows mean-field theory to hold exactly in
all spatial dimension for the generic active membrane model.
This implies that the scaling dimensions computed by naive
power counting coincide with the exact scaling dimensions
of the fields, and, for early times, there are no corrections to
the dynamic exponent z = 1 due to the nonlinear couplings
of the model. However, viscous terms in the height (surface
tension) and density (diffusion) equations are dangerously
irrelevant, and if absent preclude the existence of a steady
state. In practice, this means that small nonzero viscous terms
have to be included for the theory to behave well in the t → ∞
limit, and, in the presence of these terms, the acoustic regime
is relevant up to times of order of the system size L. The
early-time dynamics in the acoustic regime leaves a detectable
signature in the structure factors of membrane and activator
density fluctations.

Three additional scaling regimes emerge when aφah = 0
(these lie on the axes of Fig. 2), which can be realized either
by having an active force which is nonlinear in the activator
density, or by keeping the membrane stationary, for instance
by applying a suitable external force which exactly balances
the average active force. In all these cases, the mean-field
dynamical exponent is z = 2, corresponding to a diffusive
scaling of length and timescales. If both ah and aφ are equal to
0, for instance, then the system is described by what we call
the “active KPZ model.” In this case the naive upper critical
dimension of the model, beyond which mean-field theory
works exactly (from the perturbative point of view), is 2. In the
active KPZ model, power counting shows that an additional
nonlinear coupling must be included in the theory—the term

αφ2/2—which describes catalytic, or cooperative, membrane
growth: such a term can arise, for instance, when activators
are dilute and require dimerization to stimulate growth. The
other relevant nonlinearity in this case is the usual KPZ-term
proportional to the squared slope with coefficient λ. When
λ = 0, our one-loop RG calculation shows the emergence of
a nontrivial perturbative fixed point controlling the scaling of
the active KPZ model for d < dc. This fixed point corresponds
to a rough interface, with a larger roughness exponent with
respect to that of KPZ and other passive interfaces.

When aφ = 0, but ah �= 0, which corresponds to the case
of a membrane which is stationary on average, our analysis
shows that coupling between membrane curvature and acti-
vator density becomes marginal and needs to be included in
the model—such a term was, by contrast, irrelevant when
ah, aφ �= 0. We call the equations describing this scaling
regime the “curvotactic activators model,” because the dynam-
ics of the activators is influenced by the interface curvature.
A simplified linear version of this model was introduced
originally in Ref. [3], where it was also shown to display
transient transverse waves. As the dynamical scaling of this
model is diffusive, our analysis shows that the waves seen in
this regime are fundamentally different from those which are
found in the generic active membrane model, and it would be
of interest to perform targeted experiments in cellular systems
to find out which of these more closely represents the lateral
actin waves found in cells. From a scaling perspective, this
model shows enhanced height fluctuations in mean field, lead-
ing to a “super-rough” scaling with the roughness exponent
χ � 1 in the physically relevant dimensions d = 1 and d = 2.
This is most likely due to the noise acting on the density field
transferring to the height field through the active-force term
ahφ. Our RG calculations show that the naive upper critical
dimension of the curvotactic activators model is dc = 4, and
that below dc nonlinearities take the system away from the
mean field Gaussian fixed point, most likely toward a strong-
coupling fixed point associated with nonperturbative values
of both the KPZ parameter λ and the new parameter κ which
emerged from power counting. It would thus be of interest
to study this case further with nonperturbative approaches or
numerical simulations [67].

Finally, when ah = 0, the model describes an ensemble
of particles that are advected by the slopes on an advancing
membrane. These could be, for instance, proteins which lie
at the leading edge of a cell without stimulating its growth.
This case corresponds to our final scaling regime, that of
the “passive sliders model,” which was studied before in
the absence of any curvature coupling, in Refs. [62,63,68].
This problem is known to show “fluctuation-dominated phase
ordering,” a phenomenon associated with anomalous giant
fluctuations in the density. A power counting analysis indeed
reveals a scaling of density fluctuations larger than that of a
diffusing field, again due to a noise-transfer effect—this time
from the height equation into the density equation through the
ah coupling. However, the model is nonrenormalizable below
the upper critical dimension, which here is dc = 2. This fact
may be at the origin of the highly nontrivial scaling of density
fluctuations found numerically in the passive sliders model
in d = 1, and hints at the possibility that the behavior seen
there may even be nonuniversal. It is interesting to note, in
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this respect, that tuning ch = 0, which corresponds to the case
considered in Refs. [62,63,68], eliminates all one-loop correc-
tions to the vertex functions in Eq. (69), which are responsible
for nonrenormalizability of the model. In other words, when
ch = 0, none of the remaining parameters in Eq. (69) affects
the functions in Eq. (69) at the one-loop level, so that the
latter remain zero under rescaling if they are not included in
the original theory. If this remains true beyond one-loop, then
the model with ch = 0 would become renormalizable again.
It would therefore be of considerable interest to study the
ch = 0 limit by large-scale simulations and nonperturbative
approaches in different dimensions to understand in depth the
corresponding physics.

We close by noting that, while we have not studied here the
case of ahaφ < 0, because it leads to the breakdown of our ap-
proximation of nearly flat membranes required for the Monge
gauge description, this case is far from being uninteresting and
certainly deserves further attention in the future. Numerical
studies of the unstable phase indeed show a rich phenomenol-
ogy, e.g., the formation of motile protrusions [35–37]. We
shall also mention here that a similar picture, with an unstable-
to-stable transition, was found in a two-species lattice model
[69] inspired by the physics of sedimenting colloidal crystals
[70–72]. In the stable phase, corresponding to our generic ac-
tive membrane model, fluctuations of the fields in a reference
frame comoving with the lateral waves are found to exhibit
a wealth of different dynamic scaling regimes [73,74]. In the
unstable phase, corresponding to the ahaφ < 0 sector of our
model, different phases are found with a different degree of
long-range order in the system [75–78]. It would be of interest
to work out the relevance of the unstable phase for active

membrane physics, and then understand the relationship be-
tween these one-dimensional results and the picture emerging
from our perturbative RG approach.
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APPENDIX A: PERTURBATION THEORY
AND FEYNMAN RULES

In this Appendix we discuss the details of the perturbation
theory which led to the corrections shown in Eqs. (B8)–
(B12). The actual corrections are computed in the following
Appendices. Here we begin by detailing the Fourier-space
expression of the harmonic action, Eq. (17). For a generic
field ψ (x, t ), we define the space-time Fourier transform
as

ψ (x, t ) =
∫

dd k

(2π )d

dω

(2π )
ψ (k, ω)ei(k·x−ωt ). (A1)

We will, in the following, use the shorthand k to rep-
resent both frequency and momentum, and

∫
k for the

d + 1-dimensional momentum and frequency integral with
infinite-volume normalization (2π )d+1. Therefore, Eq. (17)
can be written as

S0[h̃, h, φ̃, φ] = 1

2

∫
k

⎛
⎜⎜⎝

h̃(−k)
h(−k)
φ̃(−k)
φ(−k)

⎞
⎟⎟⎠

T⎛
⎜⎜⎝

−2Dh Lh 0 −(ah + chk2)
L†

h 0 +k2(aφ + cφk2) 0
0 +k2(aφ + cφk2) −2Dφk2 Lφ

−(ah + chk2) 0 L†
φ 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

h̃(k)
h(k)
φ̃(k)
φ(k)

⎞
⎟⎟⎠, (A2)

where we have also introduced the linear operators Lh ≡
−iω + νhk2, Lφ ≡ −iω + νφk2 and their complex conjugates
L†

h and L†
φ . The superscript † denotes transposition.

In complete analogy with Eq. (15), the harmonic action S0

defines a path probability for the fields h and φ. This harmonic
path probability is equivalent to the linearized version of the
equations of motion. Inverting the matrix which appears in
Eq. (A2) yields, as in Eq. (18), the correlations of the lin-
earized problem,

Ch̃h̃
0 (k) = 0, (A3a)

Ch̃h
0 (k) = L†

φ

L†
hL†

φ + k2(ah + k2ch)(aφ + k2cφ )
, (A3b)

Ch̃φ̃

0 (k) = 0, (A3c)

Ch̃φ

0 (k) = − k2(aφ + k2cφ )

L†
hL†

φ + k2(ah + k2ch)(aφ + k2cφ )
, (A3d)

Chh̃
0 (k) = Ch̃h

0 (−k), (A3e)

Chh
0 (k) = 2Dh|Lφ|2 + 2Dφk2(ah + k2ch)2

|LhLφ + k2(ah + k2ch)(aφ + k2cφ )|2 , (A3f)

Chφ̃

0 (k) = ah + k2ch

LhLφ + k2(ah + k2ch)(aφ + k2cφ )
, (A3g)

Chφ

0 (k) = 2Dφk2(ah + k2ch)L†
h

|LhLφ + k2(ah + k2ch)(aφ + k2cφ )|2 +

− 2Dhk2(aφ + k2cφ )Lφ

|LhLφ + k2(ah + k2ch)(aφ + k2cφ )|2 , (A3h)

Cφ̃h̃
0 (k) = 0, (A3i)

Cφ̃h
0 (k) = Chφ̃

0 (−k), (A3j)

Cφ̃φ̃

0 (k) = 0, (A3k)

Cφ̃φ

0 (k) = L†
h

L†
hL†

φ + k2(ah + k2ch)(aφ + k2cφ )
, (A3l)

Cφh̃
0 (k) = Ch̃φ

0 (−k), (A3m)
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Cφh
0 (k) = Chφ

0 (−k), (A3n)

Cφφ̃

0 (k) = Cφ̃φ

0 (−k), (A3o)

Cφφ

0 (k) = 2Dφk2|Lh|2 + 2Dhk4(aφ + k2cφ )2

|LhLφ + k2(ah + k2ch)(aφ + k2cφ )|2 . (A3p)

The remaining part of the action comprises, in the most
general case, four additional terms [see Eq. (16)]. The first
two, proportional to λ, have the following Fourier-space ex-
pression,

Sλ = λ

∫
k0,k1,k2

[
(k1 · k2)h̃(k0)

h(k1)h(k2)

2

− (k0 · k2)φ̃(k0)φ(k1)h(k2)

]
δ(k0 + k1 + k2). (A4)

The third, proportional to α, reads

Sα = −α

∫
k0,k1,k2

h̃(k0)
φ(k1)φ(k2)

2
δ(k0 + k1 + k2),

(A5)

while the fourth, proportional to κ , is given by

Sκ = −κ

∫
k0,k1,k2

(
k2

0k1 · k2 + k2
1k0 · k2 + k2

2k0 · k1
)

× φ̃(k0)
h(k1)h(k2)

2
δ(k0 + k1 + k2). (A6)

Correlation functions of the complete model are defined as
averages of some product of fields over the full path probabil-
ity e−S , which we denote with 〈.〉. As S = S0 + Sλ + Sα + Sκ ,
the same correlation function can be written as the aver-
age of the same product of fields, multiplied by e−Sλ−Sα−Sκ ,
over the Gaussian path probability e−S0 . The latter average
is commonly denoted with 〈.〉0. The Taylor-expansion of the
exponentials e−Sλ/e−Sα /e−Sκ within the average provides a
systematic expansion of the model’s correlation functions
in terms of the nonlinear coupling parameters λ, α, and κ .
The 0th order terms of such expansions are given by the
correlation functions of the Gaussian model, which can all
be computed as sums of products of the two-point functions
in Eq. (A3). Higher-order terms are conveniently organized
with the diagrammatic representation introduced by Feynman.
Specifically, each of the two-point function in Eq. (A3) is
represented with a directed line, such that h/φ fields are as-
sociated with solid/dashed lines and response fields h̃ and φ̃

have an additional vertical tick, i.e.,

(A7a)

(A7b)

(A7c)

(A7d)

(A7e)

(A7f)

(A7g)

(A7h)

In addition, the Fourier-space coefficients of nonlinear
coupling terms (with a minus sign because P ∝ e−S) are rep-
resented by vertices,

(A8a)

(A8b)

(A8c)

(A8d)

Therefore, the term of order n/m/l in λ/α/κ of a generic
p-point correlation function 〈∏p

j=1 ψ j (k j )〉 can be obtained as
follows. First, one should draw all the topologically distinct
diagrams with p “external” loose ends (the jth end represent-
ing the field φ j and carrying momentum k j) and n λ-vertices,
m α-vertices, and l κ-vertices. Because of the δ-functions
in Eqs. (A4)–(A6), the momenta of incoming and outgoing
lines at each vertex should add up to zero. In other words,
conservation of momentum must be ensured along the dia-
gram. Second, one should include the “symmetry factor” of
the diagram, that is a number which includes the (n!m!l!)−1

factor coming from the Taylor expansion of the exponential
and the multiplicity of the diagram coming from the symmetry
of the diagram itself for permutation of vertices and lines.
Once the perturbative expansion has been written down in
terms of diagrams, corrections can be cast back into functional
form by substituting lines according to Eq. (A7), vertices
according to Eq. (A8) and finally performing a k-integral over
the momenta of the “internal” lines which are not fixed by the
global conservation of momentum.
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APPENDIX B: PERTURBATIVE CORRECTIONS
AT THE ah = aφ = 0 POINT

In this Appendix we show, following the rules out-
lined in Appendix A, that one-loop perturbative correc-
tions to the vertex functions listed in Eq. (46) are those
presented in Eqs. (B8)–(B12). We shall first recall the
general relation between n-point connected correlation func-
tions, Cψ1...ψn (k1, . . . ,kn), and n-point vertex functions,
�ψ1...ψn (k1, . . . ,kn). This relation, which can be derived
by resorting to the relation Eq. (20) between the respec-
tive generating functionals, can be compactly written as
follows [12]:

Cψ1...ψn (k1, . . . ,kn)

= −
∑

ϕ1,...,ϕn

[
n∏

i=1

Cψiϕ j (ki,k
′
i )

]
�ϕ1...ϕn (k′

1, . . . ,k
′
n)

+Qψ1...ψn (k1, . . . ,kn), (B1)

where the sum over a field ϕi denotes the sum over all
the fields in the theory, h̃, h, φ̃ and φ. The function
Qψ1...ψn (k1, . . . ,kn) collects all contributions which are one-
particle reducible. One-particle reducible here means that
the corresponding Feynman diagram splits into two distinct
nontrivial diagrams upon removing one of the internal lines.
As such diagrams are all contained in Q, �ψ1...ψn (k1, . . . ,kn)
takes contributions from one-particle irreducible (1PI) dia-
grams only, i.e., those which do not separate upon removal
of an internal line.

Therefore, Eq. (B1) provides an operational definition for
perturbative corrections to vertex function: consider first the
perturbative corrections to a connected correlation function,
then discard diagrams which are one-particle reducible by
internal cuts, remove the external legs (to account for the
factor

∏n
i=1 Cψiϕ j (ki,k′

i )) and finally apply an overall minus
sign. Let us consider, for example, Chh̃(k). One of the one-
loop contributions to Chh̃(k) is represented by the following
diagram:

(B2)

This diagram is clearly 1PI. Dividing out the two external
legs Chh̃

0 (k) (from the right) and Chh̃(k) = Ch̃h(−k) (from the
left) leaves a one-loop correction to �h̃h(k) (notice the shorter
external lines),

(B3)

The contribution of the diagram in Eq. (B3) can be computed
by following the rules outlined in Appendix A. There is one
vertex as in Eq. (A8c), one of the kind of Eq. (A8b) and two
two-point functions: Cφφ̃

0 (k − k1) and Cφφ

0 (k1). Exchanging
the two φ lines of the leftmost vertex leaves the diagram
unchanged, for a symmetry factor of 2, which cancels the 1/2
factor in the α-vertex (see Eq. (A8c)). Hence, we get

(B4)

where, in the second line, Cφφ̃

0 (k − k1) and Cφφ

0 (k1) have
been substituted according to Eqs. (A3o) and (A3p), with the
model parameters set to the values relevant for the ah = aφ = 0
point of the phase diagram. Note that counting the powers of
momentum in the k1-integral, for d = dc = 2, yields a primi-
tive degree of divergence of 2, in agreement with Eq. (44).

The bare vertex function �h̃h
0 (k) coincides with the inverse

of Chh̃
0 (k), that is �h̃h

0 (k) = − iω + νk2. Because the integral
on the right-hand side of Eq. (B4) vanishes as k → 0, the
diagram of Eq. (B3) gives no corrections to the −iω term of
the vertex functions. One can then set ω = 0. What remains
can be expanded in powers of the external momentum k:
because the primitive degree of divergence of the diagram is 2,
the coefficient of the second-order term of the expansion will
display a logarithmic UV divergence, which can be absorbed
via a redefinition of the parameter ν. Higher-order terms of

the expansion will have coefficients which do not display
any UV divergence around d = 2 and are not relevant for the
RG treatment. Therefore, after setting ω = 0, performing the
ω1-integral and expanding the result in powers of k, we get

(B5)

The d-dependent factors encountered in this kind of expres-
sion come from the replacement, in the Taylor expansion of
the integrand, of the factor (k1 · k)2 with k2

1k2/d , which is
possible because of the isotropy of the k1-integral.

The k1-integral on the right-hand side of Eq. (B5) displays
the expected logarithmic UV divergence in d = 2. Addition-
ally, it displays an IR divergence for d � 2, primarily because
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all the relevant parameters of the theory have been set to zero.
To make the integral finite below dc, an IR regulator must be
chosen. The most natural ones at this stage are the relevant
parameters ah, aφ . This is, however, an inconvenient choice
from a practical standpoint, as it makes the structure of prop-
agators much more complex (see Eqs. (A3a)–(A3p)). Other
commonly used regulators are finite external momentum [12]
or frequency [79]. We consider, instead, a sharp cutoff con the
noise correlation, i.e.,

〈ξ (k, t )ξ (k′, t ′)〉 ∝ θ (|k| − m)δ(k + k′)δ(t − t ′), (B6)

where θ denotes the heavyside step-function and m is an in-
frared (IR) regulator having the dimensionality of momentum.
Such IR-regularization scheme has been mainly considered
in RG studies of the Navier-Stokes equation [80,81] and tur-
bulent mixing of reaction-diffusion processes [82–84]: the
parameter m represents the largest (inverse) lengthscale at
which the stochastic noise act. As a result, all the two-point

correlation functions with no response fields (Eqs. (A7b),
(A7d), (A7f), and (A7h)) acquire a factor θ (|k| − m). In the
case of Eq. (B5), for instance, the θ (|k1| − m) coming from
Cφφ

0 (k1) cures the IR divergence, allowing us to compute the
k1-integral for d < dc:

(B7)

with Sd denoting the measure of the d-dimensional hyper-
sphere, scaled by (2π )d . Notice that the logarithmic UV
divergence for d → 2 is now represented by a simple pole
(2 − d )−1.

There is an additional diagram contributing to the one-loop
correction of �h̃h(k). However, the coefficient of the k2 term
in the Taylor-expansion of such diagram vanishes. To sum up,

(B8)

Analogous considerations yield one-loop corrections for all the vertex functions listed in Eq. (46). For instance,

(B9)

Note the factor of 1/2 multiplying the diagrams in Eq. (B8): the numerical pre-factor for both diagrams is 1/8 (1/2 from each
vertex and 1/2 from the Taylor expansion), while the symmetry factor is only 4 (symmetry for exchange of the two vertices and
the two internal lines). As the primitive degree of divergence of �h̃h̃ is zero, no Taylor expansion of the integrand of the loop
integral was required. Moreover,

(B10)
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and

(B11)

The three point functions �h̃hh and �φ̃φh do not receive any correction: the reason is that, because of the infinitesimal tilt
symmetry (Eq. (14)), corrections to the λ-vertices must coincide with the corrections to the −iω terms in the two-point vertex
functions �φ̃φ and �h̃h, which vanish. One-loop corrections to �h̃φφ , instead, are given by

(B12)

APPENDIX C: RENORMALIZATION ON THE aφ = 0 LINE

In this Appendix we give details of the RG analysis on the ah axis of the reduced phase diagram shown in Fig. 2. Rescaling
the parameters in Eq. (A3) as described in Sec. V A, the only nonzero propagators have the following form:

Ch̃h
0 (k) = L†

φ

L†
+L†

−
, Chh

0 (k) = q2ν3k2

|L+L−|2 , Cφ̃φ

0 (k) = L†
h

L†
+L†

−
, Cφφ

0 (k) = νk2|Lh|2
|L+L−|2 , (C1a)

Chφ̃

0 (k) = qν

L+L−
, Chφ

0 (k) = qν2k2L†
h

|L+L−|2 , Ch̃φ

0 (k) = − νck4

L†
+L†

−
, (C1b)

together with their conjugated counterparts, and we have used the following shorthand notation

Lh = −iω + qνk2, Lφ = −iω + νk2,

L+ = −iω + νk2X+, L− = −iω + νk2X−,

X± = 1

2
[(1 + q) ±

√
(1 + q)2 − 4q(c + 1)].

(C2)

It is worth noting that Re[X±] > 0, which is in particular useful for evaluating the frequency integrals. The vertex functions that
require renormalization are listed in Eq. (66). The corresponding perturbative corrections are obtained in a standard fashion:

(C3)
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(C4)

(C5)

(C6)

(C7)
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(C8)
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(C9)

Surprisingly, the net divergent contribution to �φ̃hh is zero. As no obvious symmetry forbids the renormalization of this three-
point vertex function, we expect this cancellation to be only an artefact of the one-loop approximation. Similar situation occurs
in the CKPZ equation as well [50,85], where Janssen showed that two-loop contributions, although small, do exists [86].

The above UV divergent terms are eliminated by a redefinition of the fields and parameters of the model. As mentioned in the
main text, the perturbative corrections are calculated with bare parameters (we only suppress the subscript 0 for the simplicity).
The renormalized quantities are defined similarly as in Eq. (48),

ψ0 = Zψψ, λ0 = μ
4−d

2√
Sd

Zλλ, κ0 = μ
4−d

2√
Sd

Zκκ. (C10)

The renormalization constants are obtained using the minimal subtraction scheme, and the corresponding β functions have the
following form:

βλ = −λ

(
ε

2
+ 3λκ (q + 1)2(3q − 2) − λ2(c(q + 2) − 3q3 + 10q + 8)

16(c + 1)2(q + 1)3

)
, (C11)

βκ = −κ

(
ε

2
+ 3λκ (q + 1)2(3q − 4) − λ2(c(3q + 4) − 3q3 + 6q2 + 24q + 16)

16(c + 1)2(q + 1)3

)
, (C12)

βq = −q(λ2(c + q2 + 2q + 2) + 3λκ (q + 1)2)

8(c + 1)2(q + 1)2
, (C13)

βc = −Acλ
2 + Bcλκ + Ccκ

2

48(1 + c)2(1 + q)3
, (C14)

where

Ac = −c2(34q + 6) + c(6q3 − 15q2 − 106q − 29) + q(3q2 + 2q − 29), (C15)

Bc = 2c(q + 1)(9q2 − 5q − 9) + (q + 1)(−11q2 − 16q + 5), (C16)

Cc = −26q(q + 1)2. (C17)
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The anomalous dimensions for fields and ν are

γh = −γh̃ = λ2(c(q + 2) − q3 + 4q2 + 12q + 8) + 3κλ(q − 2)(q + 1)2

16(c + 1)2(q + 1)3
, (C18)

γφ = −γφ̃ = −λ2q(c + q2 + 2q + 2) + 3κλq(q + 1)2

16(c + 1)2(q + 1)3
, (C19)

γν = − λq(3κ + λ)

8(c + 1)2(q + 1)
. (C20)
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