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Mediated interactions between rigid inclusions in two-dimensional elastic or fluid films
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Interactions between rigid inclusions in continuous three-dimensional linearly elastic solids and low-
Reynolds-number viscous fluids have largely been quantified in the past. Prime example systems are given
by functionalized elastic composite materials or fluid colloidal suspensions. Here, we address the significantly
less frequently studied situation of rigid inclusions in two-dimensional elastic or low-Reynolds-number fluid
films. We concentrate on the situation in which disklike inclusions remain well separated from each other and do
not get into contact. Specifically, we demonstrate and explain that the logarithmic divergence of the associated
Green’s function is removed in the absence of net external forces on the inclusions, in line with physical intuition.
For instance, this situation applies when only pairwise mutual interactions between the inclusions prevail. Our
results will support, for example, investigations on membranes functionalized by appropriate inclusions, both of
technical or biological origin, or the dynamics of active microswimmers in appropriately prepared thin films.
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I. INTRODUCTION

From a practical point of view, functionalization of solids
and fluids by more or less rigid inclusions is of paramount
interest. We think, for example, of elastic composite materials
that through externally addressable rigid inclusions may serve
as soft actuators [1–3] or of colloidal suspensions [4–6] that
represent materials of everyday usage such as paint. A more
specific area of recent interest extends to the world of active
microswimmers self-propelling through a liquid [7,8] and thus
forming a type of active suspension, for which characteris-
tic properties such as reduced viscosities may be expected
[9–11]. These basic examples motivate a theoretical charac-
terization of such setups, particularly concerning the mutual
interactions between the inclusions that may be mediated by
the surrounding environment.

More in detail, if a force or torque is exerted on one inclu-
sion, it will be transmitted to some extent to the surrounding
medium. The medium is set into motion and gets displaced.
Since the other inclusions are surrounded by the medium as
well, their configuration is likewise affected. Overall, the total
configuration of the inclusions is substantially coupled by the
enclosing environment.

A lot of effort has been spent over the past decades to
calculate and quantify such mutual interactions. This concerns
both elastic solids [12–16] and viscous fluids [5,17–19] as
surrounding media, where in the latter context a focus is
on incompressible liquids subject to low-Reynolds-number
flows. To be able to perform analytical calculations, a major
focus was on bulk states far away from any boundaries and
rigid spherical inclusions experiencing no-slip conditions for
the surrounding medium on their surfaces. Deviations from
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these limitations are possible to some extent and have been
addressed as well [20–27]. Moreover, the majority of ana-
lytical approaches considers identical inclusions of definite
surface-to-surface distance from each other. Then an iterative
analytical procedure becomes possible that corresponds to an
expansion inverse in the center-to-center inclusion distance.
The regime of quantitative validity of such an expansion
depends on the situation and tolerance in deviations, but
minimal surface-to-surface distances of one inclusion radius
or diameter is typically reasonable. Below, we will rely on
corresponding simplifying assumptions as well.

For obvious reasons, most of the systems addressed so
far were genuinely three-dimensional. However, there are
situations in which two-dimensional approaches become ap-
propriate. For example, the equations of linear elasticity
of thin elastic membranes can effectively be reduced to
two dimensions [28]. Similarly, the equations describing the
dynamics in thin fluid films can be reduced to the two-
dimensional inplane spatial variation of the film thickness
[29]. We note that, nevertheless, a truly two-dimensional
approach does not necessarily imply that the system is in-
finitely thin. Instead, three-dimensional systems that behave
completely homogeneously concerning the third dimension,
that is, there is no spatial dependence on the third dimension,
can frequently be treated in an effectively two-dimensional
way. Then, at least for illustration of such three-dimensional
systems, we may think of infinitely extended parallel cylinders
as rigid inclusions in a surrounding elastic or fluid medium.

Our scope in this work is therefore to provide the frame-
work of mediated interactions between rigid inclusions in
a surrounding soft elastic solid or an incompressible low-
Reynolds-number fluid in a two-dimensional setting. Within
the two-dimensional framework, we refer to the inclusions as
disklike. We assume these disks to be subject to additional
forces and/or torques that are not directly exerted on them
through their surfaces by the surrounding medium. Instead,
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they result, for instance, from pairwise magnetic interactions
between the inclusions. This drives the resulting overall con-
figurational changes.

Specifically in two dimensions, a logarithmic divergence
of the associated Green’s function describing the response
of the medium to an internal force center emerges [30].
This logarithmic divergence has been the subject to pre-
vious discussions [31]. Physically, it implies that a resting
two-dimensional system, if not explicitly held fixed at its
boundaries, cannot sustain in the linear regime a net force,
even if the force is applied at only a single point and even
if the system is infinitely extended. The authors of Ref. [32]
argued that in such a case the framework of the linear theory
breaks down. Instead, in their fluid environment, the nonlinear
convective term of the Navier–Stokes equations becomes im-
portant. Here, we demonstrate explicitly that the logarithmic
divergence only emerges when a net external force is imposed
on the inclusions. If all forces on the inclusions sum up to
zero, which is the case, for instance, for conservative pairwise
interactions, then there do not appear any divergences. Never-
theless, in general, the mutual mediated interactions between
the inclusions are more long-ranged in two dimensions than
in three-dimensional systems.

We proceed as follows. First, the basic underlying equa-
tions are briefly repeated in Sec. II. The corresponding
Green’s function containing a logarithmic divergence is listed
in Sec. III. Afterwards, in Secs. IV and V, the translational and
rotational response of the surrounding medium to a force and
torque on an individual disklike inclusion are summarized,
respectively. Then, corresponding Faxén relations, that is, the
translational, rotational, and stresslet types of response of a
disklike inclusion to a displacement or flow of the surrounding
medium are derived in Sec. VI. Next, in Secs. VII and VIII,
we calculate the translation–translation, rotation–translation,
translation–rotation, and then rotation–rotation couplings via
the surrounding medium between individual inclusions and
cast them into matrix form. In Sec. IX, we consider three-
body interactions. Finally, we demonstrate in Sec. X how
the logarithmic divergence arising, for example, in Sec. III is
naturally removed, and we compare our results to the ones of a
three-dimensional setup in Sec. XI. We conclude in Sec. XII.

II. BASIC EQUATIONS FOR THE MEDIUM

Our basis is given by the Navier–Cauchy equations of
linear elasticity [33] for an isotropic, homogeneous, infinitely
extended, continuous medium

∇2u(r) + 1

1 − 2ν
∇∇ · u(r) = − 1

μ
fb(r), (1)

here interpreted in two spatial dimensions. In these equations,
u(r) denotes the displacement field that quantifies the distance
by which the individual volume elements at positions r of
the elastic material are displaced. μ sets the elastic (shear)
modulus and −1 < ν < 1/2 the Poisson ratio connected to the
compressibility of the material. Incompressible systems are
identified by ν = 1/2, fb(r) describes the field of bulk force
density.

Additionally, embedded within this elastic medium, we
consider N rigid disklike inclusions of radius a at center

positions ri (i = 1, ..., N). No-slip boundary conditions apply
on their circumferences. That is, if an inclusion is displaced
as given by a vector Ui and/or rotated by a rotation vector
�i (i = 1, ..., N), then the elastic material on its surface is
displaced accordingly.

In our presentation below, we mainly refer to these equa-
tions of linear elasticity. Yet, we keep in mind that because of
the formal analogy to the Stokes equations [5,18],

∇2v(r) = 1

η
[∇p(r) − fb(r)], (2)

the results for viscous incompressible fluid systems under
low-Reynolds-number conditions are derived simultaneously.
Simply, u(r) needs to be replaced by the fluid flow field v(r),
analogously the displacements Ui and rotations �i derived
below for the inclusions by their velocities Vi and angular
velocities Wi, respectively, and we set ν = 1/2. Requiring
∇ · v(r, t ) = 0 explicitly for incompressible fluids, the term
containing the pressure field p(r) in Eq. (2) does not explicitly
influence the results.

III. GREEN’S FUNCTION

First, we address Eq. (1) for a bulk point force density
fb(r) = F0δ(r − r0) acting at position r0, where F0 sets the
strength and direction of the force while δ denotes the Dirac
delta function. Using the Green’s function formalism, the
solution can then be written as

u(r) = G(r, r0) · F0. (3)

In two dimensions, the corresponding Green’s function was
introduced as [30]

G(r) = 1

8π (1 − ν)μ

[
−(3 − 4ν) ln rÎ + rr

r2

]
, (4)

where Î denotes the unit matrix and r = |r|. This expression
can be confirmed by inserting Eqs. (3) and (4) into Eq. (1).
At first glance, it seems problematic that the first term of
the Green’s function diverges for r → 0. We will discuss this
aspect later in Sec. X and show that a consistent description
arises from our consideration.

Consequently, the displacement field u(r) resulting from
the influence of a disk-shaped inclusion reads

u(r) =
∫

∂S
G(r − r′) · f (r′) dC′, (5)

where ∂S refers to the circumference of the disk and dC′
denotes the corresponding line element. f (r′) quantifies the
force per length along this circumference that the disk exerts
on the surrounding elastic medium.

We Taylor-expand the i jth component of the Green’s func-
tion G(r − r′) in r′ as

Gi j (r − r′) =
∞∑

n=0

(−1)n

n!
(r′ · ∇)nGi j (r). (6)

Next, we insert Eq. (6) into Eq. (5), which results in

ui(r) =
∞∑

n=0

(−1)n

n!

∫
∂S

dC′ (r′ · ∇)nGi j (r) f j (r′)

= Gi j (r)Fj − ∂Gi j (r)

∂rk
Djk + .... (7)
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Focusing on the first two terms in this expansion, we here
defined

Fj =
∫

∂S
dC′ f j (r′) (8)

and

Djk =
∫

∂S
dC′ f j (r′)r′

k. (9)

Consequently, F is the total force that the inclusion exerts on
its surrounding. Concerning D, we split it in into a symmetric
part S of components

S jk = 1

2

∫
∂S

dC′ [ f j (r′)r′
k + fk (r′)r′

j] (10)

and an antisymmetic part T of components

Tjk = 1

2

∫
∂S

dC′ [ f j (r′)r′
k − fk (r′)r′

j] (11)

[5,18]. Upon addition they result back in D. Using T, we
define the components of the torque T as

Ti := εi jk

∫
∂S

dC′ fk (r′)r′
j = − εi jkTjk, (12)

where εi jk denotes the Levi-Cività tensor. We for this purpose
amend the two-dimensional space by a third dimension as-
sociated with the direction ẑ. The vectors of torque T and
rotation � (see below) point into that third direction. In this
way, we guarantee that rotational displacements will be con-
fined to our two-dimensional plane. Simultaneously, we may
use the convenient notation of the vector product to perform
our evaluations. Using

Tjk
∂Gi j (r)

∂rk
= − 1

2
ε jklTl

∂Gi j (r)

∂rk
= 1

2
(T × ∇) jGi j, (13)

Eq. (7) is rewritten as

u(r) = G(r) · F − ( 1
2 T × ∇ + S · ∇) · G(r). (14)

IV. DISPLACEMENT FIELD INDUCED BY A UNIFORMLY
TRANSLATED RIGID CIRCULAR INCLUSION

Now we concentrate on one rigid disklike inclusion of
radius a, which is centered at position r0. Our goal is to find an
analytical expression for the displacement field resulting when
an external force F drags the inclusion. As mentioned above,
we assume no-slip boundary conditions along the circumfer-
ence, i.e., the surrounding medium sticks to ∂S. Therefore,

u(r ∈ ∂S) = U, (15)

where U represents the overall translation of the inclusion due
to the external force. Thus, the force that pulls on the sphere
is transmitted to the surrounding elastic medium, which leads
to elastic distortions.

In the linear regime F ∝ U. Therefore, we use the ansatz
u(r) ∝ G(r − r0) · F ∝ G(r − r0) · U. To satisfy the bound-
ary condition Eq. (15), we can further demand the expression
to be independent of r on ∂S. If we introduce an additional dif-
ferential operator that acts on G(r − r0), then we can satisfy

all our requirements by setting

u(r) = 16π (1 − ν)μ

1 − 2(3 − 4ν) ln a

(
1 + a2

4
∇2

)
G(r − r0) · U. (16)

This expression uniquely solves Eq. (1) and satisfies Eq. (15),
because(

1 + a2

4
∇2

)
G(r − r0)

∣∣∣∣
|r−r0|=a

= 1 − 2(3 − 4ν) ln a

16π (1 − ν)μ
Î.

(17)
In the spirit of Eq. (3), particularly for small a and large

|r − r0| > a, we identify

F = 16π (1 − ν)μ

1 − 2(3 − 4ν) ln a
U, (18)

or, analogously,

u(r ∈ ∂S) = U = 1 − 2(3 − 4ν) ln a

16π (1 − ν)μ
F. (19)

Thus, we may rewrite the displacement field as

u(r) =
(

1 + a2

4
∇2

)
G(r − r0) · F. (20)

For later reference, we insert the result into Eq. (5) to find for
a disk-shaped inclusion and |r − r0| > a∫

∂S
G(r − r′) · f (r′) dC′ =

(
1 + a2

4
∇2

)
G(r − r0) · F.

(21)

V. DISPLACEMENT FIELD INDUCED BY A UNIFORMLY
ROTATED RIGID CIRCULAR INCLUSION

We keep the setting of Sec. IV but consider a torque T that
is exerted on the inclusion instead of the force F. The resulting
rotation is described by a rotation vector � and leads to the
boundary condition

u(r ∈ ∂S) = � × (r − r0) (22)

on ∂S. To physically remain with our system in a two-
dimensional setting, we must restrict the torque T and thus the
rotation vector � to be perpendicular to the material plane.

From the second term on the right-hand side of Eq. (14) we
find the resulting displacement field

u(r) =
(

a

|r − r0|
)2

� × (r − r0), (23)

where

T = 4πμa2�. (24)

This solution satisfies Eq. (1) as well as the boundary condi-
tion Eq. (22).

VI. FAXÉN’S LAWS

The next question that arises is how the inclusion reacts
when exposed to a displacement field u(r) induced by other
sources in the surrounding medium. Nevertheless, we still
allow the inclusion to be subject to an imposed external force
F or torque T. The overall force line density f (r), see Eq. (5),
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along the circumference ∂S resulting from both contributions
in combination with the rigidity of the inclusion is transmitted
to the surrounding medium. All resulting displacements can
simply be superimposed, because Eq. (1) is linear. This leads
to the stick boundary condition

Ui + [� × (r − r0)]i =
∫

∂S
Gi j (r − r′) f j (r′)dC′ + ui(r)

(25)
for r ∈ ∂S.

The left-hand side of this equation describes the displace-
ment of each surface point of the inclusion due to the rigid
translation U and rotation �. Conversely, the right-hand side
of the equation quantifies the displacement of each element
of the surrounding medium anchored to the surface of the
inclusion. Here, the first term results from the circumference
force line density exerted by the inclusion. The second term is
the externally imposed displacement field. To satisfy the stick
boundary condition, the inclusion must displace to the same
amount as the elastic medium at each position r ∈ ∂S setting
left- and right-hand sides of Eq. (25) equal.

First we focus on the translation of the inclusion. For this
purpose, we integrate Eq. (25) over ∂S, which results in

2πaUi =
∫

∂S

∫
∂S

Gi j (r − r′) f j (r′)dC′dC +
∫

∂S
ui(r)dC.

(26)

The first term on the right-hand side is evaluated using
Eqs. (19)–(21) in inverse order.

To evaluate the second term on the right-hand side, we
expand ui(r) around r = r0 as

ui(r)

= ui(r0) + (r − r0) j[∇ jui(r)]r=r0

+ 1

2
(r − r0) j (r − r0)k[∇ j∇kui(r)]r=r0

+ 1

3!
(r − r0) j (r − r0)k (r − r0)l [∇ j∇k∇l ui(r)]r=r0

+ .... (27)

During the integration in Eq. (26), the terms odd in (r − r0)
vanish because of symmetry. Moreover, from Eq. (1), we find
that ∇4u(r) = 0. Together with∫

∂S
r jrkdC = πa3δ jk, (28)

the second term on the right-hand side of Eq. (26) becomes∫
∂S

ui(r)dC

= 2πaui(r0)

+ 1

2

∫
∂S

(r − r0) j (r − r0)k[∇ j∇kui(r)]r=r0 dC

= 2πa

(
1 + a2

4
∇2

)
ui(r)

∣∣∣∣
r=r0

. (29)

Together, we find from Eq. (26)

U = 1 − 2(3 − 4ν) ln a

16π (1 − ν)μ
F +

(
1 + a2

4
∇2

)
u(r)

∣∣∣∣
r=r0

. (30)

In this expression, the first term on the right-hand side recov-
ers Eq. (19) and therefore directly results from the imposed
force F. Thus, the remaining part on the right-hand side of
Eq. (30) originates from the imposed displacement field u(r).
Thus, we obtain the first Faxén law

UFaxén =
(

1 + a2

4
∇2

)
u(r)

∣∣∣∣
r=r0

, (31)

which describes the displacement of a rigid disklike inclusion
solely due to the displacement of the surrounding medium.

Next, we focus on the rotation vector and the stresslet. To
this end, we multiply Eq. (25) by (r − r0)k and then integrate
over ∂S,∫

∂S
(r − r0)k[� × (r − r0)]idC

=
∫

∂S

∫
∂S

(r − r0)kGi j (r − r′) f j (r′)dCdC′

+
∫

∂S
(r − r0)kui(r)dC. (32)

The integral on the left-hand side is directly calculated via
Eq. (28), leading to∫

∂S
(r − r0)k[� × (r − r0)]i dC = πa3εizk�z, (33)

where �z = ẑ · �. On the right-hand side of Eq. (32), we first
concentrate on the inner integral of the first term. To calcu-
late it, we set r′′ = r − r0 and express the Green’s function
through its Fourier transform,∫

∂S
(r − r0)kGi j (r − r′)dC

=
∫

∂S
Gi j (r′′ − r′ + r0)r′′

k dC′′

= 1

(2π )2

∫
∂S

dC′′
∫

d2k G̃i j (k)r′′
k eik·(r′′−r′+r0 ). (34)

The integral over dC′′ can be calculated as∫
∂S

dC′′ r′′
k eik·r′′ = − i∇k,k

∫
∂S

dC′′ eik·r′′

= − 2π iak̂k
d

dk
J0(ka)

= 2π ia2k̂kJ1(ka), (35)

where J0 and J1 are Bessel functions of the first kind. Inserting
Eq. (3) into Eq. (1) for fb(r) = F0δ(r − r0) and Fourier trans-
forming the whole equation, we obtain the components of the
Fourier-transform of the Green’s function as

G̃i j = 1

μk2

[
δi j − 1

2(1 − ν)
k̂ik̂ j

]
. (36)
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Next, we insert Eqs. (35) and (36) into Eq. (34), which leads us to

1

(2π )2

∫
∂S

dC′′
∫

d2k G̃i j (k)r′′
k eik·(r′′−r′+r0 ) = ia2

2πμ

∫ 2π

0
dϕk

[
δi j − 1

2(1 − ν)
k̂ik̂ j

]
k̂k

∫ ∞

0
dk

1

k
e−ik·(r′−r0 )J1(ka). (37)

Here, we split
∫

d2k into
∫ 2π

0 dϕk
∫∞

0 k dk. With the help of Mathematica [34], the dk-integral in the relevant range of r′ can be
evaluated to

∫ ∞

0
dk

J1(ka)

k
e−ikk̂·(r′−r0 ) =

√
1 −

[
k̂ · (r′ − r0)

a

]2

− i
k̂ · (r′ − r0)

a
for − 1 <

k̂ · (r′ − r0)

a
< 1. (38)

The remaining integral can be calculated using ∫ 2π

0
dϕk k̂k k̂l = δklπ (39)

and ∫ 2π

0
dϕk k̂ik̂ j k̂k k̂l = π

4
(δi jδkl + δikδ jl + δilδ jk ). (40)

It results in ∫
∂S

(r − r0)kGi j (r − r′) f j (r′)dC

= ia2

2πμ

∫ 2π

0
dϕk

[
δi j − 1

2(1 − ν)
k̂ik̂ j

]
k̂k

{√
1 − 1

a2

[
k̂l (r′ − r0)l

]2 − i

a
k̂l (r′ − r0)l

}

= a

8μ

{
4(r′ − r0)k fi(r′) − 1

2(1 − ν)
[(r′ − r0)k fi(r′) + (r′ − r0)i fk (r′) + (r′ − r0)l fl (r′)δik]

}
. (41)

To calculate the second integral on the right-hand side of Eq. (32), we insert again the Taylor expansion of u(r) from Eq. (27).
Using Eqs. (28) and (40) for (r − r0) instead of k̂ we evaluate this integral to∫

∂S
(r − r0)kui(r)dC =

∫
∂S

(r − r0)k (r − r0) j[∇ jui(r)]r=r0 dC

+ 1

6

∫
∂S

(r − r0)k (r − r0) j (r − r0)l (r − r0)m[∇ j∇l∇mui(r)]r=r0 dC

= πa3δ jk∇ jui(r)|r=r0 + 1

6

πa5

4
(δ jkδlm + δ jlδkm + δ jmδkl )[∇ j∇l∇mui(r)]r=r0

= πa3

(
1 + a2

8
∇2

)
∇kui(r)

∣∣∣∣
r=r0

. (42)

Combining the above results in Eqs. (32), (33), (41), and (42) leads us to

πa3εizk�z = a

8μ

∫
∂S

dC′
{

4(r′ − r0)k fi(r′) − 1

2(1 − ν)
[(r′ − r0)k fi(r′) + (r′ − r0)i fk (r′) + (r′ − r0)l fl (r′)δik]

}

+ πa3

(
1 + a2

8
∇2

)
∇kui(r)

∣∣∣∣
r=r0

. (43)

We split this equation into a symmetric and an antisymmetric part. To obtain the antisymmetric part, we multiply Eq. (43) by
εizk = εzki. Using εizkεizk = δzzδkk − δzkδzk = 2, this leads to

2πa3�z = a

8μ

∫
∂S

dC′ εzki

{
4(r′ − r0)k fi(r′) − 1

2(1 − ν)
[(r′ − r0)k fi(r′) + (r′ − r0)i fk (r′) + (r′ − r0)l fl (r′)δik]

}

+ πa3

(
1 + a2

8
∇2

)
εzki∇kui(r)

∣∣∣∣
r=r0

. (44)

From Eq. (1), we infer that ∇ × ∇2u(r = r0) = 0, which reduces the last term in Eq. (44). Overall, we obtain from Eq. (44)

�z = 1

4πμa2

∫
∂S

dC′ εzki(r′ − r0)k fi + 1

2
εzki∇kui(r)|r=r0

. (45)
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Using Eq. (12), we find

� = 1

4πμa2
T + 1

2
[∇ × u(r)]|r=r0 . (46)

In analogy to the translational case in Eq. (30), the first term on the right-hand side recovers Eq. (24) and therefore describes the
rotation of the inclusion due to the external torque T. Conversely, the second term on the right-hand side of Eq. (46) arises solely
from the displacement field in the surrounding material. Thus, we obtain the second Faxén law in the form

�Faxén = 1
2 [∇ × u(r)]|r=r0 . (47)

We recall that the displacement field u(r) is confined to the two-dimensional plane of our system. Therefore, both � and T
consistently point into the corresponding normal direction. In this way, they in turn only induce rotational displacements within
the two-dimensional plane.

Finally, we list the symmetric part of Eq. (43). Its left-hand side is antisymmetric so that it does not contribute, and we obtain

0 = a

8μ

1

2(1 − ν)

∫
∂S

dC′ {(3 − 4ν)[(r′ − r0)i fk (r′) + (r′ − r0)k fi(r′)] − (r′ − r0) j f j (r′)δik}

+ πa3

(
1 + a2

8
∇2

)
1

2
[∇iuk (r) + ∇kui(r)]|r=r0 := 1

2
(Aik + Aki ). (48)

Since, obviously from this equation, the trace Aj j vanishes, we may add it to Eq. (48) in the form

1

4(1 − 2ν)
Aj jδik = a

8μ

1

2(1 − ν)

∫
∂S

dC′ (r′ − r0) j f j (r′)δik + πa3

4(1 − 2ν)

(
1 + a2

8
∇2

)
∇ ju j (r)δik|r=r0 . (49)

As a result, we find from Eq. (48)

0 = 1

2
(Aik + Aki ) + 1

4(1 − 2ν)
Aj jδik

= a

8μ

1

2(1 − ν)

∫
∂S

dC′ {(3 − 4ν)[(r′ − r0)i fk (r′) + (r′ − r0)k fi(r′)]}

+ πa3

(
1 + a2

8
∇2

)
1

2
[∇iuk (r) + ∇kui(r)]

∣∣∣∣
r=r0

+ πa3

4(1 − 2ν)

(
1 + a2

8
∇2

)
∇ ju j (r)δik

∣∣∣∣
r=r0

= a

8μ

(3 − 4ν)

(1 − ν)
Sik + πa3

4

(
1 + a2

8
∇2

){
2[∇iuk (r) + ∇kui(r)] + 1

(1 − 2ν)
∇ ju j (r)δik

}∣∣∣∣
r=r0

, (50)

where we have used the definition of the components of the stresslet Sik according to Eq. (10). From here, we obtain

S = − 2π (1 − ν)μa2

(3 − 4ν)

(
1 + a2

8
∇2

)(
2
{∇u(r) + [∇u(r)]T

}+ 1

(1 − 2ν)
Î∇ · u(r)

)∣∣∣∣
r=r0

, (51)

where [ ]T marks the transpose. This expression quantifies the
stress that a rigid circular inclusion exerts on its surrounding
due to its resistance against deformation, if it is exposed to
a displacement field u(r) in the elastic medium. Conversely,
the stresslet that the surrounding medium exerts on the rigid
inclusion follows as

SFaxén = − S. (52)

VII. DISPLACEABILITY AND
ROTATEABILITY MATRICES

Now we know how each inclusion reacts to forces, torques,
and imposed displacement fields. Next, we address the cou-
pling of N identical inclusions embedded in the elastic
surrounding medium through deformations of this medium.
We suppose that every inclusion j may be subject to a force
F j and torque T j imposed from outside, i.e., not resulting
from the action of the elastic medium on the inclusion. These
forces and torques directly lead to translations U j and ro-

tations � j of the inclusion. In turn, these reconfigurations
imply displacements of the surrounding medium quantified by
a corresponding displacement field. All other inclusions feel
this displacement field. The inclusions counteract displace-
ment fields that would imply their deformation, because of
their rigidity. Corresponding counterstresses induce additional
displacements in the surrounding medium, which in turn af-
fect the inclusions. Starting from the external forces F j and
torques T j , j = 1, ..., N , we calculate the displacements U j

and rotations � j resulting from these effects in the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1

...

UN

�1

...

�N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mtt
11 · · ·Mtt

1N Mtr
11 · · ·Mtr

1N

...
. . .

...
...

. . .
...

Mtt
N1· · ·Mtt

NN Mtr
N1· · ·Mtr

NN

Mrt
11 · · ·Mrt

1N Mrr
11 · · ·Mrr

1N

...
. . .

...
...

. . .
...

Mrt
N1· · ·Mrt

NN Mrr
N1· · ·Mrr

NN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1

...

FN

T1

...

TN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (53)
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The matrix on the right-hand side contains four kinds of
submatrices. First, there are the Mtt

i j-matrices, i, j = 1, ..., N ,
which describe translation–translation couplings (translations
due to forces). The second kind is given by the Mtr

i j-matrices,
which derive from the translation–rotation couplings (trans-
lations due to torques). The next ones are the Mrt

i j-matrices,
which describe how the inclusions rotate in response to im-
posed forces (rotation–translation couplings). The last kind
is represented by the Mrr

i j-matrices, which give the rotation
from the applied torques (rotation–rotation couplings). In
Secs. VIII and IX, we explicitly calculate these matrices up
to (and including) the third order in inverse distances between
the inclusions. The natural couplings between the inclusions
mediated by the elastic environment are taken into account by
these matrices.

VIII. TWO-BODY INTERACTIONS

In this section, we explicitly calculate expressions for the
submatrices introduced in Eq. (53). Starting from the applied
forces and torques acting on each inclusion, we evaluate how
all other inclusions react to the displacement fields induced in
this way. We follow an iterative scheme, termed the method
of reflections [5]. To lowest order, displacement fields are
introduced into the system by the direct response of individual
inclusions to forces and torques that they are exposed to,
as if the other inclusions were absent. Then the response of
all inclusions to the displacement fields induced in this way
are evaluated. Counterstresses emerge because of the rigidity
of the inclusions and their resistance to deformations, which
leads to additional displacement fields. At the end, because
of the linearity of the Navier–Cauchy equations, the different
contributions are simply superimposed.

A. Forces imposed on or induced between the inclusions

First, we consider two identical inclusions i and j of radius
a at different positions ri and r j . They are subject to the
forces Fi and F j , respectively. To lowest order, each inclusion
directly reacts to the force acting on it as if the other inclusions
were not present. This leads to their displacements in analogy
to Eq. (19),

U(0)
i = u(0)(r ∈ ∂Si ) = 1 − 2(3 − 4ν) ln a

16π (1 − ν)μ
Fi (54)

and

U(0)
j = u(0)(r ∈ ∂S j ) = 1 − 2(3 − 4ν) ln a

16π (1 − ν)μ
F j . (55)

To this order, the displacement fields induced around the in-
clusions according to Eq. (20) are given by

u(0)
i (r) =

(
1 + a2

4
∇2

)
G(r − ri ) · Fi (56)

and

u(0)
j (r) =

(
1 + a2

4
∇2

)
G(r − r j ) · F j, (57)

where the positions ri and r j of the inclusions enter.
To next order, the two inclusions affect each other through

the displacement field that they induce in the surrounding

medium. Inclusion i is exposed to the displacement field
u(0)

j (r), which leads via Eq. (31) to the translation

U(1)
i =

(
1 + a2

4
∇2

)
u(0)

j (r)|r=ri

= 1

8π (1 − ν)μ

{[
−(3 − 4ν) ln ri j +

(
a

ri j

)2]
Î

+
[

1 − 2

(
a

ri j

)2]
r̂i j r̂i j

}
· F j (58)

and via Eq. (47) to the rotation

�
(1)
i = 1

2

(∇ × u(0)
j (r)

)|r=ri = − 1

4πμri j
(r̂i j × F j ). (59)

Here, we defined ri j = ri − r j , ri j = |ri j |, and r̂i j = ri j/ri j .
Apart from inducing the translation and rotation of inclu-
sion i, the displacement field u(0)

j (r) would in general also
deform it. Due to its rigidity, however, the inclusion re-
sists its deformation and exerts the counterstress S(1)

i on the
surrounding medium. These counterstresses add to the over-
all displacement field. The same happens for inclusion j,
where corresponding expressions are obtained by exchanging
indices i and j. According to Eq. (14), the associated displace-
ment fields are calculated via

u(1)
i (r) = − (S(1)

i · ∇) · G(r − ri ) (60)

and

u(1)
j (r) = − (S(1)

j · ∇) · G(r − r j ). (61)

They can simply be added to Eqs. (56) and (57), because
Eq. (1) is linear. This requires to explicitly calculate the
stresslets S(1)

i and S(1)
j . For inclusion j, we obtain from

Eqs. (51) and (56)

S(1)
j = −2π (1 − ν)μa2

(3 − 4ν)

(
1 + a2

8
∇2

)(
1

(1 − 2ν)
Î∇ · u(0)

i (r)

+ 2
{∇u(0)

i (r) + [∇u(0)
i (r)

]T })∣∣∣∣
r=r j

= − 1

4(3 − 4ν)

a2

ri j
[4(1 − 2ν)(Fir̂i j + r̂i jFi )

− 2Îr̂i j · Fi + 8r̂i j r̂i j r̂i j · Fi] + O
(
r−3

i j

)
. (62)

Using this expression, we can evaluate via Eq. (61) the result-
ing translation of inclusion i due to the disturbance u(1)

j (r).
For this purpose, we use again the Faxén law Eq. (31), there
inserting u(1)

j (r). This leads to a translation

U(2)
i =

(
1 + a2

4
∇2

)
u(1)

j (r)

∣∣∣∣
r=ri

= − 1

8π (1 − ν)(3 − 4ν)μ

(
a

ri j

)2

[(7 − 10ν)r̂i j r̂i j

+ 2(1 − 2ν)2(Î + r̂i j r̂i j )] · Fi + O
(
r−4

i j

)
(63)
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of inclusion i. Via the Faxén law Eq. (47), we obtain its rotation

�
(2)
i = 1

2
∇ × u(1)

j (r)|r=ri = (1 − 2ν)a2

2πμ(3 − 4ν)r3
i j

(r̂i j × Fi ) + O
(
r−5

i j

)
. (64)

Finally, we sum up all contributions listed in Eqs. (54), (58), and (63) to find for the translation of the ith inclusion

Ui = U(0)
i + U(1)

i + U(2)
i

=
{

1 − 2(3 − 4ν) ln a

16π (1 − ν)μ
Î − 1

8π (1 − ν)(3 − 4ν)μ

(
a

ri j

)2

[2(1 − 2ν)2(Î + r̂i j r̂i j ) + (7 − 10ν)r̂i j r̂i j]

}
· Fi

+ 1

8π (1 − ν)μ

{[
−(3 − 4ν) ln ri j +

(
a

ri j

)2]
Î +

[
1 − 2

(
a

ri j

)2]
r̂i j r̂i j

}
· F j + O

(
r−4

i j

)
. (65)

Likewise, summing the contributions in Eqs. (59) and (64), we obtain the rotation of the ith inclusion

�i = �
(1)
i + �

(2)
i = − 1

4πμri j
(r̂i j × F j ) + (1 − 2ν)

2πμ(3 − 4ν)

a2

r3
i j

(r̂i j × Fi ) + O
(
r−5

i j

)
. (66)

So far, we only have concentrated on two inclusions, but we can consider more inclusions using the same expressions. Each
additional inclusion has the same influence on inclusion i as inclusion j has. From Eqs. (53) and (65), we identify the components
of the displaceability matrices Mtt

i j as

Mtt
i= j = M t

0

⎧⎪⎨
⎪⎩
[
1 − 2(3 − 4ν) ln a

]
Î −

N∑
k=1
k �=i

2

(3 − 4ν)

( a

rik

)2[
2(1 − 2ν)2(Î + r̂ik r̂ik ) + (7 − 10ν)r̂ik r̂ik

]
⎫⎪⎬
⎪⎭ (67)

and

Mtt
i �= j = 2M t

0

{[
−(3 − 4ν) ln ri j +

(
a

ri j

)2]
Î +

[
1 − 2

(
a

ri j

)2]
r̂i j r̂i j

}
+ Mtt(3)

i �= j , (68)

where i, j = 1, . . . , N and

M t
0 = 1

16π (1 − ν)μ
. (69)

The Mtt(3)
i �= j -term results from three-inclusion interactions, which we discuss in Sec. IX.

Analogously, from Eqs. (53) and (66), the components of
Mrt

i j follow as

Mrt
i= j = Mr

0
2(1 − 2ν)a2

(3 − 4ν)

N∑
k=1
k �=i

r̂ik

r3
ik

× Î (70)

and

Mrt
i �= j = Mrt(3)

i �= j − Mr
0

r̂i j

ri j
× Î (71)

for i, j = 1, . . . , N , together with

Mr
0 = 1

4πμ
. (72)

B. Torques externally imposed or induced
between the inclusions

Now we turn from forces Fi and F j to torques Ti and T j

acting on inclusions i and j, respectively. For both inclusions
we know the resulting rotations to lowest order, that is, in the
absence of mutual interactions, from Eq. (24). Accordingly,

they read

�
(0)
i = 1

4πμa2
Ti (73)

and

�
(0)
j = 1

4πμa2
T j . (74)

From Eqs. (23) and (24), we also identify the undisturbed
displacement fields

u(0)
i (r) =

(
a

|r − ri|
)2

�
(0)
i × (r − ri ) (75)

and

u(0)
j (r) =

(
a

|r − r j |
)2

�
(0)
j × (r − r j ). (76)

Similarly to Sec. VIII A, we now calculate the translation
and rotation resulting directly from these displacement fields
via the Faxén laws in Eqs. (31) and (47), respectively, where
u(0)

j (r) is inserted. We find

U(1)
i =

(
1 + a2

4
∇2

)
u(0)

j (r)|r=ri = − 1

4πμri j
r̂i j × T j (77)
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and

�
(1)
i = 1

2

(∇ × u(0)
j (r)

)|r=ri = − 1

8πμr2
i j

T j, (78)

where we used ri j · T j = 0 in our geometry. In analogy to
Eq. (62), the displacement fields lead to stresslets. For inclu-
sion j, it reads

S(1)
j = −2π (1 − ν)μa2

(3 − 4ν)

(
1 + a2

8
∇2

)(
1

(1 − 2ν)
Î∇ · u(0)

i (r)

+ 2
{∇u(0)

i (r) + [∇u(0)
i (r)

]T })|r=r j

= −2(1 − ν)

(3 − 4ν)

a2

r2
i j

{(r̂i j × Ti )r̂i j + r̂i j (r̂i j × Ti )}

+ O
(
r−4

i j

)
. (79)

S(1)
i follows by switching indices i and j in this expression.

From this stresslet, we again find additional contributions to
the displacement field; see Eqs. (60) and (61). For inclusion i,
the additional translation resulting from the stresslet-induced
displacement field of inclusion j is evaluated via Eq. (31) as

U(2)
i =

(
1 + a2

4
∇2

)
u(1)

j (r)|r=ri

= − (1 − 2ν)

2π (3 − 4ν)μ

a2

r3
i j

r̂i j × Ti + O
(
r−5

i j

)
. (80)

Conversely, Eq. (47) implies

�
(2)
i = O

(
r−4

i j

)
. (81)

Summing up the different contributions of translation in
Eqs. (77) and (80), we obtain

Ui = U(1)
i + U(2)

i

= − 1

4πμri j
r̂i j × T j

− (1 − 2ν)

2π (3 − 4ν)μ

a2

r3
i j

r̂i j × Ti + O
(
r−5

i j

)
. (82)

From here, we read off the entries of the Mtr
i j matrices as

Mtr
i= j = −2(1 − 2ν)Mr

0

(3 − 4ν)

N∑
k=1,k �=i

a2

r3
ik

r̂ik × Î (83)

and

Mtr
i �= j = Mtr(3)

i �= j − Mr
0

r̂i j

ri j
× Î, (84)

where Mr
0 is defined in Eq. (72). In this expression, Mtr(3)

i �= j
marks an additional three-body interaction, see Sec. IX below.

Following the analogous procedure for the rotations, we
find, when summing up the contributions in Eqs. (73) and
(78),

�i = �
(0)
i + �

(1)
i

= 1

4πμa2
Ti − 1

8πμr2
i j

T j + O
(
r−4

i j

)
. (85)

From here, we read off

Mrr
i= j = Mr

0
1

a2
Î (86)

and

Mrr
i �= j = Mrr(3)

i �= j − Mr
0

1

2r2
i j

Î. (87)

IX. THREE-BODY INTERACTIONS

Using the same strategy as before, we now derive the
additional expressions for three-body interactions. We keep
the setting considered above for inclusions i and j and add an
inclusion k at position rk , subject to a force Fk and/or a torque
Tk . To lowest order, each inclusion produces a displacement
field analogous to Eqs. (56), (57), and (73)–(76) with corre-
sponding changes in indices.

First, we calculate the translation of inclusion i due to the
displacement fields that are generated by forces acting on the
inclusions. The field that we use in the Faxén law Eq. (31) for
inclusion i is now a superposition of u(0)

j (r) and u(0)
k (r). In this

way, we obtain

U(1)
i =

(
1 + a2

4
∇2

)[
u(0)

j (r) + u(0)
k (r)

]|r=ri . (88)

Analogously we calculate from Eq. (51) the resulting stresslet
using the same superposition of displacement fields as

S(1)
i = −2π (1 − ν)μa2

(3 − 4ν)

(
1 + a2

8
∇2

)[
1

(1 − 2ν)
Î∇ · [u(0)

j (r) + u(0)
k (r)

]

+ 2
(∇[u(0)

j (r) + u(0)
k (r)

]+ {∇[u(0)
j (r) + u(0)

k (r)
]}T )]∣∣∣∣

r=ri

. (89)

This via Eq. (14) produces the displacement field

u(1)
i (r) = −(S(1)

i · ∇) · G(r − ri ). (90)

Analogously, we obtain the corresponding expressions for inclusion j and k by exchanging i with j and i with k, respectively.
Additional three-body contributions now arise. We focus, for instance, on the translation of inclusion i

U(2)
i =

(
1 + a2

4
∇2

)[
u(1)

j (r) + u(1)
k (r)

]|r=ri , (91)
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obtained via Eq. (31) from the stresslet-induced displacement fields in analogy to Eq. (90). We concentrate, for example, in
Eq. (91) on the contribution through u(1)

k (r), that via the analogon of Eq. (90) depends on S(1)
k . This stresslet arises because

inclusion k is exposed to the displacement fields u(0)
i (r) and u(0)

j (r), in analogy to Eq. (89). The field u(0)
j (r) is generated by the

force F j acting on inclusion j. Thus, in reverse order, F j acting on inclusion j generates the displacement field u(0)
j (r). Inclusion

k is exposed to this field and due to its rigidity generates a counterstress. In this way, the displacement field u(0)
j (r) is “reflected”

by inclusion k in the form of u(1)
k (r). Through this chain of effects (i ← k ← j), a translation of inclusion i arises, given by

U(2)
ik j = −

(
1 + a2

4
∇2

)(
S(1)

k · ∇) · G(r − rk )|r=ri

= 1

16π (1 − ν)(3 − 4ν)μ

a2

rikr jk
(−4(1 − 2ν){(1 − 2ν)[(r̂ik · r̂ jk )Î + r̂ jk r̂ik]

+ 2(r̂ik · r̂ jk )[r̂ik r̂ik + r̂ jk r̂ jk] − r̂ik r̂ jk} + 2[3 − 2ν − 4(r̂ik · r̂ jk )2]r̂ik r̂ jk ) · F j + O[(ri j, rik )−4]. (92)

This corresponds to a genuine three-body interaction.
Next, we focus on the rotations induced by these forces. The rotation �

(1)
i is just a superposition of the rotations induced by

u(0)
j (r) and u(0)

k (r) via Eq. (47). Similarly, the next-higher-order �
(2)
i is calculated via the analogon of Eq. (91) as

�
(2)
i = 1

2∇ × [u(1)
j (r) + u(1)

k (r)
]|r=ri , (93)

where the displacement fields depend on the corresponding stresslet each, see Eq. (90). For example, the stresslet S(1)
k partly

arises, because inclusion k is exposed to u(0)
j (r). This displacement field gets “reflected” by inclusion k due to its rigidity. This

resulting u(1)
k (r) via Eq. (93) rotates inclusion i. This leaves us with a three-body contribution (i ← k ← j) to the rotation of

inclusion i:

�
(2)
ik j = 1

2π (3 − 4ν)μ

a2

r jkr2
ik

{(1 − 2ν)[(r̂ik · r̂ jk )(r̂ik × F j ) + (r̂ik × r̂ jk )(r̂ik · F j )]

+ 2(r̂ik · r̂ jk )(r̂ jk · F j )(r̂ik × r̂ jk )} + O[(ri j, rik )−5]. (94)

From Eqs. (92) and (94), we can read off the additional three-body contributions Mtt(3)
i �= j and Mrt(3)

i �= j to Eqs. (68) and (71),

Mtt(3)
i �= j = M t

0
1

(3 − 4ν)

N∑
k=1

k �=i, j

a2

rikr jk
(−4(1 − 2ν){(1 − 2ν)[(r̂ik · r̂ jk )Î + r̂ jk r̂ik]

+ 2(r̂ik · r̂ jk )[r̂ik r̂ik + r̂ jk r̂ jk] − r̂ik r̂ jk} + 2[3 − 2ν − 4(r̂ik · r̂ jk )2]r̂ik r̂ jk ) (95)

and

Mrt(3)
i �= j = 2Mr

0

(3 − 4ν)

N∑
k=1

k �=i, j

a2

r jkr2
ik

{(1 − 2ν)[(r̂ik · r̂ jk )(r̂ik × Î) + (r̂ik × r̂ jk )(r̂ik · Î)] + 2(r̂ik · r̂ jk )(r̂ik × r̂ jk )(r̂ jk · Î)}. (96)

Here we used again the definitions of M t
0 in Eq. (69) and Mr

0 in Eq. (72).
Turning to torques Ti, T j , and Tk acting on inclusions i, j, and k, respectively, instead of forces, three-body interactions arise

as well. The corresponding contributions to the translation and rotation of inclusion i are again obtained from Eqs. (91) and
(93). Part of the displacement field u(1)

k (r) results in analogy to Eq. (90), because the rigidity of inclusion k leads in analogy
to Eq. (89) to a stresslet S(1)

k . This stresslet partly arises, because inclusion k is exposed to the displacement field u(0)
j (r) now

generated by the torque T j acting on inclusion j, see Eqs. (74) and (76). Up to our desired order, we find three-body contributions
(i ← k ← j) to the translation due to the torque T j of the form

U(2)
ik j = − 1

2π (3 − 4ν)μ

1

rikr2
jk

{(1 − 2ν)[(r̂ik · r̂ jk )Î × r̂ jk + r̂ jk r̂ik × r̂ jk] (97)

+ 2(r̂ik · r̂ jk )r̂ik r̂ik × r̂ jk} · T j + O[(ri j, rik )−5], (98)

but not to the rotation, because

�
(2)
ik j = O[(ri j, rik )−4]. (99)
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Therefore, we can formulate from Eqs. (97) and (99) the remaining three-body contributions in Eqs. (84) and (87) as

Mtr(3)
i �= j = − 2Mr

0

(3 − 4ν)

N∑
k=1

k �=i, j

1

rikr2
jk

{(1 − 2ν)[(r̂ik · r̂ jk )Î × r̂ jk + r̂ jk r̂ik × r̂ jk] + 2(r̂ik · r̂ jk )r̂ik r̂ik × r̂ jk} (100)

and

Mrr(3)
i �= j = 0. (101)

X. REMOVING THE LOGARITHMIC DIVERGENCE FOR
VANISHING NET FORCE

We now return to the logarithmic divergence mentioned in
Secs. I and III that arises in two spatial dimensions. Specifi-
cally, we note the contribution ∼ ln r in the Green’s function
in Eq. (4). Generally, this logarithmic divergence carries over
to the displacement fields generated by net forces acting on
the inclusions, see, for example, Eq. (20).

For N inclusions, we write the overall displacement field
as

u(r) =
N∑

i=1

ui(r). (102)

Considering for our present purpose only the logarithmic
terms, we are according to Eqs. (4) and (20) left with

u(r) = −(3 − 4ν)

8π (1 − ν)μ

N∑
i=1

ln(|r − ri|)Fi + . . .

= −(3 − 4ν)

8π (1 − ν)μ

[
ln(|r − r j |)F j

+
N∑

i=1
i �= j

ln(|r − ri|)Fi

]
+ . . . , (103)

where j ∈ {1, . . . , N}. Vanishing net force on the whole col-
lection of discrete inclusions implies for the jth inclusion

F j = −
N∑

i=1
i �= j

Fi. (104)

Inserting Eq. (104) into Eq. (103), we obtain

u(r) = −(3 − 4ν)

8π (1 − ν)μ

N∑
i=1
i �= j

Fi ln

( |r − ri|
|r − r j |

)
+ . . . . (105)

This displacement field correctly tends to 0 for |r| → ∞.
Overall, we find that if we assume vanishing net force on

the whole set of inclusions, then we actually do not observe
the divergence of the displacement field at large distances.
Thus, at least two inclusions are necessary to remove the
divergence problem. For just one inclusion exposed to a net
force, the divergence remains.

Physically, this implies that if the inclusions do not inter-
act with the outside world but only among each other and
elastically trough the membrane, then Newton’s third law

guarantees that the displacement field remains finite. The
same argument applies for any collection of force centers
acting on the elastic membrane. It for ν → 1/2 likewise de-
scribes the behavior of two-dimensional incompressible fluid
films under low-Reynolds-number conditions. Since, accord-
ing to Eq. (105), only ratios of distances enter the logarithm in
the end, there is no inconsistency with apparently dimension-
ful quantities as arguments of the logarithm in the Green’s
function as might have been suspected from the notation in
Eq. (4).

In contrast, if net forces do act from outside onto the
inclusions in two-dimensional systems, then long-ranged in-
teractions with the lateral boundaries of the membrane or thin
film emerge. These interactions with the boundaries arise, no
matter how far away the boundaries are from the inclusions.
Such boundaries are present in any realistic setup. In a corre-
sponding mathematical description, the boundary conditions
then need to be included into the formalism, using a different
Green’s function associated with this different setup.

XI. COMPARISON BETWEEN TWO- AND
THREE-DIMENSIONAL SETUPS

In Refs. [15,16] spherical inclusions embedded in three-
dimensional elastic media were described. That situation
represents the three-dimensional counterpart to our two-
dimensional setup. It is obviously of interest to compare the
results for the different dimensionalities. For general state-
ments, we consider the leading orders of the r-dependencies
of different quantities.

First, a few quantities do not depend on the distance. These
are the translation U(0)

i induced by Fi in Eq. (54) and the
rotation �

(0)
i induced by Ti in Eq. (73). Differences only

arise for the prefactors. These relations are reflected by the
corresponding matrix entries Mtt

i= j and Mrr
i= j in Eqs. (67) and

(86), respectively. Thus, for these relations, there does not
exist any difference in the r-dependency between two- and
three-dimensional setups.

The situation changes for the Green’s function G(r) in
Eq. (4). In the two-dimensional case it shows a leading
logarithmic dependency, while it features a leading inverse r-
dependency ∼1/r in the three-dimensional case [15,16]. The
same is found for the leading orders of the displacement fields
u(0)

i (r) induced by Fi, see Eq. (56). Combining this conclusion
with our analysis in Sec. X, we note a central difference be-
tween two- and three-dimensional setups. In two dimensions,
individual inclusions that are subject to a net force do interact
with each other through the surrounding medium, no matter
how far apart they are from each other. Only if the net force on
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F −F

FIG. 1. Illustration of the in-plane displacement field that two
inclusions mutually attracting each other by the indicated forces ±F
generate. In the top half of the figure, the three-dimensional case
is depicted using the corresponding formulas listed in Ref. [15]. In
three dimensions, the inclusions represent rigid spheres and we con-
fine ourselves to a plane that contains both centers of these spheres.
In the bottom half, we show the results for our two-dimensional
case, where the inclusions represent rigid disks. For better visibility,
local directions of the displacement field are indicated by small dark
arrows of identical length. The local magnitudes of the displace-
ment field are represented by the color code on a logarithmic scale.
Brighter colors mark larger amplitudes of displacement. We set the
Poisson ratio to ν = 1/2.

a group of inclusions vanishes, we can neglect their influence
on the surrounding medium with increasing distance from the
group. The situation is manifestly different in three dimen-
sions. There, the influence of individual inclusions subject to
net forces decays with increasing distance from the inclusions.

Concerning further differences, we note that the stresslet
S(1) in Eq. (62) shows a dependency ∼1/r, while the corre-
sponding three-dimensional expression features a dependency
∼1/r2 [15,16]. The same applies to the displacement field
u(0)

i (r) induced by Ti, see Eq. (75) as against Refs. [15,16].
Naturally, these differences affect the higher orders as well
when they are tracked through the presented formalism.

For further comparison, we illustrate for two basic setups
the differences in the displacement fields concerning the two-
and three-dimensional case. First, we consider a situation of
two inclusions mutually attracting each other by forces F
and −F, see Fig. 1. The net force vanishes, so that there
is no logarithmic divergence in the displacement field. We
compare the resulting two-dimensional case in the bottom
half of Fig. 1 to the three-dimensional case in the top half
for an incompressible system (ν = 1/2). The magnitude of
the displacement field is color coded on a logarithmic scale,
and the brighter color in the bottom half indicates larger
amplitudes of displacement in the two-dimensional case. In

T

FIG. 2. Illustration of the displacement field in a three- and two-
dimensional setting generated by one rigid inclusion exposed to a net
torque T. The representation is analogous to Fig. 1.

analogy to that, Fig. 2 shows the corresponding comparison
for a torque T applied to a rigid inclusion. The local direction
of the displacement field (see the normalized small arrows) is
not influenced by the dimensionality. Yet, the brighter color
in the bottom half again indicates that the magnitude of the
displacement field is larger in the two-dimensional situation.

XII. CONCLUSIONS

In the present work, we demonstrated that also in the
two-dimensional case the theoretical characterization of in-
teractions between rigid inclusions embedded in an elastic
or fluid environment is well defined for infinitely extended
systems. This statement applies as long as the overall net force
acting on the inclusions vanishes. Accordingly, we derived the
explicit analytical expressions for translational and rotational
couplings between the inclusions as mediated by the elastic
or fluid environment. While compressible embedding media
are addressed in a linearly elastic case, low-Reynolds-number
flows of incompressible liquids are covered for fluid surround-
ings.

As already explained, the two-dimensional treatment in-
cludes the three-dimensional bulk situation for systems that
are homogeneous and largely extended along the third di-
mension. Thus, our rigid disks in this case actually represent
infinitely extended, aligned cylinders. For example, we may
consider two long, parallel, conducting wires of circular cross
section, pierced through the bulk of a soft elastic gel. If an
electric direct current runs through these wires, then they
either attract or repel each other, depending on whether the
current runs into the same or opposite direction in the two
wires, respectively [35]. Assuming a very soft gel, its elastic
modulus can for instance be as low as 1 Pa [36]. We further as-
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sume the gel to be incompressible. Moreover, we approximate
the conducting cores of the wires by infinitely thin conducting
lines when calculating their mutual electromagnetic interac-
tion. If the wires are both subject to an electric direct current
of 20 A, if they together with their insulation feature a radius
of 1.5 mm, and if their center-to-center distance is 1 cm, then
our evaluations indicate a change in distance between the
wires of 1.75 mm. This effect thus becomes visible, and even
the displacements of the elastic gel could be visualized by
embedding a few smaller tracer particles. As also mentioned
before, the characterization of thin linearly elastic membranes
can be reduced to a two-dimensional framework as well [28].

Particularly, the description directly applies to thin elastic
or fluid membranes or films that by themselves are isotropic
in the in-plane directions, are approximately incompressible
along the normal direction, and contain inclusions that are
roughly disklike within the range of the membrane. Several
example systems feature the approximate incompressibility
along the normal. Importantly, this applies to lipid bilayers
that form the basis of the outer membrane of many types
of biological cells and cell organelles or vesicles [37–40],
although inclusions can bend the membrane. In that case,
curvature needs to be taken into account.

Concerning the more macroscopic scale, we mention free-
standing thin films or bubbles of smectic A liquid crystals
as fluid systems [41,42]. The smectic layers typically ex-
tend along the in-plane film directions, while on average the
liquid crystalline molecules are oriented along the normal.

Thus, the fluid along the in-plane directions appears isotropic.
Conversely, compression along the layer normal is usually
hindered in smectic liquid crystals [43], as the molecular
layers would need to be driven into or separated from each
other. This supports our requirement of approximate incom-
pressibility along the normal direction. An analogous situation
for elastic realizations emerges for smectic liquid crystal elas-
tomers. There, likewise, the elastic modulus for compression
and dilation along the layer normal is significantly increased
[44].

It will be inspiring to analyze several of these example sys-
tems in the future when they are functionalized by inclusions,
now that we have the appropriate formalism at hand. More-
over, actuation and activation processes may be facilitated in
this way. To this end, we envisage an extension to thin sheets
and membranes composed of viscoelastic materials [45,46].
Another extension concerns the dynamic coupling of defor-
mations of thin elastic membranes to flows in surrounding
fluids [47,48].
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