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Self-induced hydrodynamic coil-stretch transition of active polymers
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We analyze the conformational dynamics and statistical properties of an active polymer model. The polymer
is described as a freely jointed bead-rod chain subject to stochastic active force dipoles that act on the suspending
solvent where they drive long-ranged fluid flows. Using Langevin simulations of isolated chains in unconfined
domains, we show how the coupling of active flows with polymer conformations leads to emergent dynamics.
Systems with contractile dipoles behave similarly to passive Brownian chains with enhanced fluctuations due to
dipolar flows. In systems with extensile dipoles, however, our simulations uncover an active coil-stretch transition
whereby the polymer spontaneously unfolds and stretches out in its own self-induced hydrodynamic flow, and
we characterize this transition in terms of a dimensionless activity parameter comparing active dipolar forces
to thermal fluctuations. We discuss our findings in the context of the classic coil-stretch transition of passive
polymers in extensional flows and complement our simulations with a simple kinetic model for an active trimer.
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I. INTRODUCTION

Biological polymers and other filamentous structures are
involved in a myriad of complex dynamical processes es-
sential for the functioning of the cell. In many cases,
these polymers are subject to out-of-equilibrium microscopic
stresses driven by ATP-powered active processes [1], resulting
in unexpected emergent properties such as self-organization
and spontaneous motion. Examples of such systems abound
and include the coordinated action of dynein motors along the
microtubule bundle comprising eukariotic cilia and flagella,
where active sliding forces exerted by the motors result in
spontaneous beating and locomotion [2,3]; the unidirectional
transport of cargo by kinesin and dynein motors along tracks
of microtubules in the cell cytoskeleton [4,5]; the contraction
of the actin cortex under the action of myosin motors during
various processes such as cytokinesis [6] and platelet forma-
tion [7]; and the generation of cytoplasmic streaming flows
by dynein motors marching along microtubules during oocyte
development [8,9]. These biological polymers and molecular
motors have also been extracted and utilized in vitro, for in-
stance, in motility assays [10] or as building blocks for active
materials with various self-emergent properties [11–13].

Recent experiments by Zidovska et al. [14] have demon-
strated that the interior of the cell nucleus, which encloses
chromatin, the functional form of DNA in cells, also dis-
plays coherent motions indicative of ATP-powered activity.
While the detailed microscopic mechanisms responsible for
these motions are still under debate, there is supporting evi-
dence that they result from stresses exerted by active enzymes
such as RNA polymerases, helicases, and topoisomerases. In
a minimal hydrodynamic description [15], these active pro-
cesses can be idealized as exerting force dipoles on chromatin
chain sections, which are transmitted to the nucleoplasm by
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viscous friction, thereby driving long-ranged fluid flows.
Based on this concept, Saintillan et al. [16] performed
numerical simulations of a long flexible polymer chain con-
fined in a spherical cavity and subject to active force dipoles
distributed stochastically along the polymer and applied to
the viscous solvent. They found that, in the case of extensile
dipoles, the resulting flows in the nucleoplasm conspire to
align chromatin chain segments, thereby triggering a feed-
back loop that results in large-scale coherent motions by a
mechanism similar to the generic instability of extensile active
nematics [17–20].

A wide variety of other theoretical and computational
models for active polymers have been proposed in recent years
[21], guided by some of the experimental systems discussed
above. Some of these models have focused on semiflexible
polymer chains, actuated by random correlated velocities [22]
or composed of connected active Brownian particles (ABPs)
[23–25], either with or without hydrodynamic interactions.
Other models have considered free-draining flexible Rouse
chains, either composed of ABPs [26,27], subjected to cor-
related fluctuating forces [28] or dipoles [29] or to active
isotropic extensile or contractile forces [30]; these latter mod-
els, however, all neglected hydrodynamic interactions.

In this work, we analyze the conformational dynamics
of an active flexible bead-rod linear polymer chain sub-
jected to active force dipoles that drive fluid disturbances
in the suspending solvent. The model is based on the past
work of Saintillan et al. [16], but we provide here a more
systematic characterization of the role of activity and hydro-
dynamic interactions on chain dynamics and conformations in
unconfined dilute systems. Our numerical simulations demon-
strate that extensile dipolar activity results in the spontaneous
stretching of the chains above a critical level of activity by
driving a coherent long-ranged extension-dominated flow that
overcomes thermal fluctuations and unravels the polymer.
This “active coil–stretch transition” is reminiscent of the tran-
sition exhibited by passive flexible polymers in externally
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FIG. 1. Coarse-grained active polymer: The polymer is modeled
as a long freely jointed chain of N beads with hydrodynamic radius
a and connected by rigid links of length �. Active dipoles (extensile
or contractile) bind stochastically to individual links, with forces
applied directly on the suspending fluid.

applied extensional flows [31] but is internally driven by
dipolar activity in the present case. The paper is organized
as follows. First, we introduce in Sec. II the model for the
polymer dynamics and motor activity following [16]. We
present numerical results in Sec. III, where we characterize
the role of activity on the transition from coiled to stretched
configurations and also analyze a simple kinetic model for
an active timer based on the Fokker-Planck equation. We
summarize our results and conclude in Sec. IV.

II. ACTIVE POLYMER MODEL

A. Langevin formulation

We study the dynamics and conformations of active
flexible polymer chains in an unconfined environment.
Figure 1 shows a graphical representation of the polymer
model, which consists of a linear chain of N beads of hydrody-
namic radius a connected by N − 1 freely jointed inextensible
rods of length � with no bending resistance or rotational
constraints. The chain is subject to tension forces, thermal
fluctuations and excluded volume interactions. In addition,
we model activity in terms of force dipoles (pairs of equal
and opposite forces) that are applied to the solvent and drive
hydrodynamic disturbances as we explain in Sec. II B [15,16].
We denote by ri(t ) the position of bead i, and by ni(t ) =
(ri+1 − ri )/� the unit vector pointing from bead i to bead
i + 1. At low Reynolds number, the motion of the chain is
overdamped and satisfies the Langevin equation [32]:

dri

dt
= ua(ri, t ) + 1

ζ
[Fc

i (t ) + Fe
i (t )] + ξi(t ). (1)

The first term on the right-hand side describes advection by
the active fluid flow ua induced by ATP-powered molecular
motors, which we discuss in Sec. II B. The second term cap-
tures motion under the internal constraint forces Fc

i ensuring
inextensibility (see Sec. II C) and under excluded volume
forces Fe

i acting on bead i, with hydrodynamic friction coef-
ficient ζ = 6πμa, where μ is the solvent viscosity. Excluded

volume interactions are captured by a soft repulsive potential:

Fe
i = −

∑
j �=i

∇i�(ri − r j ), with �(r) = �0

rn
, (2)

with n = 3, which is truncated whenever |ri − r j | > �. The
parameter �0 is ad hoc and selected to ensure that the
chain does not cross itself. Finally, the last term in Eq. (1)
captures Brownian displacements and satisfies the fluctuation-
dissipation theorem:

〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t
′)〉 = 2DbI δi jδ(t − t ′), (3)

where Db = kBT/ζ is the Brownian diffusivity of an
isolated bead.

Note that the Langevin equation (1) models the polymer
as a free-draining chain. Constraint and excluded volume
forces are applied locally on each bead and do not drive any
hydrodynamic interactions: The only flow in the solvent is
assumed to be that induced by active dipoles. We note that this
is an approximation that is convenient computationally. This
description can be improved by accounting for hydrodynamic
interactions between distant chain segments: We consider this
more general case in the Appendix, where we find that hydro-
dynamic interactions tend to damp the effect of activity due to
the enhanced viscous drag on the chain.

B. Active forces and hydrodynamic flow

A key feature of our model is the inclusion of active forces
and flows, which model the effects of the activity of ATP-
powered motor proteins performing work along the polymer
chain. The stresses exerted by these motors are coarse-grained
in the form of active dipolar force pairs that occur on the scale
of one chain link and drive fluid disturbances (Fig. 1) [16].
As the motors bind and unbind stochastically along the chain,
we assume that each link can be either active (dipole on) or
inactive (dipole off), and the time in a given state is drawn
from an exponential distribution with two distinct rates kon

and koff . These rates set the probability pa = kon/(kon + koff )
that any given link is active at a point in time. Note that pa can
also be interpreted as the mean fraction of active links in the
system.

When a link is in the active state, two equal and opposite
forces are applied to the viscous surrounding fluid at the
positions of the two end beads:

Fa
i = −F0ni(t ), Fa

i+1 = F0ni(t ), (4)

where F0 is the strength of the active force, assumed to be
constant. This effectively describes a force dipole with mag-
nitude F0�, which can be either extensile (←→) or contractile
(→←) as shown in Fig. 1. In the present model, we as-
sume that these two forces are applied directly to the solvent,
where they drive an active hydrodynamic flow that can be
obtained as

ua(ri ) =
N∑

j=1

G(ri; r j ) · Fa
j , (5)

where G denotes the Oseen tensor in free space:

G(ri, r j ) = 1

8πμri j
[I + r̂i j r̂i j], (6)
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where ri j = |ri − r j | is the distance between beads i and j and
r̂i j = (ri − r j )/ri j is the unit vector pointing from bead j to
bead i.

Note that, within the model described here, active stresses
are only applied to the fluid and have no direct effect on chain
dynamics other than via long-ranged hydrodynamic interac-
tions. As a model for the action of ATP-powered molecular
motors, this assumes that any chain reconfiguration resulting
from direct forces by the motors would occur on sub-Kuhn-
step length scales that are unresolved by our model. The
present description could also serve as a model for a freely
jointed chain of rigid bimetallic autophoretic rods [33] that
drive flows via phoretic slip layers.

C. Constraint forces and numerical algorithm

Chain inextensibility is imposed by means of the constraint
forces Fc

i in Eq. (1), which are calculated to ensure that the
length of each link remains constant and equal to �. Specif-
ically, we express these constraint forces in terms of scalar
tensions Ti, which are Lagrange multipliers:

Fc
i = Tini − Ti−1ni−1. (7)

The two ends of the polymer are force free, which reflects
in the boundary conditions T0 = TN = 0. To solve for the
tensions, we employ the algorithm of Liu [34], which uses
a semi-implicit predictor-corrector scheme to ensure that the
length of each link is preserved at the end of every time step.
The first step in the time-marching scheme is an unconstrained
explicit Euler step for the bead positions, in which the tension
forces are omitted:

r̃n+1
i = rn

i + �t
[
ua

(
rn

i

) + ξn
i + ζ−1Fev

i,n

]
. (8)

The second step corrects the position r̃n+1
i to account for the

tensions, which are evaluated implicitly at time tn+1:

rn+1
i = r̃n+1

i + ζ−1�t
[
T n+1

i nn
i − T n+1

i−1 nn
i−1

]
. (9)

Equation (9) can be further recast in terms of the unit directors
between beads as

nn+1
i = ñn+1

i + �t

ζ�

[
T n+1

i+1 nn
i+1 − 2T n+1

i nn
i + T n+1

i−1 nn
i−1

]
. (10)

Applying the inextensibility constraint |nn+1
i |2 = 1 then leads

to an equation for the tensions:

2�t

ζ�

[
T n+1

i+1 nn
i+1 − 2T n+1

i nn
i + T n+1

i−1 nn
i−1

] · ñn
i

= 1 − |ñn
i |2 − �t2

ζ 2�2

∣∣T n+1
i+1 nn

i+1 − 2T n+1
i nn

i + T n+1
i−1 nn

i−1

∣∣2
.

(11)

This system of quadratic equations can be solved iteratively,
where each iteration involves inverting a linear tridiagonal
system corresponding to the left-hand side in Eq. (11). A small
number of iterations (typically � 10) is sufficient to achieve
convergence.

D. Scalings and parameters

In the following, we present results in dimensionless form,
where all the variables are scaled using the following charac-

FIG. 2. Snapshots from two simulations of (a) a contractile sys-
tem (A = −10) and (b) an extensile system (A = 10) with N = 100,
kon = 100, and koff = 500. The chains were initially prepared as ran-
dom walks. Red segments show the instantaneous positions of active
force dipoles. The contractile chain swells but remains in an isotropic
coiled state, whereas the extensile chain progressively unfolds to
reach a fluctuating stretched conformation. See the supplementary
material [35] for movies of the dynamics.

teristic time, length and force scales:

tc = ζ�2

kBT
, �c = �, Fc = kBT

�
. (12)

With this choice, the dimensionless active dipole strength
becomes

σ0 = F0�

kBT
, (13)

where σ0 > 0 and σ0 < 0 represent extensile and contractile
systems, respectively. We also introduce an activity parameter
A, defined as

A = paσ0 = kon

kon + koff

F0�

kBT
, (14)

which can be viewed an effective active dipole strength cor-
rected for the stochasticity of molecular motors [16].

III. RESULTS AND DISCUSSION

A. Conformational dynamics and flow fields

We performed simulations of polymer chains composed
of N = 3 − 150 beads, for varying values of kon, koff , and
σ0. Figure 2 shows snapshots from simulations of two active
chains, one contractile and one extensile, with N = 100 and
A = ±10; also see the videos in the supplementary mate-
rial [35]. Both systems were prepared as random walks at
t = 0. At short times, excluded volume forces cause both
polymers to swell in all directions, while dipolar flows are
being driven locally along the chains. In the contractile case,
the chain continues to swell slightly as the flows induced
by the active dipoles constantly rearrange neighboring links,
with no net emergent alignment. At statistical steady state,
the contractile chain remains in an isotropic coiled state,
with thermal fluctuations enhanced by the dipolar fluid flows.
The case of extensile activity is markedly different. There,
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FIG. 3. [(a) and (b)] Schematic illustrating the instantaneous flow fields induced by a contractile (a) and an extensile (b) dipole, respectively,
and their effect on chain dynamics in a representative case of a short chain composed of N = 4 beads. The purple arrows show the direction of
the active forces, whereas the black arrows show the direction of rotation of the neighboring links due the active flow induced by the dipole.
[(c) and (d)] Time-averaged flow fields induced by (a) a contractile system (A = −10) and (b) an extensile system (A = 10) in simulations
with N = 100, kon = 100, and koff = 500. In the contractile case, the chain is coiled at the origin and the flow field was calculated in a fixed
coordinate system. In the extensile case, the polymer is stretched and the coordinate system was rotated to align the principal axis of the chain
with the x direction. In both (c) and (d), the flow fields were averaged over 200 frames equally spaced in time over a total duration of 400
dimensionless time units after reaching statistical steady state.

neighboring links align in the dipolar flows, which have ex-
tensional symmetry, resulting in long chain segments opening
up and stretching, until the chain fully unfolds into a stretched
conformation where activity-induced flow alignment com-
petes against thermal fluctuations, which favor the coiled
state. Similar dynamics had previously been observed by
Saintillan et al. [16]. The mean direction of alignment of
the chain is arbitrary, but remains roughly constant over the
course of the transient. At steady state, the axis of alignment
very slowly diffuses as a result of Brownian motion, which
also introduces stochasticity in the flow field by causing fluc-
tuations of the dipole orientations.

These dynamics can be understood based on the flow fields
induced by individual dipoles as depicted in Figs. 3(a) and
3(b). In the contractile case shown in Fig. 3(a), the flow is
compressional along the axis of the dipole and extensional
in the perpendicular plane, which tends to rotate neighbor-
ing chain links so that they align at ≈90◦, thus forming
kinks in the chain. Conversely, in the extensile case shown in
Fig. 3(b), the flow is extensional along the axis of the dipole,
which tends to rotate neighboring links so that they align with
the dipole, thus unfolding and straightening the chain. This
flow-induced alignment observed in extensile systems not
only affects nearest neighbors but is long-ranged due to the
slow decay as 1/r2 of dipolar flows in the Stokes regime.
Furthermore, the effect is self-amplifying: as several chain
segments carrying dipoles align with each other, their flow
fields superimpose coherently to further enhance alignment.
This positive feedback loop ultimately results in the full
stretching of the chain under its self-induced flow. Time-
averaged flows around the two polymer chains of Fig. 2 are
shown in Figs. 3(c) and 3(d). The flow in the contractile
case in (c) displays extension and compression along various
directions but shows no clear large-scale symmetry. On the
other hand, dipolar alignment in the extensile case shown in

(d) conspires to drive a self-sustained extensional flow on the
scale of the polymer chain, which acts to stabilize the unfolded
stretched conformation.

The observed transition from an initial coiled state to a
stretched configuration in extensile systems is reminiscent
of the classic coil-stretch transition of flexible polymers in
linear extensional flows [31], where the stretching is due to
the viscous drag on the polymer by an externally applied
flow. Here, the transition is instead an emergent phenomenon
resulting from the spontaneous alignment of the chain under
the extensile dipoles that it carries. We discuss this analogy in
more detail further below.

B. Steady-state statistical properties

We now discuss conformational properties at statistical
steady state, which we characterize in Fig. 4 showing various
structural order parameters as functions of σ0. Three sets of
simulations are shown, two with N = 50 and one with N =
100. In the case of N = 50, two different combinations of
on/off rates were used: (kon, koff ) = (100, 500) and (10,50),
which have the same value of pa and thus the same mean
number of dipoles. All shown quantities were measured after
reaching steady state and were averaged over time and over
an ensemble of five different simulations. We first plot in
Fig. 4(a) the relative end-to-end distance defined as

Rn = |rN − r1|
N − 1

, (15)

with maximum value of 1 corresponding to a perfectly straight
polymer chain. For a perfect random walk (coiled configu-
ration), the expected value is Rn = �

√
N − 1. As shown in

Fig. 4(a), the end-to-end distance is unaffected by activity
in the contractile case (σ0 < 0), where it sligthtly exceeds
the random walk prediction due to excluded volume effects.
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FIG. 4. Average steady-state values of (a) the scaled end-to-end
distance Rn, (b) the effective persistence length �p/�, (c) the relative
shape anisotropy κ , and (d) the nematic scalar order parameter λmax

Q

as functions of σ0 for chains of length N = 50 and 100. In the case
of N = 50, two different combinations of on/off rates giving the
same value of pa = 1/6 were used: (kon, koff ) = (100, 500) (blue
triangles) and (10,50) (red squares). The simulation with N = 100
uses (kon, koff ) = (100, 500) (black circles).

In the extensile case, however, Rn starts increasing above a
critical positive value of σ0, reaching ≈ 0.6 for the longest
chain when σ0 = 50. Longer chains tend to stretch more for
the same dipole strength, since they are decorated by more
dipoles thus enhancing the self-unfolding effect described in
Sec. III A. The two simulations with N = 50 provide insight
into the role of the on/off rates on the dynamics: The end-to-
end distance, as well as the other order parameters we discuss
below, are only weakly affected by the actual values of kon

and koff at a given value of pa. Stretching is slightly weaker in
the case with the larger rates (blue triangles), as there is more
stochasticity in the dipoles in that case.

The unfolding and stretching of extensile chains under their
self-induced flows can also be interpreted as an increase in
orientational correlations along the chain, i.e., as an increase
in the effective rigidity of the polymer. We quantify this using
the mean persistence length, which for a bead-rod chain can
be defined as [36]

�p

�
= 1

2

(
1 + ξ

1 − ξ

)
, where ξ = 〈ni · ni+1〉. (16)

As shown in Fig. 4(b), the persistence length shows similar
trends as the end-to-end distance: it is independent of activity
in the contractile case, but shoots up with activity in extensile
systems above the transition to stretched conformations.

Another measure of the mean polymer conformation is
provided by the radius of gyration tensor RG, defined as

RG = 1

N

N∑
i=1

(ri − rc.m.)(ri − rc.m.), (17)

where rc.m. is the instantaneous center-of-mass position. Its
eigenvalues α1, α2 and α3, characterize the extent of the
polymer mass distribution along its eigendirections, with a
larger eigenvalue corresponding a net extension of the chain
in the corresponding direction. These eigenvalues can be used
to define a shape anisotropy parameter κ as

κ = 1 − 3
α1α2 + α1α3 + α2α3

(α1 + α2 + α3)2
. (18)

A straight linear polymer (e.g., α1 = 1, α2 = α3 = 0) has
an anisotropy of κ = 1, whereas an isotropic or spherically
symmetric configuration (α1 = α2 = α3) has an anisotropy
of κ = 0. The dependence of κ on activity is depicted in
Fig. 4(c). In contractile systems, the mean value of κ is inde-
pendent of activity and relatively low at ≈ 0.3: This nonzero
value is due to the fact that instantaneous conformations on
which we calculate κ are not perfectly isotropic due to fluctu-
ations, even though on average the system shows no preferred
direction. In the presence of extensile activity, anisotropy in-
creases as the chains extend along the principal direction of
the gyration tensor, with κ reaching nearly 1 for N = 100 at
σ0 = 50.

Finally, we also characterize global nematic alignment of
chain segments by plotting in Fig. 4(d) the scalar nematic
order parameter λmax

Q , defined as the maximum eigenvalue of
the mean nematic order tensor

Q = 1

N − 1

N−1∑
i=1

(
nini − I

3

)
, (19)

and we note that λmax
Q is in the range of 0 to 2/3. Once

again, we observe similar trends with respect to activity,
with no discernible effect of σ0 in contractile systems, but
a sharp increase of the maximum eigenvalue above the
coil-stretch transition, especially in the case of long chains
(N = 100).

C. Coil-stretch transition: Phase diagram

We further characterize the dependence of the coil-stretch
transition on system parameters in Fig. 5, where we consider
extensile systems only. We systematically determine the lo-
cation of the transition by considering the time evolution of
the nematic scalar order parameter, which exhibits a positive
growth only in simulations in which stretching occurs. Note
that other quantities, such as the end-to-end distance Rn or rel-
ative shape anisotropic κ , could also be used for that purpose,
though we find that the nematic order parameter is particularly
useful as it displays growth starting from very short times in
cases where stretching occurs. The time evolution of λmax

Q in
one such case is plotted in Fig. 5(a), where a regime of linear
growth is observed followed by a plateau. A growth rate β can
be computed during the initial regime, which is roughly zero
for configurations that stay coiled but becomes positive when
stretching occurs. This is illustrated in Fig. 5(b), where we plot
β as a function of σ0 for a fixed choice of the on- and off-rates
of (kon, koff ) = (100, 500), for which pa = 1/6. Note that, as
already observed in Fig. 4, it is the value of pa that governs
the transition, rather than the intrinsic values of kon and koff .
The trends are similar to those found in Fig. 4, with a clear
transition to stretching occurring at a critical dipole strength
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FIG. 5. (a) Time evolution of the nematic scalar order parameter λmax
Q in a simulation with N = 100, (kon, koff ) = (100, 500) (pa = 1/6),

and σ0 = 60. The inset shows the initial regime of linear growth, from which we define the growth rate β. (b) Dependence of growth rate β

on dipole strength σ0 for N = 100 and (kon, koff ) = (100, 500) (pa = 1/6), showing the transition to stretching above a critical value. The red
circle corresponds to the simulation shown in (a). (c) Phase diagram for the active coil-stretch transition in the (σ0, pa) plane. The boundary
between the two domains is well captured by a curve of constant A = Ac (black curve). (d) Critical activity level Ac for the coil-stretch transition
as a function of chain length N . The coil-stretch transition is only observed for chains of length N � 4. The inset shows the same data in a
log-log plot, highlighting an apparent scaling of Ac ∼ N−1 for intermediate chain lengths.

of σ0 ≈ 30. Similar simulations were performed by varying
both σ0 and pa, and the results are summarized in a phase
diagram in Fig. 5(c) in the case N = 100, where we highlight
parameter regimes where coiled and stretched configurations
are observed. Expectedly, we find that the transition to stretch-
ing occurs for large values of either pa (many dipoles) or σ0

(stronger dipoles). We find that the transition is very well
captured by a curve of constant A = paσ0, with a critical
value of Ac ≈ 4 in the case shown in Fig. 5(c). The activity
threshold Ac is length dependent, and is found to decay with
N as shown in Fig. 5(d): indeed, a longer chain will carry
more dipoles at a fixed value of pa. For intermediate chain
lengths, we find Ac ∼ N−1, although this apparent scaling is
only observed over one decade of N [see inset in Fig. 5(d)].
A plateau is observed for longer chains, whose precise origin
remains unclear; a possible explanation for this saturation may
be that the nematic alignment resulting in stretching first oc-
curs locally on small chain segments before the entire chain is
able to unravel and stretch. These findings suggest a transition
governed by the parameter AN , which plays an analogous role
as the Deborah number for the classic coil-stretch transition of
flexible polymers in extensional flows [37]. Interestingly, we
find that the transition to spontaneous stretching only occurs
for N � 4, a result that we explore further using a theoretical
model in Sec. III D.

D. Theory for an active trimer

As observed in Fig. 5(d), N = 4 is the lower limit above
which the polymer undergoes the coil-stretch transition in our
simulations. To understand this behavior, we further study the
case of a trimer consisting of N = 3 beads using a theoretical
model based on a Fokker-Planck formulation. Denoting by
q the generalized angular coordinates describing the con-

figuration of the chain, the Fokker-Planck equation for the
probability density function ψ (q, t ) is given by [37–39]

∂ψ

∂t
+ ∂

∂qi

{
�i j

[
N∑

n=1

ua
k (rn)

∂rn,k

∂q j
ψ − kBT

ζ

√
h

∂

∂q j

(
ψ√

h

)]}

= 0, (20)

where index n refers to the bead number, and all other indices
denote components of the various vector and tensor quanti-
ties, for which the Einstein summation convention applies. In
Eq. (20), � = H−1 and h = det(H) are defined in terms of the
tensor

Hi j =
N∑

n=1

∂rn

∂qi
· ∂rn

∂q j
. (21)

In the case of interest where there is no external flow, the
mean position and orientation of the chain simply undergo
Brownian diffusion, and the only internal coordinate with a
nontrivial probability distribution function is the bond angle
θ = π − cos−1(n1 · n2) as depicted in Fig. 6. Equation (20)
can be simplified in this case. Setting the orientational flux to

2

3

n1

n2

θ1

−F0n2

F0n2

−F0n1

F0n1

FIG. 6. Schematic of an active trimer, where the internal coordi-
nate of interest is the bond angle θ = π − cos−1(n1 · n2).
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zero at steady state yields the simple differential equation

�2θ̇aψ − kBT

ζ

√
h

d

dθ

(
ψ√

h

)
= 0, (22)

where θ̇a is the deterministic angular velocity resulting
from the flow induced by the active dipoles, and h = �4

(4 − cos2 θ )/9 [39]. Here the probability density function is
normalized as ∫ π

0
ψ (θ ) sin θ dθ = 1, (23)

where the factor of sin θ comes from the solid angle in three
dimensions.

For simplicity, we assume that both links are subject to
permanent dipoles (pa = 1). The angular velocity in that case
can be calculated as

θ̇a = 1

sin θ
(ṅ1 · n2 + n1 · ṅ2) = 2

sin θ
n1 · ṅ2, (24)

where

ṅ2 = 1

�
(I − n2n2) · ua(r3). (25)

On substituting the expression for the active flow velocity at
the location of bead 3,

ua(r3) = [G(r3; r2) − G(r3; r1)] · F0n1, (26)

with G the Oseen tensor defined in Eq. (6), we obtain after
simplifications

θ̇a = F0

4πμ�2
sin θ

[
1 − 3

2
√

2(1 − cos θ )

]
. (27)

Inserting this expression into the flux balance Eq. (22) then
yields the governing equation for ψ (θ ),

3

2

(
a

�

)
σ0 sin θ

[
1 − 3

2
√

2(1 − cos θ )

]
ψ

=
√

4 − cos2 θ
d

dθ

(
ψ√

4 − cos2 θ

)
, (28)

which is written in dimensionless form and involves both the
dipole strength σ0 and ratio a/� of the bead hydrodynamic
radius to the bond length.

In the passive case (σ0 = 0), Eq. (28) is readily
integrated as

ψp(θ ) = ψ0

√
4 − cos2 θ (σ0 = 0), (29)

which is the classic solution for a rigid trimer at thermal
equilibrium [38], which peaks at and is symmetric about
θ = π/2; see Fig. 7. The prefactor is obtained from the nor-
malization condition Eq. (23) as ψ0 = (2π/3 + √

3)−1. When
activity is present (σ0 �= 0), the solution of Eq. (28) for the
distribution function becomes

ψa(θ ) = ψp(θ ) exp

{
−3aσ0

2�

[
cos θ + 3

2

√
2(1 − cos θ )

]}
,

(30)

with a new normalization constant ψ0 that now depends on
(a/�)σ0 and must be determined numerically. We find that
dipolar activity modifies the equilibrium distribution ψp(θ )

0 π/2 π
θ

−10

0

10

U
(θ

)/
k

B
T

σ0 = −50

σ0 = 0

σ0 = 25

σ0 = 50

0 π/2 π
θ

0

1

2

3

ψ
(θ

)
si

n
θ

σ0 = −50

σ0 = 0

σ0 = 25

σ0 = 50

(a)

(b)

FIG. 7. (a) Probability density function ψ (θ ) sin θ of the bond
angle θ for a trimer with different levels of activity and for a/� =
0.1 [the factor of sin θ arises from the solid angle in Eq. (23)]. The
plot compares the analytical solution of Eq. (28) (solid lines) with
results from Langevin simulations (symbols). (b) Effective potential
energy U (θ ) for active self-alignment as a function of bond angle θ

[see Eq. (31)].

through a Boltzmann factor of the form ∝ exp[−U (θ )/kBT ]
where

U (θ )

kBT
= 3aσ0

2�

[
cos θ + 3

2

√
2(1 − cos θ )

]
(31)

can be interpreted as an effective potential energy for self-
alignment of the chain under its own active flow.

Figure 7(a) shows ψ (θ ) sin θ as a function of θ for different
values of σ0, and compares the analytical solution of Eq. (30)
with results from Langevin simulations. Good agreement is
found between the two. As anticipated based on Fig. 5(d), we
find that the behavior of the trimer is quite unlike that of longer
chains: extensile trimers (σ0 > 0) tend to remain in a folded
configuration with θ ≈ 0, whereas contractile trimers prefer
to be kinked with θ ≈ π/2. The propensity for the extensile
trimer to remain folded can be understood by considering the
potential energy in Fig. 7(b): in extensile cases with σ0 > 0,
the potential energy displays two minima at θ = 0 and π ,
which both correspond to configurations with aligned dipoles.
However, the minimum at θ = 0 is significantly deeper, since
the two dipoles are closer to one another and therefore interact
more strongly in the folded state than in the unfolded state.
This explains why the folded configuration is preferred in
this case as seen in Fig. 7(a). This folded state, however,
becomes much less likely in longer chains, as the links also
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experience tension forces from the other parts of the chain.
Excluded volume interactions also decrease the likelihood of
folded conformations.

IV. CONCLUSIONS

We have used Langevin simulations to study the conforma-
tional dynamics of a model active polymer consisting of freely
jointed bead-rod chains decorated by stochastic force dipoles
that drive long-ranged flows in the surrounding viscous sol-
vent. Depending on the type of dipole, significantly different
dynamics were observed: Fluid flows driven by contractile
dipoles tend to create transient kinks in the chain, resulting in
coiled conformations with enhanced fluctuations; on the other
hand, the flows driven by extensile dipoles tend to align neigh-
boring chain segments, resulting in the spontaneous unfolding
and stretching of the polymer above a critical level of activity.
The dynamics in the extensile case are reminiscent of the
coil-stretch transition of passive polymer chains in extensional
flows [31,37]. However, the active coil-stretch transition un-
covered here is self-induced and does not require any external
flow or forcing. On unfolding and stretching of the polymer,
the aligned dipoles along the chain drive a macroscopic fluid
flow with extensional symmetry that resists relaxation under
thermal fluctuations and sustains the stretched conformation
along an arbitrary axis selected at random. Because the chain
rigidifies under extensile activity, its configurational entropy
is reduced and its behavior switches from a Gaussian chain to
an effective wormlike chain. As demonstrated by our analysis,
the transition to stretching occurs above a critical value of
N paσ0, which denotes the product of the mean number of
dipoles N pa along the chain with the dimensionless dipole
strength σ0. While most of our simulations have neglected
hydrodynamic interactions (other than those directly resulting
from dipolar activity), we anticipate that a full character-
ization of the transition in the presence of hydrodynamic
interactions may uncover yet richer behavior, such as confor-
mation hysteresis near the transition point, which is known to
occur in the case of the passive coil-stretch transition [40,41].

The active polymer model used in this work was motivated
by interphase chromatin, which is a flexible polymer known
to be subject to ATP-powered enzymes such as RNA
polymerase [14]. A detailed microscopic model for the local
active stresses generated by these enzymes is still lacking,
yet we expect to be able to coarse-grain them as dipoles [15],
and past work has suggested that fluid-mediated interactions
between these dipoles may be responsible for the coherent
motions observed inside the cell nucleus during interphase
[16]. Chromatin and its associated enzymes, however,
cannot be extracted in vitro without major disruption to their
structure and function, so that this system is hardly a good
candidate for experimental validation of our model. Other
synthetic systems, however, would be very well suited for
that purpose. One example could consist of a flexible chain
composed of bimetallic autophoretic rods [33], which can
be designed to drive either extensile or contractile flows
[42]. Such a chain of extensile rods should display the active
coil-stretch transition, which could be externally controlled
by addition or removal of chemical fuel such as hydrogen
peroxide to the solution. This suggests novel designs for

smart polymeric materials whose effective rheological,
optical or thermal properties could be tuned reversibly by
triggering the active coil-stretch transition on the microscale.
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APPENDIX: COMPARISON WITH FULL
HYDRODYNAMICS

The model discussed in Sec. II describes a free-draining
polymer chain where hydrodynamic interactions due to con-
straint forces, excluded volume interactions and thermal fluc-
tuations are neglected and where the only hydrodynamic flow
is that induced by active dipoles. Here we present a more com-
plete model that accounts for hydrodynamic interactions and
compare results obtained by both formulations. In the pres-
ence of hydrodynamic interactions, the Langevin equation (1)
becomes

dri

dt
= ua(ri, t ) +

N∑
j=1

Mi j · [
Fc

j (t ) + Fe
j (t )

] + ξi(t ). (A1)

Mi j denotes the grand mobility tensor that captures viscous
drag on the beads as well as long-ranged hydrodynamic
interactions:

Mi j = I
ζ

δi j + G(ri; r j ) (1 − δi j ), (A2)

−50 0 50
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0.0

0.5

1.0

R
n

N = 50

N = 50 (Full HI)
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σ0
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/

−50 0 50
σ0

0

1

κ

−50 0 50
σ0

0.0
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λ
m

ax
Q

(a) (b)
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FIG. 8. Effect of hydrodynamic interactions on the average
steady-state values of (a) the scaled end-to-end distance Rn, (b) the
effective persistence length �p/�, (c) the relative shape anisotropy
κ , and (d) the nematic scalar order parameter λmax

Q as functions of
σ0 for chains of length N = 50 with kon = 200 and koff = 500. The
plots compare results obtained using Eq. (1), which neglects hydro-
dynamic interactions other than those induced by active dipoles, with
Eq. (A1), which accounts for full hydrodynamic interactions.
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where G is the Oseen tensor introduced in Eq. (6). Fur-
thermore, the fluctuation–dissipation theorem governing the
statistics of Brownian displacements becomes

〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t
′)〉 = 2kBT Mi jδ(t − t ′). (A3)

In practice, ξi is calculated as

ξi(t ) =
N∑

j=1

Bi j · w j, (A4)

where w j is an uncorrelated Gaussian white noise with zero
mean and unit variance, and the tensor Bi j is related to the
grand mobility tensor as

N∑
p=1

Bip · BT
j p = 2kBT Mi j . (A5)

We compute Bi j as the lower triangular Cholesky factor of
Mi j . An additional complication in the presence of hydro-
dynamic interactions arises from the calculation of tensions:
Indeed, the left-hand side of Eq. (11) now involves a full
matrix instead of a tridiagonal system, which we solve using
LU decomposition.

Figure 8 shows a comparison of conformational properties
in simulations with and without hydrodynamic interactions.
We find that all the qualitative trends reported in Sec. III
remain unchanged. We observe, however, that the transition
to stretching in extensile systems is slightly delayed in the
presence of hydrodynamic interactions as is especially visible
in Figs. 8(a) and 8(c), and that the spontaneous stretching
induced by activity is weakened due to the increased viscous
dissipation in the system.
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