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Weak clogging in constricted channel flow
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We investigate simple models of a monodisperse system of soft, frictionless disks flowing through a two-
dimensional microchannel in the presence of a single or a double constriction using Brownian dynamics
simulation. After a transient time, a stationary state is observed with an increase in particle density before
the constriction and a depletion after it. For a constriction width to particle diameter ratio of less than 3, the
mean particle velocity is reduced compared to the unimpeded flow and it falls to zero for ratios of less than
1. At low temperatures, the particle mean velocity may vary nonmonotonically with the constriction width.
The associated intermittent behavior is due to the formation of small arches of particles with a finite lifetime.
The distribution of the interparticle exit times rises rapidly at short times followed by an exponential decay
with a large characteristic time, while the cascade size distribution displays prominent peaks for specific cluster
sizes. Although the dependence of the mean velocity on the separation of two constrictions is not simple, the
mean flow velocity of a system with a single constriction provides an upper envelope for the system with two
constrictions. We also examine the orientation of the leading pair of particles in front of the constriction(s). With
a single constriction in the intermittent regime, there is a strong preference for the leading pair to be orientated
perpendicular to the flow. When two constrictions are present, orientations parallel to the flow are much more
likely at the second constriction.
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I. INTRODUCTION

When a stream of moving particles encounters an obstruc-
tion, the flow may be reduced, stopped, or intriguingly, made
intermittent, i.e., it displays bursts separated by periods of
arrest. The outcome depends on a number of factors includ-
ing, most obviously, the orifice-to-particle size ratio, D/d .
Constricted particle flows appear in many diverse situations,
including pedestrian and traffic flow in channels [1], silo
discharges [2,3], sheep passing through a gate [4], and sus-
pensions of colloidal particles flowing through an obstruction
[5,6]. Remarkably, a unified description can be applied to
all these situations [7]. An improved understanding of the
physics of clogging can be beneficial for real-world appli-
cations of granular materials, panic escape [8], microfluidics
[9], nanofluidics [10], and efficient methods for single-cell
encapsulation [11].

Early studies of the discharge of granular matter from silos
showed that significant changes in the flow occur when the
ratio of the orifice-to-particle diameter is in the range 3–5 [12].
Later it was realized that the clogging phenomenon is due
to the formation of arches spanning the orifice [2,3,13]. The
arch stability is normally strongly associated with interparti-
cle frictional forces and is, for example, responsible for the
well-known Janssen effect [14–17]. For granular materials,
clogging is very often permanent, and an external intervention
is required to restore the flow. When friction effects are negli-
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gible or entirely absent, the clogging is temporary, leading to
intermittent dynamics.

Recent studies have focused on the statistics of blocking
processes [5,18,19]. The number of escaping particles in each
successive burst, as well as the time intervals between bursts,
are distributed exponentially, which implies a constant prob-
ability of blocking during the whole burst. The time lapse
distribution between successive particles, however, has been
shown to exhibit a power-law tail, p(τ ) ∼ τ−α [7]. The tran-
sition to clogging is characterized by the divergence of the
average time lapse, i.e., α � 2.

Thomas and Durian [20] examined the fraction of grain
configurations near the exit of granular hopper flow that
cause clogging, and they concluded that there is no sharp
transition. Several authors have also studied the strong in-
fluence of particle shape on discharge and clogging [21–23].
Colloidal systems, including bacteria [24], involve blocking
mechanisms that are governed by, in addition to D/d , the
driving force acting on the particles, long-range hydrody-
namic interactions, and the nature of the particle-particle and
particle-wall interactions. Wioland et al. [25] considered geo-
metrically induced turbulence for bacterial mixing processes
in microfluidic channels, and Marin et al. [5] reported exper-
imental results of clogging in charged-stabilized suspensions
of particles flowing through a single constricted channel. The
behavior is remarkably similar to that observed in dry granular
matter, even though the interparticle interactions are consider-
ably different. For D/d < 3, blockages form randomly, while
for D/d > 3 the flow is uninterrupted. This was attributed
to the low friction of the particles. Recently, Souzy et al.
[6], using a setup similar to that of Marin et al. [5] but
with a larger constriction angle, observed intermittent flow
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for 2.43 < D/d < 5.26 with a power-law exponent α < 2 in
all cases. Hidalgo et al. [26] studied the flow of colloidal
suspensions through small orifices using lattice Boltzmann
methods with a focus on the effect of varying temperature.
They observed that intermittent flow regimes precede clog-
ging events. The mean number of colloids crossing the orifice
between clogging events decreased with increasing tempera-
ture, i.e., thermal fluctuations can inhibit particle flow through
the orifice, an example of “freezing by heating.”

Zimmermann et al. [27] studied a two-dimensional model
of Brownian particles driven through a constriction by an
external force using Brownian dynamics simulation and den-
sity functional theory. They observed four scenarios: complete
blockage, monotonic decay to a constant flux, damped oscil-
latory, or long-lived stop-and-go behavior.

While most studies of silo discharge involve hard grains,
recently soft granular materials have attracted the attention of
several researchers [28–34]. A key difference is that, unlike
systems with friction, the pressure at the orifice does not
saturate as the fill level increases. A striking feature, in com-
parison with hard grains, is that low-friction soft grains hardly
clog even when the orifice is only slightly larger than two
particle diameters. These studies also observed the formation
of transient clogs.

In this article, we examine the flow characteristics of a
monodisperse system of soft, frictionless particles in a narrow
channel with a constriction moving under the influence of an
external force and the opposing drag exerted by the solvent.
Our system is similar to a silo discharging soft particles in
that the absence of friction leads to hydrodynamic pressure
conditions. We examine the influence of the system parame-
ters, including the channel and constriction geometry, particle
stiffness, and temperature, on the flow characteristics. We then
focus on those that lead to intermittent flow, which we attempt
to characterize. In particular, we examine the interparticle exit
time distribution and, where appropriate, the cluster size dis-
tribution. We characterize the two-particle metastable arches
responsible for the intermittent blocking by examining the
orientation of the two leading particles before the constriction.

Many synthetic and natural microchannels have boundaries
with a sinusoidally varying, or corrugated, form, e.g., zeolites,
microfluidic channels, and nanopores. We therefore extend the
model by considering the effect of having two constrictions
separated by a fixed distance.

II. MODEL AND SIMULATION

We consider a minimal system, illustrated in Fig. 1, of
identical soft disks of mass m and diameter σ1 flowing through
a channel of width Ly. The disks undergo Brownian mo-
tion and are driven, from left to right, by the immersing
fluid. The moving particles can be deformed by the channel
walls or neighboring particles. In many biological situa-
tions, deformable molecules move through transport vesicles,
which are spherical structures formed by a closed biological
membrane, containing molecules and many trans-membrane
proteins [35,36]. A constriction formed by two fixed disks
of diameter σ2 is symmetrically placed about the channel
axis, at x = 0, so that the minimum distance between them is
lw = Ly + σ1 − σ2, i.e., they are not centered on the channel

FIG. 1. A channel of width Ly and length Lx contains a constric-
tion formed by two fixed disks, each of diameter σ2. The orifice
width, lw , is the minimum distance between the obstacles, and σ1

is the particle diameter. A periodic boundary condition is imposed
along the x-axis. The orange vertical represents the abscissa beyond
which a particle is considered to have exited the constriction. θ is the
angle of the leading pair of particles just before the narrowest part of
the constriction.

walls, but displaced outward by σ1/2. The channel length Lx is
chosen to be significantly greater than Ly in order to minimize
correlation effects.

The force between particles i and j is

Fi j = k�(σi j − ri j )(ri j − σi j )r̂i j, (1)

where ri j is the distance between two particles, with unit
vector r̂i j . �(x) is the Heaviside function, k is the rigidity
factor, and σi j = σi+σ j

2 . The same interaction force is used
between a mobile particle i and the stationary particles that
make up the constriction, i0.

The force between particle i and the channel walls, denoted
w±, is given by

Fw±,i = kw�(riw± − σ1/2)(ri,w± − σ1/2)r̂iw±, (2)

where ri,w± is the distance between the particle i and the wall
w±, r̂iw±, the unit vector, and the rigidity factor kw.

Finally, the moving particles are driven by an external force

Fd,i = −α(v − v0), (3)

where v0 is the unimpeded drift velocity along the channel
axis, v0 = v0ex, and α is the drag coefficient.

The system dynamics is described by the overdamped
Langevin equation:

vi(t ) = v0 + 1

α

(∑
j �=i

Fi j +
∑
w

Fw,i +
∑

i0

Fi,i0

)

+
√

2kBT

α
η(t ), (4)

where η(t ) is a δ-correlated Gaussian noise: 〈η(t )η(t ′)〉 =
δ(t − t ′).

Further physical parameters characterizing the model are
the channel dimensions Lx and Ly. The particle density is
ρ = N/(LxLy), where the volume occupied by the constriction
is neglected. This is reasonable if Lx � Ly. For the sake of
simplicity, we only consider the case in which k = kw. It is
convenient to use nondimensionalized quantities. Since, in the
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case of the overdamped motion studied here, the particle mass
is irrelevant, we select σ1, σ1/v0, and σ1v0α as units of length,
time, and energy, respectively. The unit of time corresponds
to the ballistic displacement of a particle with the velocity
v0, and the unit of energy is the work done against the drag
force in this time. With this choice of units, we introduce the
dimensionless quantities

k′ = kσ1

αv0
, T ′ = kBT

αv0σ1
, ρ ′ = ρσ 2

1 , (5)

The channel’s reduced geometric parameters are

L′
x = Lx

σ1
, L′

y = Ly

σ1
, l ′

w = lw
σ1

, (6)

and

v′
i(t ) = vi(t )

v0
, r′

i j = ri j

σ1
(7)

are the dimensionless velocity and interparticle distance. The
Péclet number, giving the ratio of advective transport to diffu-
sive transport, is

Pe = σ1v0α

kbT
= 1

T ′ . (8)

In the remainder of the article, we drop the primes for
convenience. In a sufficiently long channel, the correlations
between exiting and entering particles are negligible. We used
Lx = 60 in the simulations. Particles are initially randomly
and uniformly placed within the channel without overlapping
each other, the walls, or the constriction. Periodic bound-
ary conditions are imposed in the direction of the channel,
so that as a particle exits x = Lx/2, it is reinserted at x =
−Lx/2. The y-coordinate and velocity of the reentering parti-
cle are conserved (randomizing the former within the interval
of the channel has no noticeable effect). The average velocity
of the system was computed over 20–100 simulations, with a
time step of δt = 0.001, and a total run time of 200.

The next section presents results for a simple convex con-
striction formed by two fixed large disks located in the middle
of the channel (see Fig. 1). In Sec. IV, we consider a double
constriction formed by four fixed large disks, whose sepa-
ration by a finite distance creates a nonconvex region. We
focus on the low-temperature regime where the flux displays
intermittency, and we monitor the avalanche statistics.

III. SINGLE CONSTRICTION

A. Flow characteristics

Simulations were performed for a reduced density ρ =
0.55 and Péclet numbers 1 < Pe < 100. This value of the
mean density corresponds to 180 < N < 200 particles for
most of the channels studies. After a transient time, which
increases as the width of the constriction decreases, the system
reaches a stationary state with a well-defined mean particle
flux. The upper bound of the time required for the system to
reach the stationary state is Lx/v0, which is equal to the time
needed for a particle to traverse the channel. The imposition of
constant density (and not number) leads to a roughly constant
head of particles before the constriction in the steady state.

FIG. 2. Simulation snapshots (cropped). For Ly = 6, the particles
behind the constriction form a close-packed array of seven layers that
is nearly commensurate with the channel width, while for Ly = 5.5,
six layers at a lower density, and with some defects, are present.

An example of the effect of varying the number of particles at
constant density is shown in the Appendix.

In the Supplemental Material (SM), we present five videos
to illustrate the behavior of the system: see [37] for mp4 files
of the videos. All but one are for Ly = 6. With the narrowest
constriction, lw = 1, the flow is fairly steady and the particles
pass one by one through the constriction. The stream of exit-
ing particles appears to be continuous with no distinct cluster
size. The behavior is similar at both temperatures (0.01 and
0.05), but one observes more radial dispersion of the exiting
particle stream at the higher temperature.

Increasing the width to lw = 1.3 at T = 0.01 leads to a
reduced, intermittent flow. Temporary blockages, which result
from the formation of a two-particle arch perpendicular to
the flow direction, occur frequently. An example is shown
in Fig. 2(a). We observe many distinct clusters of 7 (and
occasionally 3 and 14) particles in the exiting stream. Let
us now compare with an identical system except Ly = 5.5.
The flow is now continuous and no characteristic clusters are
apparent. See Fig. 2(b). At the higher temperature T = 0.05
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FIG. 3. Mean velocity, 〈V 〉, as a function of the constriction
width, lw , for various rigidities, k, and with Ly = 5.5 at different
temperatures.

the flow appears much more continuous with only occasional
hesitation for both Ly = 6 and 5.5.

We now present a quantitative analysis of the flow be-
havior. We first consider the mean velocity of the system of
particles, 〈V 〉, as a function of the minimum distance lw with
Ly = 5.5 and for different values of kw. Figure 3 shows the
following behavior, which is repeatedly observed:

(i) For lw � 3, the constriction has a small effect and the
mean velocity remains close to v0. For lw1 � lw � 3, the ve-
locity decreases almost linearly with a slope which increases
with decreasing temperature. The lower bound of the linear
region, lw1 , depends on the temperature: for T = 1 and 0.5,
lw1 � 2 while for T = 0.1 and 0.01, lw1 � 1.8. A second
regime is observed in the range lw2 � lw � lw1 , where lw2 is
slightly below 1. The mean velocity is a convex function of
ly and decreases more rapidly than in the previous regimes.
The mean velocity depends only weakly on kw, except at the
lowest temperature T = 0.01.

(ii) For lw3 < lw < lw2 , which corresponds to a minimum
distance less than a particle diameter, the particles pass
through the constriction in single file. The velocity decreases
rapidly to zero as lw decreases. The slope of the nearly lin-
ear curve increases as the temperature decreases. Moreover,
whereas the behavior in this regime depends on the strength
of the forces for T = 1, 0.5, and 0.1, it is almost independent
of kw at low temperature. lw3 depends on both the temperature
and kw.

(iii) For lw < lw3 , the channel is unequivocally blocked
because the force required to sufficiently deform a particle
exceeds the force exerted by the other particles behind the
constriction.

At low temperatures one observes the formation of a dense
region before the constriction in which the particles are almost

at rest. When the size of this region exceeds a threshold length,
the particles are able to pass through the constriction. The
resulting burst is of short duration and followed by a period
of arrest before the next release.

Figure 4 shows the mean velocity as a function of lw for
different channel widths Ly. The different regimes described
for Ly = 5.5 are only slightly modified for Ly = 4.5, 6.5, and
7.0. Substantial changes are, however, observed for Ly = 5
and 6: For Ly = 5, when lw � 1.5, one observes a small dip
of the mean velocity, whereas for 1.0 < lw < 1.5, the mean
velocity decreases slowly with lw. Finally, a rapid change
occurs around lw = 1 where the mean velocity drops to a
negligible value if kw > 200. This is because one particle at
a time enters the constriction from the dense region before the
bottleneck.

When Ly = 6, one observes a nonmonotonic variation of
the mean velocity, 〈V 〉, with lw, which is an indication of
intermittency. This effect is present for all values of kw, but
the maximum of the depletion/overshoot is obtained for kw =
200. Moreover, for 1.0 < lw < 1.5 the minimum of the mean
velocity is slightly dependent on kw. It is worth noting that
the convergence of the curves requires a time step δt � 0.001.
Movies of the simulation (see the SM) suggest that the system
now favors two vertically aligned particles at the entrance of
the constriction. This configuration is metastable in the sense
that, when the fluctuation forces acting on the two particles
are sufficiently large, a small deviation of the vertical axis
defined by the two particle centers allows one of the two par-
ticles to enter the constriction, rapidly followed by the other.
This effect only appears if the channel of width Ly is able
to “select” this configuration at the entrance of the channel
and if the core repulsion is not large (for kw = 300 this same
configuration leads to a quasipermanent blockage for lw ≈
1.3, namely larger than a diameter of particle). Conversely,
when kw = 100 the particles are highly deformable and the
minimum of the mean velocity versus lw is less pronounced.
Thus, for a suitable choice of parameters, metastable minimal
arches develop, resulting in blockages of finite duration and
particle cascades.

In summary, the mean velocity versus lw has a roughly sim-
ilar behavior for different values of the channel Ly, except for
Ly = 6, where the mean velocity displays a conspicuous, non-
monotonic behavior in the interval of 1 < lw < 2. The movies
reveal an intermittent regime where two particles located in
front of the constriction interrupt the continuous flow. This
shows that clogging is possible even for frictionless particles
in a confined geometry that selects appropriate configurations
of leading particles before the constriction.

B. Detailed analysis of the intermittent regime

To characterize the intermittent regime, we analyze the
interparticle time distribution. Each time a particle crosses
a line perpendicular to x∗ = σ/2, the time and the particle
label are recorded. This choice of abscissa corresponds to a
region where a particle is really released. However, because
of the stochastic nature of the dynamics, a particle (with a
small mean velocity) may cross x∗ many times in a short
duration (several time steps). Therefore, in order to avoid
overcounting the number of exiting particles, only the first
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FIG. 4. Mean velocity 〈V 〉 as a function of lw at low temperature T = 0.01, for various rigidities, kw , and for different values of Ly. A
nonmonotonic evolution is observed for Ly = 6, and is especially marked for values of rigidity around kw = 200.

crossing is recorded. The time step used was δt = 0.001.
However, to obtain sufficient statistics, the simulation run time
was increased to 2 × 104. For this long trajectory we record all
times, τ , between two successive particle releases.

Figure 5 displays the interparticle time distribution, N (τ ),
for Ly = 6, kw = 250, and σ2 = 5.76 (lw = 1.34) for which
there is a local minimum in the mean velocity at T =
0.01 (Fig. 4). A large peak is present at small times in
the interparticle time distribution followed by a long tail
for τ > 1.5. The first region corresponds to a regular flow
of particles through the constriction, whereas the tail cor-
responds to cascade-associated events. The inset shows a
log-log plot of the distribution and the best exponential fit of
the tail,

N (τ ) ∝ e−τ/τ0 , (9)

where τ0 = 13 is the typical (mean) interparticle time.
For T = 0.01, one observes long interruptions of the flow,

corresponding to events when the interparticle exit times are
much larger than 1. These events are associated with a typical
τ0 = 13.

For T = 0.02 and 0.03, the typical times are reduced by
an order of magnitude (τ0 = 1.3 and 1, respectively). This
means that clog duration is significantly shorter than when
T = 0.01. For T � 0.02, the tail of the interparticle distribu-
tion is limited to times less than 10. It is possible to define
cascade statistics, but these concern fewer events of shorter
duration.

We now examine the cascade size distribution associated
with the intermittent regime. Let us define a cutoff time τc. A

cascade ends if τ > τc and continues if τ < τc. For example,
a cascade of size n = 3 occurs if two successive interparticle
times are less than τc and the following one is greater than τc.
Once τc is set, the trajectory can be viewed as a sequence of
cascades, and the cascade intertime distribution, N (τ ), and the
cascade size distribution, D(s), can be calculated. An example
is shown in Fig. 5.

Unlike the particle intertime distribution, the cluster size
distribution is not exponential. Instead, in addition to a small
flat background of rare events of all sizes, prominent peaks are
present at s = 3, 14, and particularly 7 (which can be easily
observed in the video). This value corresponds to the release
of a hexagonal unit of seven particles. Similarly the peak at
14 corresponds to the successive release of two such units.
At the higher temperatures the peaks at s = 3, 7, 14 are still
present, along with other, emergent peaks in the vicinity of
these principal peaks.

The mechanism leading to temporary blockage is illus-
trated in Fig. 6. When lw = 1.3, the system readily selects
configurations featuring a plug of seven particles which is
relatively resistant to thermal fluctuations. In contrast, for
a narrower constriction, lw = 1, the selected configurations
feature a group of eight particles that are much less compact
and therefore less stable. This results in a nearly continuous
flow.

For reference, we compare the above results with those
obtained for Ly = 5.5 for which no intermittent regime is
observed, Fig. 7. Accordingly, the interparticle exit time never
exceeds 1.5, which is consistent with a continuous flow of
particles and the absence of distinct clusters.
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FIG. 5. (a) Interparticle time distribution, N (τ ). The inset dis-
plays a semilog plot of N (τ ) and an exponential fit of the distribution.
(b) Cascade size distribution. Ly = 6, lw = 1.24 (σ2 = 5.76), kw =
250, and T = 0.01. (c); (d) T = 0.02; (e); (f) T = 0.03. The expo-
nential fits, Eq. (9), of the particle intertime distributions give the
typical times τ0 = 13, 1.26, and 1.01 for T = 0.01, 0.02, and 0.03,
respectively.

C. Leading pair orientational distribution

The animations suggest that the intermittent behavior
(when present) is due to the formation of metastable,
two-particle arches in front of the constriction. We attempted
to characterize these arches by examining the orientation of
the two leading particles located before the constriction. By
monitoring the positions of the leading pair at equal time
intervals of 50δt , one builds the probability density function,

FIG. 6. Simulation snapshots (cropped) showing the blocking
mechanism for Ly = 6. For clarity the particles are shown 90%
actual size. For lw = 1.3, a relatively stable hexagonal plug of seven
particles forms leading to a temporary blockage, while for lw = 1.0
the potential plug is composed of eight particles and is much less
stable, leading to a nearly continuous flow.


(θ ), of the angle θ between a line connecting the centers of
the leading pair of particles and the y-axis; see Fig. 1. Some
examples of the leading pair orientational distribution (LPOD)
are shown in Fig. 8, where one observes a trimodal form

FIG. 7. The interparticle time distribution for Ly = 5.5, lw =
1.24 (σ2 = 5.76), and T = 0.01. In the simulations, the interparticle
time never exceeded 1.5, and no cascade distribution can be defined
(τ0 = 0.13).
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FIG. 8. Left: distribution of the leading pair orientation, θ , for
a system with Ly = 6, lw = 1.25 (σ2 = 5.75) at temperatures T =
0.01, 0.03, and 0.05, top to bottom. Right: zoom on the central region
of the distribution with the best fits of Eq. (11). The fit parameters are
αT = 4.1, 1.5, and 1.6 from top to bottom.

with a central peak at θ = 0 that grows as the temperature
decreases. This peak corresponds to the situation in which the
two particles lie nearly parallel to the y-axis (or perpendicular
to the flow direction), which prevents any particle flow. On
the other hand, when |θ | ≈ 1, the two particles are aligned
more parallel to the flow direction and can proceed through
the orifice without impediment. More quantitatively, we let


(θ ) = a
0(θ ) + (1 − a)
1(θ ), (10)

where 
0(θ ) and 
1(θ ) are normalized distributions corre-
sponding to the central and outlying peaks, respectively. The
area of the central peak, a, then corresponds to the fraction of
the total time during which no particle crosses the constric-
tion.

We attempted to fit the central peak 
0(θ ) with the function


0(θ ) = eα cos(2θ )

π I0(α)
, (11)

where α > 0 is a fitting parameter and I0(α) is the modified
Bessel function of the first kind, which serves as a normal-

FIG. 9. Left: distribution of the leading pair orientation, θ , for a
system with Ly = 5.5, lw = 1.25 (σ2 = 5.25) at temperatures T =
0.01. The weight of the central peak is 3% and the left and the
right peaks represent 97% Right: zoom on the central region of the
distribution.

ization factor. The form of Eq. (11) is consistent with the
Boltzmann factor e−βU (θ ), where U (θ ) is the confining po-
tential and β = 1/kBT . For the form chosen, U (θ ) = U (0) +
bθ2 + O(θ4), i.e., a quadratic dependence for small deviations
from the vertical direction. The proposed function provides a
good description of the central peak, and we note that, except
at the lowest temperature T = 0.01, the fitting parameter α

is inversely proportional to the temperature (see values in the
figure caption). The area of the central peaks in Fig. 8, corre-
sponding to the value of a in Eq. (10), evolves smoothly with
the temperature: for T = 0.01, 0.03, and 0.05, a = 0.76, 0,67,
and 0.53, respectively. At the lowest temperature of T = 0.01,
the mean angle of outlying peaks is equal to 1, while at higher
temperatures it is close to 0.85.

When the flow is continuous, the LPOD is quite different.
For the system Ly = 5.5, lw = 1.25, and T = 0.01 shown in
Fig. 9, the central peak is barely present, and most leading
pairs exit the constriction with an angle in the range 0.87 <

θ < 1.05.

IV. DOUBLE CONSTRICTION

We now consider the effect of a double constriction con-
sisting of four disks, i.e., the original pair plus a replica
displaced by dsep. When dsep = 0, the two pairs fully over-
lap and we recover the previous model. When dsep > 0, the
nonconvex region between the two constrictions may trap
the moving particles. Simulations were performed for differ-
ent values of separation dsep = {1, 2, 3, 4, 5, 6, 7, 10}. All the
other parameters were chosen to correspond to those of the
original model (dsep = 0) for which both monotonic and non-
monotonic behavior was observed, i.e., for T = 0.01, 0.05,
kw = 200, and Ly = 5.5, 6, 6.5.

Ten videos presented in the SM [37] illustrate the flow
characteristics when two constrictions are present (some snap-
shots are shown in Fig. 2). For dsep = 3, lw = 1, and lw = 1.3
the behavior is similar to that observed in the single constric-
tion system: the flow is quite steady, resulting in a continuous
stream of particles for lw = 1 and intermittent for lw = 1.3.
For the wider orifice, lw = 1.5, we also observe intermittent
flow with blockages always forming at the first constriction.
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FIG. 10. Mean velocity 〈V 〉 as a function of lw for two values of Ly, each for various values of dsep and T = 0.01.

For dsep = 4, lw = 1.5, the flow is intermittent. Blockages
occur at both obstructions but are more likely to occur at
the first one. The pair of particles forming the blocking arch
tends to be perpendicular to the flow direction at the first
obstacle, while a wider range of leading particle orientations
is observed at the second constriction.

For dsep = 5, lw = 1, the flow is stopped for the duration of
the video by the second pair of obstacles. The space between
the two pairs of obstacles accommodates a group of seven
particles in a hexagonal arrangement that forms a stable block-
age. The same system at a higher temperature of T = 0.05
also forms blockages, but these are more easily destabilized
by the larger thermal fluctuations. For the same system but
with an orifice width of lw = 1.3 (T = 0.01), the flow is in-
termittent with temporary two-particle arches forming at the
first obstacle. The hexagonal group of particles is less easily
accommodated in this geometry, and the flow is only slightly
impeded by the second constriction.

For dsep = 7, the two constrictions are completely sep-
arated. For lw = 1, the flow is initially intermittent, but
it is rapidly stopped by a blockage that forms at the
second constriction. For the same system at the higher
temperature T = 0.05 we observe no blockage. Increas-
ing the width to lw = 1.5 results in an intermittent
flow with the stream somewhat reduced by the second
constriction.

These videos illustrate the complexity of a double constric-
tion system, which results from the interstitial space between
the two constrictions, or, in the case of a larger separation,
from the possibility of a variation in the number particles
before each constriction. Due to this complexity, an exhaus-
tive study of the double constriction system is not feasible.
Nevertheless, we present a preliminary quantitative analysis
of some systems.

Figure 10 shows the mean velocity as a function of lw for
various values of dsep. As one might expect, the mean velocity
is always less than the single constriction system dsep = 0. For
small values of dsep, however, it is only marginally smaller for
all values of lw.

Let us consider a channel of width Ly = 6. For lw > 2, the
mean velocity decreases weakly with increasing dsep, showing
that the interconstriction geometry has little influence. In the
intermediate range, 0.7 < lw < 2.0, the situation is consider-
ably different: for dsep = 1, 2, one observes an overshoot of
the mean velocity for lw ≈ 1, followed by a minimum compa-
rable to that displayed by the single constriction (dsep = 0).

For larger values, dsep = 3, 4, the minimum of the veloc-
ity is much smaller than the previous cases, and it occurs
for lw = 1.1, 1.3, respectively. For dsep = 5, the velocity is
almost monotonic (except for a tiny plateau in the interval
lw = [1.0, 1.1]). The nonmonotonic evolution of the mean
velocity, for nonzero values of dsep, persists for cases in which
the channel width is noninteger (Ly = 5.5, 6.0).

A. Cascade statistics

Figure 11 displays cascade statistics for three different
temperatures, for Ly = 6, lw = 1.27, dsep = 3, and for τc = 1.
For this orifice width at T = 0.01 the mean velocity is quite
low (≈0.1), as shown in Fig. 10. For all temperatures studied,
the distributions are nearly exponential, except for a small
deviation at s ≈ 12.

B. Leading pair orientation

We examined the leading pair orientational distribution at
both constrictions. Some results are shown in Fig. 12. The
distributions before the first constriction are similar to the
single constriction case discussed earlier (Fig. 8): they are
dominated by a central peak at low temperatures with side
peaks that increase with increasing temperature. The LPOD
before at the second constriction is, however, quite different.
Even at the lowest temperature the side peaks are dominant,
and as the temperature increases, the magnitude of the central
peak diminishes rapidly. This behavior is consistent with the
fact that blockages are much more likely to occur at the first
constriction.
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FIG. 11. Cascade size distribution for lw = 1.27 (σ2 = 5.73), Ly = 6, dsep = 3, tc = 1, for different temperatures T ; distribution of cascade
sizes, D(s), on a log-linear plot. The exponential fits of the cascade size distribution give the typical size s0 = 3.3, 2.5, and 4.2 for T = 0.01,
0.02, and 0.05, respectively.

V. DISCUSSION

We studied the transport of monodisperse, soft, frictionless
disks through both a single and a double constriction using
overdamped Brownian dynamics simulation. At low temper-
atures and for certain orifice widths, we observed strongly
intermittent dynamics. At low temperatures, the mean velocity
varies nonmonotonically with constriction width. As the tem-
perature increases, this behavior diminishes. We performed
the simulations at a given mean particle density (ρ = 0.55).
Since hydrodynamic pressure conditions apply, changing the
density will alter the flow characteristics. However, if the

FIG. 12. Leading pair orientational distribution at the first (left)
and second (right) constriction for particles flowing through a chan-
nel. Parameters correspond to Fig. 11 and T = 0.01, 0.02, and 0.05
top to bottom.

density, and hence the head, is sufficiently large, we expect
the intermittent behavior will persist.

The interparticle time distributions are essentially expo-
nential, but the cascade size distributions are not, particularly
at low temperatures for which one observes a few strong
peaks at distinct cluster sizes corresponding to the release of
hexagonal units. Increasing the temperature reduces the cas-
cade size and decreases the interparticle time.

In the presence of a single constriction, the metastable
arch is formed by a pair of particles that are strongly aligned
perpendicular to the channel axis. Increasing the temperature
broadens the central peak of the leading pair orientational
distribution while increasing the side peaks.

With two constrictions present, the LPOD at the first con-
striction is similar to the single constriction case, but an
orientation parallel to the flow direction is generally preferred
at the second.

While most studies concerning the formation of arches
and other blocking phenomena highlight the importance of
frictional forces, our results demonstrate that, even in their
absence, the degree of confinement strongly influences the
formation of arches that lead to intermittent dynamics.

It is interesting to compare our results with the well-known
phenomenon in which placing an obstacle upstream from
the outlet may reduce or eliminate clogging, e.g., in silos
[38], panic escape [8], and even the flow of sheep [39].
In contrast, in the current model, the introduction of the
second pair of obstacles increases the likelihood of block-
age due to the creation of spaces within which metastable
arches may form. Depending on whether the arch formations
are desired, knowledge of the relevant parameter range in
which they exist would aid any subsequent engineering
solution.

The nonequilibrium nature of the process biases the weight
of configurations (compared with equilibrium). For a given
set of system parameters, these biased configurations may
be more or less favorable to the appearance of a temporary
blockage. Compared to the silo flow considered by Thomas
and Durian [20], the complexity of our model with one
constriction may be insufficient to produce a large spec-
trum of configurations, as illustrated in Fig. 6. With two
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FIG. 13. Mean velocity 〈V 〉 as a function of lw for different
values of N , Ly = 5.5, kw = 250, and T = 0.01.

constrictions, however, we appear to recover a larger com-
plexity resulting in an exponential decay of the avalanche size
distribution.

To obtain additional insight into the phenomena associated
with intermittent clogging, it would be useful to examine in
detail the mechanism by which the particles pass through the
constriction and the stress propagates into the head.
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APPENDIX

We show how the mean flow velocity changes as a function
of the number of particles in the system (Fig. 13). Since the
particles are frictionless, adding more increases the pressure
at the orifice, leading to a larger flow rate.
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