
PHYSICAL REVIEW E 105, 014602 (2022)

Front speed and pattern selection of a propagating chemical front in an active fluid
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Spontaneous pattern formation in living systems is driven by reaction-diffusion chemistry and active mechan-
ics. The feedback between chemical and mechanical forces is often essential to robust pattern formation, yet
it remains poorly understood in general. In this analytical and numerical paper, we study an experimentally
motivated minimal model of coupling between reaction-diffusion and active matter: a propagating front of an
autocatalytic and stress-generating species. In the absence of activity, the front is described by the well-studied
Kolmogorov, Petrovsky, and Piskunov equation. We find that front propagation is maintained even in active
systems, with crucial differences: an extensile stress increases the front speed beyond a critical magnitude of the
stress, while a contractile stress has no effect on the front speed but can generate a periodic instability in the
high-concentration region behind the front. We expect our results to be useful in interpreting pattern formation
in active systems with mechanochemical coupling in vivo and in vitro.
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I. INTRODUCTION

The emergence of form in the living embryo involves a
series of out-of-equilibrium chemical and physical processes
[1]. Among them, two mechanisms stand out: reaction-
diffusion (RD) [2–6], which creates well-defined concentra-
tion patterns, and active matter (AM), mediated by molecules
that convert chemical energy into mechanical forces gener-
ating hydrodynamic flows [7–16]. RD dynamics have also
been used to model a wide range of situations in biology
ranging from spatiotemporal protein dynamics in cells [17] to
the migration of a cell monolayer [18,19]. In these contexts,
the species undergoing RD dynamics may regulate or control
active forces in the living system. Indeed, the importance
of interactions between chemistry and mechanics in mod-
eling living systems has long been recognized [4], yet RD
and AM systems have generally been examined separately,
whether theoretically [4,8] or in in vivo [5,20] and in vitro
[21,22] experiments. More recently, however, mechanochem-
ical couplings have been investigated theoretically [23,24],
demonstrating the ability of such systems to display novel
patterns even in the absence of chemical reactions [23]. When
combined with chemical reactions, the coupling modifies the
patterning behavior of RD systems [23], and it can also
generate spatiotemporal oscillations [24]. Their importance
for in vivo assays has been established [1,7], and chemical

reactions have also been implicated in the active context in
spontaneously creating stable droplets of a finite size and the
formation of protocells [25]. However, how active flows affect
RD dynamics in general remains sparsely understood.

To the best of our knowledge, couplings between RD and
AM have not yet been engineered in vitro. However, recent
experimental developments suggest that mechanochemical
self-organization could be investigated in well-controlled in
vitro experiments in the near future [26]. Such in vitro
systems, which we will call reaction-diffusion active mat-
ter (RDAM) systems, would be particularly interesting for
quantitatively testing theoretical predictions concerning the
propagation of a reacting and diffusing activity regulator—a
situation that is likely to be ubiquitous in in vivo settings.

In this paper, we present an examination of how active
flows affect the propagation of a reacting and diffusing chemi-
cal species that controls the strength of activity, using a highly
simplified model. We describe the simplest, nontrivial RDAM
system that could be reasonably assembled in vitro with cur-
rent knowledge (Sec. II). It is an RD system generating a
traveling front that is coupled to a compressible active fluid.
We model it with a dynamical equation for the concentration
of the reactant and a constitutive equation for the velocity field
of the active fluid [23] (Sec. III). A linear stability analysis
of these equations about a homogeneous state shows that
there is a spatial instability for a contractile RDAM system
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(Sec. IV). However, the linear theory falls short of being able
to predict the behavior of the system when symmetry is broken
by a traveling front. In particular, a linear theory incorrectly
predicts that the front speed is insensitive to the active stresses.
Moreover, it does not provide a prediction of how the spatial
instability propagates or how its selected wavelength is shifted
in the presence of the front. Numerical simulations of the two
dynamical equations provide the answers to these questions
(Sec. V A). The simulations show that, in extensile fluids,
fronts propagate faster as the active stress increases and spatial
instabilities are never observed. We show that the front speed
picked out in simulations is the minimum physically allowed
speed, consistent with a marginal stability mechanism that
shows up in much simpler systems, but which does not hold in
our highly nonlinear model. In turn, contractile fluids generate
fronts whose velocity is independent of the active stress, and
they display spatial instabilities whose group velocity is not
equal to the speed of the front and whose wave number is
shifted to smaller values compared to the linear prediction.

II. IN VITRO REACTION-DIFFUSION ACTIVE MATTER

In this section, we will describe an RDAM system that
could be assembled in vitro with the current experimental
state of the art. We will take into account known exper-
imental constraints to motivate the theoretical description
undertaken in the rest of the paper. Although a wide array
of AM experimental systems exist, we will restrain ourselves
to molecular active matter because we believe that it has the
highest chance to be combined with molecular RD systems.
In this category, extracts of cytoskeletal filaments and motors,
either actomyosin or kinesin/microtubule gels [26,27], are
particularly suitable. Depending on the situation, these gels
are locally contractile or extensile and are composed of polar,
nematic, or isotropic particles [28]. A wide variety of dissipa-
tive behaviors have been observed in these gels in vitro, such
as aster formation [22], global contractions [29,30], chaotic
flows [31], active nematics [31], and active film buckling [32].
These systems function in aqueous solution, at neutral pH and
room temperature.

Chemical systems that generate RD patterns have his-
torically relied on strongly acidic reactions [21] which are
incompatible with cytoskeletal extracts. However, in the past
15 years, biochemical RD systems working at neutral pH
have been developed [33–37]. Among them, DNA-only [35]
and DNA/enzyme [36] reaction schemes are particularly in-
teresting because the modularity of the DNA hybridization
reaction facilitates the engineering of mechanochemical cou-
plings with active fluids. In particular, one may envision that
the single-stranded (ssDNA) species A produced by these re-
actions dimerizes DNA-motor conjugates [38,39], or releases
them from a reservoir [40]. Indeed, a number of active flu-
ids become active only in the presence of dimers of motors
[22,31], and thus, with this scheme, active stresses would be
generated only in the presence of species A.

With such a design, we will consider an autocatalytic
reaction of ssDNA species A, which has been reported to
generate RD fronts propagating at constant velocity in a
thin microchannel [41] and that is compatible with kinesin-
microtubule active matter [42]. In the following, we will

suppose that this autocatalytic reaction takes place in a so-
lution that is in contact with a thin film of an active fluid
composed of filaments and motor-DNA conjugates. We note
that active thin films, as well as motor-DNA conjugates, have
been obtained both for myosin [43,44] and kinesin [31,38,45–
47]. Such a thin film of DNA-responsive active fluid could be
obtained at a water-oil interface in the presence of a depletion
agent, such as polyethyleneglycol, that pushes the filaments
against that interface [27,43].

III. ACTIVE TRAVELING FRONT MODEL

In the situation just described, the thin film of active fluid
can exchange both momentum and matter (i.e., the filaments
can diffuse into the fluid above) with the solution where
DNA/enzyme reactions take place. At a given point in space,
as the concentration of A increases in the bulk solution, motor
dimers will form in the film and will generate active flows
(Fig. 1). To model this three-variable (DNA A, motors M, and
filaments F ) biphasic system as a one-variable monophasic
system, we will make two sets of assumptions. First, we will
suppose that the timescales of motor-motor dimerization via
DNA hybridization, τ+

M,A, of motor-motor dissociation, τ−
M,A,

of motor binding to filaments, τ+
M,F , and of motor-filament

dissociation, τ−
M,F , are fast compared with the timescale of

DNA autocatalysis, τA. Then, one can model such a system
with a single average species C, of concentration c, that
could be seen as the concentration of motor dimers bound
to filaments that undergo an autocatalytic reaction (referred
to as autocatalytic motors in the following). Note that the
effective diffusion coefficient D of this species is an av-
erage of the diffusion coefficient of free A, DA, and of A

A 2A

x

y

wa

wd

DNA-conjugated
motor

ssDNA  A

Filament

[A] = 0
[A] = 0

ζ > 0 ζ = 0 

FIG. 1. Scheme of a plausible experimental reaction-diffusion
active matter system that can be described using Eqs. (1)–(3). A
chamber is filled with a solution containing an RD and an AM sub-
system. The RD subsystem is an autocatalytic DNA/enzyme reaction
of the form A → 2A, where A is a ssDNA. The AM subsystem is
made of filaments and DNA-conjugated motors. Due to depletion
forces, the AM subsystem forms a film of height wa (segmented
pattern) above the RD solution of height wd . A small quantity of A is
introduced on the left side of the chamber (dark gray). In the absence
of activity (i.e., [ATP] = 0 and ζ = 0), A is expected to generate
a traveling front of constant velocity [41]. In the presence of ATP,
A will diffuse on the active region, generating motor dimers that will
move along the filaments (gray arrows) generating a flow of filaments
(black arrows) and thus induce ζ > 0. At the right side of the front,
[A] = 0, the motors are monomeric and thus they move along the
filaments without generating flow ζ = 0.
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bound to M, DM , weighted by the time spent in each state
[41]. Second, we will suppose that the thickness of both
the active film, wa, and the DNA/enzyme solution, wd , is
small enough such that the corresponding diffusion time τD =
[max(wa,wd )]2/2DA � τA, with DA the diffusion coefficient
of A. As C is advected by active flows in the thin active
film, this transport may in turn influence the concentration
of C in the bulk by the rapid diffusion of C across both
phases.

To estimate τ+
M,A, we suppose that motor-DNA conju-

gates dimerize through DNA hybridization with second-order
kinetics. Thus τ+

M,A = 1/(κ+
M,AM0), where we take κ+

M,A ∼
104–106 M−1 s−1 as a typical value of DNA association rate
[48] and M0 ∼ 1–100 nM the typical concentration of kinesin
in active matter experiments [32]. τ−

M,A = 1/κ−
M,A, where the

dissociation rate of a DNA double strand κ−
M,A is controlled

by its length and can vary in the range κ−
M,A ∼ 10−2–10−5 s−1.

τ+
M,F = 1/κ+

M,F , and we take κ+
M,F = 5 s−1 from Leduc et al.

[49]. τ−
M,A = 1/κ−

M,F , and we calculate κ−
M,F = v/�r , where v

is the velocity of kinesin along microtubules and �r is the run
length before detachment. Furuta et al. [46] measured v and
�r for DNA-promoted kinesin clusters with different numbers
of kinesins and found v = 800 nm/min and �r = 2 × 103 nm,
4 × 103 nm, and 15 × 103 nm, respectively, for one-, two-
or four-kinesin clusters. τA has been measured by Zadorin
et al. [41] to be in the range 102–104 s. Finally DA ≈ DM =
10−10 m2 s−1, and wa and wd are in the range 10–100 μm.
We thus get τ+

M,A ∼ 10–105 s, τ−
M,A ∼ 102–105 s, τ+

M,F ∼ 0.2 s,
τ−

M,F ∼ 2–20 s, τA ∼ 102–104 s, and τD ∼ 1 − 100 s. As a
result, provided that the motor-DNA system is designed such
that M0 and κ−

M,A are on the upper side of the aforementioned
ranges, τA is larger than all the other characteristic times as
required by our model.

Beyond the specific and explicit in vitro scenario described
here, the RDAM model we will construct is relevant to a
wide range of in vivo systems. Indeed, our theory describes all
active thin films of uniform thickness h, where the thickness
of the film is maintained by the exchange of material with
the surrounding medium [50,51], and in which activity is
controlled by an activity regulator C, which in the absence
of active flows would have the following RD dynamics: an
unstable lower concentration state of the regulator is changed
to a higher concentration state at a front moving at a well-
defined speed. Stated in this general form, our theory may be
relevant for understanding the propagation of a cell layer in a
wound-healing assay [52], where C models the cells or for the
dynamics of a chemical active stress regulator in the cellular
cortex.

Having established the experimental relevance of an RD
system coupled to an active flow, we now construct a model
for understanding two key features of such a system: (i)
whether active flows enhance or inhibit the speed of the RD
front, and (ii) whether the profile of the component C behind
the front remains homogeneous or forms a patterned state.
For this, we consider a system that is perfectly homogeneous
in ŷ and has a moving front of C along x̂ at which a low
(zero) concentration state of C changes to a high (nonzero)
concentration state. We take c to be the concentration of the
species C and v ≡ vxx̂ to be the flow velocity.

With these assumptions, the general equation of motion for
the concentration field is

∂t c = D∂xxc − ∂x(vc) + f (c), (1)

where D denotes the diffusivity, the second term on the right-
hand side accounts for the advection of the concentration by
the flow, and f (c) is a generic reaction term with the following
properties: (i) it destabilizes a steady state with css = 0, and
(ii) it saturates at finite value c0. For most of the paper, we
will use a simple form for f (c):

f (c) = rc(1 − c/c0), (2)

but we have checked that our results do not depend qualita-
tively on this particular form. Note that, in the absence of the
advection by the velocity field, (1) constitutes the well-known
equation for a traveling wave introduced independently by
Fisher [53] and by Kolmogorov, Petrovsky, and Piskunov [54],
which we refer to as the KPP equation. The absence of activity
can be experimentally realized in two ways (Fig. 1). In the ab-
sence of ATP, A can still bind to the DNA-conjugated motors,
and thus the average species C will still have the diffusion
coefficient D. In the absence of motors, instead, the relevant
diffusion coefficient would be DA.

The overdamped equation of motion for the velocity
field, relevant for slow flows encountered in biological and
biomimetic systems, has the form

(γ − η∂xx )v = ∂x[ζ (c)], (3)

where γ is a friction coefficient that accounts for relative
motion with respect to the surrounding medium, η is the
viscosity of the active layer, and ζ (c) is a stress that depends
on the regulator concentration. This stress may have a passive
component arising from an equation of state for c, but we take
it to be primarily active with ζ (c) > 0 implying a contractile
system and ζ (c) < 0 an extensile system. For much of this
paper, we will assume a form for ζ (c): ζ (c) = αc, where α

is a constant. However, we checked that our results do not
depend qualitatively on the form of ζ by also considering
two alternate forms of the stress coupling: a quadratic form,
ζc = αc2/c0, and a saturating form, ζ (c) = αc/(1 + c/c0)
(see Appendix B and Fig. 7). Equations (1) and (3) fully
characterize the effectively one-dimensional RDAM system.

To facilitate numerical calculations, we now nondimen-
sionalize (1) and (3) by rescaling x → x/�, t → t/τ , and
c → c/c0, where � = √

η/γ is the hydrodynamic correlation
length, which is proportional to the thickness of the active
layer, and τ = 1/r is the zero-wave-number inverse relaxation
(growth) rate of concentration fluctuations. The rescaled equa-
tions of motion are

∂t c = 1

Da
∂xxc − ∂x(vc) + c(1 − c), (4)

(1 − ∂xx )v = 
(c)∂xc, (5)

where c, x, t , and v are now nondimensional, and
Da = rη/Dγ —the second Damköhler number—and 
(c) =
∂cζ (c)/rη are nondimensional parameters of the model. Da
and 
 express ratios, respectively, of characteristic timescales
of reaction to diffusion, and of active transport to reaction.
Thus, 
 can also be expressed as 
 = Pe/Da, where Pe is the
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more familiar Péclet number expressing the ratio of active to
diffusive timescales, given in our case by Pe(c) = ∂cζ (c)/Dγ .

To understand the behavior of this model, we first consider
the linear stability of a state with a homogeneous concentra-
tion implied by (4) and (5), and then we numerically analyze
how activity modifies the propagation of a concentration front
into a state with c = 0.

IV. LINEAR THEORY

We start by examining the linear stability of a state at zero
average concentration, i.e., css = 0, with boundary conditions
c(±∞) = 0, v(±∞) = 0. Linearizing (4) and (5) about css =
0 and Fourier-transforming in space and time, we get

−iσcq,σ =
(

1 − 1

Da
q2

)
cq,σ , (6)

where σ and q are the (nondimensional) frequency and wave
number of the perturbation, respectively. The dispersion re-
lation is σ = i(1 − q2/Da), which implies that the amplitude
of a small wave-number fluctuation grows, destabilizing the
css = 0 state. Next, linearizing about css = 1 [c(±∞) = 1,
v(±∞) = 0] and defining δc = c − 1 and 
|c=1 ≡ 
1, we
get

−iσδcq,σ = −
(

1 + 1

Da
q2 − 
1q2

1 + q2

)
δcq,σ . (7)

This implies that a state with css = 1 is stable in the
long-wavelength q → 0 limit where σ = −i. Equation (7),
however, suggests an activity-induced nonhydrodynamic, fi-
nite wave-number instability of the homogeneous state for
wave numbers in the range

|q| ∈
⎧⎨
⎩

√
−[1 + Da(1 − 
1)] −

√
[1 + Da(1 − 
1)]2 − 4Da

√
2

,

√
−[1 + Da(1 − 
1)] +

√
[1 + Da(1 − 
1)]2 − 4Da

√
2

⎫⎬
⎭ (8)

when


1 >
1 + 2

√
Da + Da

Da
= 
c (9)

[or Pe1 > (1 + √
Da)2, where Pe1 ≡ Pe|c=1], as sketched in

Fig. 2. Since this requires 
1 > 0, it can only be achieved
in contractile systems. The maximum growth rate is at the
wave number qc =

√
−1 + √


1Da =
√

−1 + √
Pe1. The in-

stability starts at finite wave number in our model, in contrast
to the zero-wave-number instability predicted in [23], due to
the reaction term that damps concentration fluctuations at zero
wave number. 1

We now consider the case in which a front moving at a
constant speed k interpolates between these two states, such
that c(−∞) = 1 and c(∞) = 0, and v(±∞) = 0. The steady-
state front must then be described by a function c(ξ ), where
ξ = x − kt , which, in the absence of flow-advection due to
activity, solves the equation

0 = 1

Da
∂ξξ c + k∂ξ c + c(1 − c). (10)

The speed of the c = 1 front in the absence of activity is
expected to be, in dimensional form, k = 2(Dr)1/2, using a
marginal stability argument originally due to [55]. Contractile

1A note of caution: A prediction of a finite wave-number insta-
bility within a hydrodynamic theory should not be taken to imply
that all systems with the same symmetry, and the same sign of
activity, will display this instability, in contrast to prediction for a
zero-wave-number instability. Whether the growth rate turns positive
at a nonzero wave number depends not only on the lowest order in
wave-number terms retained within the hydrodynamic theory, but
terms at all orders in wave numbers that are not. Such terms en-
code system-specific details and can eliminate a finite wave-number
instability even when a theory retaining only the lowest order in
wave-number terms suggests its presence.

or extensile activity qualitatively modifies the KPP concen-
tration dynamics via the advection by the hydrodynamic
velocity. Formally solving (5) in terms of the concentration
field leads to an integrodifferential equation for the concen-
tration, which is not easy to deal with analytically. We will
therefore examine the effect of advection due to active flow
on the front propagation numerically. However, we can first
gain some qualitative insight by assuming that v 
 ∂xxv in
(5), which is generically the case when � → 0, and replace
the velocity field in (4) with v = 
(c)∂xc to obtain

0 =
(

1

Da
− c


)
∂ξξ c + [k − (c
′ + 
)∂ξ c]∂ξ c + c(1 − c),

(11)

FIG. 2. Growth rate σ of wave number q at different values of
the active stress parameter 
1 = 
|c=1, from linear stability analysis
of (4) and (5) around c = 1 with a linear stress term ζ (c) = αc.
The black dashed line is at σ = 0. For contractile stresses above a
critical value of 
1, given in (9), the reaction-diffusion active matter
(RDAM) system is unstable to perturbations in a finite range of wave
numbers. Extensile stresses (negative 
) stabilize the system. In this
figure, Da = 0.4.
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FIG. 3. Representative simulations of the RDAM model [(4) and (5)] studied in this article. This model of mechanochemical coupling may
represent, for example, a simplified 1D version of an experiment in a thin film where a reacting and diffusing chemical species A interacts with
stress-generating molecules (for instance, molecular motors walking on filamentous proteins) such that the magnitude of the stress increases
with increasing concentration of A. Positive values of 
 model contractile stresses, while negative values model extensile stresses. Similar to
Ref. [23], we find that a periodic instability develops behind the front above a critical value of contractile stresses. Moreover, we note several
other interesting features that we explore in this paper. First, there is an asymmetric effect of stresses on the speed of the traveling front, which
is increased by extensile stresses but unaffected by contractile stresses. Second, the instability is modified by the boundary condition imposed
by the front in three ways: the critical value of 
 is shifted to a higher value compared to an infinite system; there is a gap between the front
and the instability that closes with increasing 
; and the instability selects a single wavelength from the spectrum of unstable wavelengths in
the ideal system. Simulation parameters for all simulations in this figure: L = 400, T = 100, dx = 0.01, dt = 0.1, Da = 0.4.

where the prime denotes differentiation with respect to c.
Therefore, the coupling to an active species leads to two
distinct modifications of the usual KPP equation: (i) it reduces
the (nondimensional) diffusivity at nonzero concentrations
via the term c
, and (ii) it leads to a new nonlinear term
(c
′ + 
)∂ξ c in the equation of motion. The former implies
that a c = 1 concentration profile behind the front cannot be
homogeneous for large values of 
, as seen in the linear
stability analysis. Note, however, that linearizing (11) sug-
gests an incorrect value for the threshold of the instability
of the css = 1 state discussed earlier, the range of unstable
wave numbers, and the wave number at which the growth rate
of the instability is maximum. It predicts an instability for

1 = 1/Da and, since there is no stabilizing mechanism at
large wave numbers, no fastest growing mode. The reason for
this is that we assumed the hydrodynamic correlation length �

to be 0, which amounts to replacing the factor 1/(1 + q2) in
the last term of the right-hand side in (7) by 1. If we expand
1/(1 + q2) in a binomial series for q → 0, we see that this
approximation ignores even linear terms at higher wave num-
bers. Therefore, this implies that (11) becomes qualitatively
different from the full dynamics when 
 � 1/Da and cannot
be used to obtain qualitative information about it beyond this
point.

If instead of setting � → 0 and ignoring the ∂xxv term in
(5), we formally invert the differential operator (1 − ∂xx )−1 ≡∑∞

n=0 ∂2n
x , we find that the nonlocal character of the full

velocity field leads to linear and nonlinear higher order in
gradient terms in the concentration equation which should
lead to wave-number selection behind the front when the
homogeneous state is unstable.

Finally, even in the regime where (11) is predictive, the
nonlinear modification of diffusivity and speed implies that
results regarding the speed of the front derived using marginal
stability analysis for KPP equations cannot be carried over to
this case [55–57]. In particular, if (11) is linearized around
c = 0, it simply reduces to the usual KPP equation (10) which
would predict that the front speed would be unaffected by
activity 
. This turns out to be incorrect, as we explicitly
demonstrate in the next section by numerically simulating (4)
and (5).

V. NUMERICAL RESULTS

To explore the propagation of a concentration front in the
RDAM system, we numerically simulated (4) and (5). In
Fig. 3 we show example trajectories of these simulations. In
this section, we consider only stress linear in c, i.e., ζ (c) =
αc, so that 
 is independent of c and we drop the subscript
on 
1. Further examples are shown in Fig. 7 with alternative
forms of the stress term ζ (c) and the reaction term f (c). We
simulated the system using a custom python code, which is
available along with the analysis scripts used in this paper
[58]. The coupled equations were integrated in real space us-
ing an implicit Euler scheme. Discretization parameters (grid
size dx, time step dt) were chosen to be small enough that the
simulations were numerically stable and results did not de-
pend on them. Box length L and total time T were chosen to be
large enough that the simulation results reached their asymp-
totic values. Dirichlet boundary conditions were imposed on c
and v with c(0) = 1, c(L) = 0, and v(0) = v(L) = 0, imply-
ing ∂cx(0) = ∂cx(L) = 0 due to Eq. (5). Da = rη

Dγ
was chosen
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to match experimentally realizable conditions with r = τ−1
A =

10−2–10−4 s−1, the rate of the DNA/enzyme autocatalytic re-
action, and D = DA = 10−10 m2 s−1, the diffusion coefficient
of a 10-mer single-stranded DNA [41]. For a thin film of thick-
ness h, η/γ ∼ h2, yielding Da = 1–10−2 for h = 100 μm. We
chose Da ranging from 0.2 to 0.8 in the following. Finally,
the stress parameter 
 was varied in the range −30 to 12 to
probe different regimes of contractile and extensile stresses.
Specific parameter values are stated along with the results in
what follows.

Figure 3 summarizes our central findings. It shows that
with contractile stresses, the front speed does not change
significantly and, above a critical value of 
, an instability
appears behind the front where the concentration is high, as
predicted from the linear theory. In contrast, in the extensile
case, the selected front speed k∗ increases as a function of 


but no spatial instability is observed. We now examine these
results in more detail.

A. Front speed selection in the presence of activity

In this section, we examine how activity modifies the
speeds of the concentration fronts. We defined the front
location as the rightmost point where c = 0.5 (when the con-
tractile instability sets in, there can be points behind the front
with c = 0.5). We computed the location of the front from the
simulations in Fig. 3 and found that it is a linear function of
time after an initial transient resulting from the step-function
initial conditions that we used. The transient happens because
the speed of a KPP front and its shape are related; specifically,
linearizing (10) about c = 0 and assuming that c(x, t ) is a
traveling wave with the exponential form c(x, t ) ∝ exp ( −
a(x − kt )) at the leading edge yields a dispersion relation that
predicts that the front speed k decreases with increasing a,
saturating at k = 2 Dr−1/2 for a � 1 [59]. As a result, simu-
lations begun from an infinitely steep front must accelerate
to their asymptotic speed. We therefore calculated the front
speed from a linear fit of the front position versus time at late
times after the speed had stopped changing. We verified our
results by checking that we obtained the same front speed in
simulations initialized with a shallow initial profile of the form
c(x, 0) = tanh ((x − x0)/m) with m chosen to be large enough
that the front speed converges to its final value from above.
Additionally, we checked that our choices of lattice spacing
(dx = 0.5) and time step (dt = 0.1) were small enough that
further reducing them had a negligible effect on the calculated
front speed.

We first consider the effect of extensile activity on the front
speed. In our reduced model (11), if 
 is independent of c,
the activity nonlinearly enhances the ∂ξξ term and reduces
the ∂ξ term compared to the standard KPP equation, making
it quite different from the standard KPP equation (10). It
follows from a simple physical argument that restricts solu-
tions to have non-negative values of c that a KPP front can
adopt any speed above a minimum allowed value [59], but it
has been shown using marginal stability analysis that in fact
the front asymptotically picks out this minimum speed [55].
While a marginal stability argument is not expected to yield
the front speed in this case, we hypothesize that the selected
front speed in full simulations (k∗) will still be given by the

FIG. 4. The effect of extensile and contractile stresses on the
selected front speed k∗. Extensile active stresses result in an increase
in k∗ above a critical value 
∗ of 
, while contractile stresses have
no effect. All y-axes are normalized by k0 = 2 Da−1/2, the front speed
at 
 = 0. The line at k∗ = k0 is a guide for the eye. Simulation
parameters for these plots: T = 900, dt = 0.05, dx = 0.1, L = 3000
for 
 > −7 and L = 2800 + 58|
| for 
 � −7. L was chosen such
that the front would not reach the end of the box before t = 900.

minimal allowed value of k, kmin, for which c is non-negative
in simulations of (11). We numerically integrated (11) for each
value of 
 using MATLAB’s ode23s function for a range of
values of k (code online [60]). The minimum allowed value
of the front speed, kmin, was identified as the smallest value
of k for which c � 0 for all ξ . The kmin obtained via this
procedure is an increasing function of 
 [in contrast to the
prediction from a naive linearization of (11) about the c = 0
state [55]]. This observation can be heuristically accounted
for by the following argument. For (10), linearizing about
c = 0 shows that, due to the constraint that c � 0, the only
possible trajectories have k � 2(Dr)1/2 [59] (which is also the
speed of the front [55]). Now, since c must always be positive
and ∂ξ c is always negative in permitted trajectories where the
front moves from left to right, in (11) a negative value of 


(corresponding to extensile stresses) increases the diffusivity
(Deff = 1/Da − c
). At the same time, the part of keff [which
is the coefficient of ∂ξ c in (11)] that depends on ∂ξ c is −
∂ξ c
and therefore decreases. Since keff is constrained to be greater
than Deff, and since Deff increases and −
∂ξ c decreases as 


becomes more negative (i.e., for increasing extensile stress),
the value of k must increase to compensate. Thus, the allowed
values of the front speed shift upwards.

We now compare this result with the full numerical simu-
lation to test our hypothesis. Figure 4(a) shows that the front
speed begins to increase in extensile simulations for 
 ≈ −5
(for Da = 0.4). In Fig. 5 we compare k∗ to kmin for three
values of Da and 0 < |
| < 25. Figure 5(b) shows that kmin is
within 5% of k∗ for the largest value of Da that we looked at
(Da = 0.8), and is within 1% for the smallest value Da = 0.2.
This is a significant finding for two reasons: (i) Equation (11)
was obtained within an � → 0 approximation and therefore
ignored both linear and nonlinear terms of higher order in
gradients. Despite this, the reduced model predicts the front
speed reasonably accurately. (ii) This demonstrates that even
in the presence of activity, which makes the effective con-
centration equation nonlocal due to the nonlocal dependence
of the velocity field on the concentration, the selected speed
is still given by the minimum allowed speed, as had been
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(a)

(b)

FIG. 5. The front selects the minimum allowed speed. (a) Com-
paring the front speed selected in simulations of the full model (k∗)
to the minimum allowed front speed kmin in a simplified model where
we take � → 0. Shades of gray represent different values of Da
(0.2, 0.4, 0.8), ×’s are results from a simulation of the full system,
and circles are results from the simplified model. The agreement is
good over this range of parameters and improves with decreasing
Da. (b) Relative difference between the data from full and simpli-
fied models in (a). Simulation parameters for these plots: T = 900,
dt = 0.05, dx = 0.1. For Da = 0.2 and 0.4, L = 3000 for 
 > −7
and L = 2800 + 58|
| for 
 � −7. For Da = 0.8, L = 3000 for

 > −6 and L = 3000 + 75|
| for 
 � −7.

predicted by [55,56] in the context of much simpler models.
The selected speed in both the full simulation and from (11)
remains equal to the speed in the absence of activity up to
a critical value |
∗| and then starts to increase with |
|, as
shown in Fig. 5(a). Figure 5(a) also demonstrates that 
∗
decreases with increasing Da. This feature may also be heuris-
tically understood from (11): when c Da|
| � 1, the effective
diffusivity in (11) is effectively controlled by 1/Da and the
speed is equal to the one in the absence of activity. However,
as Da increases, |
| ∼ 1/Da at smaller values of 
, implying
that the front speed is controlled by activity for |
| > |
∗|
that decreases with Da.

Comparing the results in Fig. 5 with the values of the
experimental parameters summarized in Sec. III allows us
to evaluate the magnitude of the increase in the front ve-
locity expected in the experiment sketched in Fig. 1. Taking
the thin-film approximation η/γ ∼ w2

d , we have Da =
w2

d
1

DAτA
≈ 2 × (10−3–10−1) for a reasonable value of wd =

40 μm. Kinesin/microtubule active fluids generate flows with
velocities up to [61] va = 600 μm/s associated with typical
lengths la = 100 μm, yielding Pe = vala/DA ≈ 6 and thus

 = Pe/Da ≈ 6 × (103–10). In these conditions, from Fig. 5,
we expect a change in the front velocity of about 20% in
the presence of activity, which could be reasonably measured
experimentally.

We now consider the effect of contractile active stress
on the front propagation. As discussed earlier, (11) is only
expected to be predictive for 
 < 1/Da. We find that, in
this regime [i.e., when (11) does not imply an instability of
the high concentration state], (11) implies that the minimum
allowed value of k is essentially the same as the one for 
 = 0.
This is heuristically understandable: even for the extensile
system, the front speed was only controlled by activity, and
increased with it, when |
| � 1/Da. Therefore, since (11) is
only valid for 
 < 1/Da, we do not expect the front speed
to decrease with contractility at least when the high concen-
tration front is not itself unstable. Our results from the full
numerical simulations confirm that the front speed is not mod-
ified when the active stress is contractile, as shown in Fig. 4.
Surprisingly, we find that the front speed remains independent
of 
 even at larger values of 
 when the concentration and
velocity profiles behind the front develop a periodic pattern,
which we discuss in the next section.

B. Patterns behind the front with contractile stresses

We now consider the dynamics at large 
 when the homo-
geneous profile behind the front is destabilized and a periodic
pattern is formed. We measure 
c—the minimum value of

 for which a periodic pattern emerges, and qc—the wave
number of the periodic pattern, from the simulation of the full
model. We checked that in simulations with periodic boundary
conditions, 
c and qc are consistent with linear stability anal-
ysis predictions (see Appendix C for methods and results).

In simulations with a front, there is a small peak in the
concentration just behind the front, which we identified using
a standard peak-finding algorithm as the peak with the largest
value of x. We call the location of this peak x f as it tracks
the location of the front. We define the leading edge of the
instability xp1 to be the location of the second leftmost peak.
We then Fourier-transformed the region from x = 0 to x = x f ,
as shown in Fig. 6(a). Because xp1 is a function of time, the
region of the Fourier transform changes over time and so do
the possible wave numbers of the instability. We therefore
approximated the height of the dominant wave number at long
times (qc) by the amplitude hmax of the wave number with
maximum amplitude (q1) at any point in time. We plotted
ln(hmax) versus t and fit the linear region of the curves to
extract the growth rate σ (q1; 
). We then fit 
 versus σ (q1) to
a line and extrapolated 
c as the value of 
 where σ (q1) = 0.

Surprisingly, we find from this analysis that 
c ≈ (1 +
2
√

Da + Da)/Da as predicted by the linear stability analysis
of a homogeneous css = 1 state. Next, examining the time
evolution of the dominant wave number q1, we find that it
relaxes from below to a constant mean value qc after t ≈ 1000.
In Fig. 6(b), we plot the mean ±1 standard deviation of q1

from t = 1200 to 1800 (i.e., qc ± 1 standard deviation), mea-
sured at intervals of �tsample = 2. The value of qc is within 1%
of the value predicted by the linear stability analysis when 


is just above 
c, and diverges from it as 
c increases.
Finally, we measured the lag of the leading edge of the

instability behind the front (i.e., the front speed k∗ minus
the periodic pattern’s group velocity vg). After a brief initial
transient, the distance �xinstab = x f − xp1 is a linear function
of time. We calculated k∗ − vg as the slope of the linear fit to
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(a)

(b)

(c)

FIG. 6. Wave number and group velocity of the periodic pattern
behind the front. (a) To measure the group velocity vg and the fastest
growing wave number qc, we defined the location of the front x f as
the rightmost peak of the concentration, and the location of first peak
of the instability xp1 as the location of the second rightmost peak.
(b) qc as a function of 
, defined as the mean value over the final third
of a long simulation of the wave number with maximum amplitude
in the Fourier transform of the concentration between x = 0 and
x = x f . The vertical dashed line is located at 
c. Parameters for
these simulations were Da = 0.4, dt = 0.05, dx = 0.05, L = 6300,
and T = 1800. (c) Front speed k∗ minus the group velocity of the
periodic pattern vg as a function of 
 at three values of Da (colors).
Each simulation data point is obtained from the slope of the distance
from the front to the first peak of the instability, �xinstab = x f − xp1,
as a function of time, which is a linear function at long times. The
vertical dashed lines are located at 
c, and the dotted lines are
located at 
∗

c , showing decreasing 
∗
c − 
c with increasing Da. Pa-

rameters for these simulations were dt = 0.05, dx = 0.05, L = 500,
and T = 150.

t versus �xinstab. As shown in Fig. 6(c), k∗ − vg goes from a
positive value just beyond 
c to 0. That is, the pattern lags
behind the traveling front until a second value 
∗

c . Before this
value, the front “outruns” the periodic pattern, implying that
near the traveling edge, a homogeneous region emerges before

the patterned state sets in (see the supplemental movie [62] ).
Beyond 
∗

c , the pattern “catches up” with the front, and for all
higher values it moves with the front. The value of 
∗

c − 
c

decreases with increasing Da (which depends on the ratio of
the reaction coefficient and the bare diffusivity). This implies
that in highly diffusive species, the patterns formed due to the
contractile instability lag arbitrarily far behind the advancing
front and will not be observed in experiments that track the
front. Experimentally, microtubule active matter also displays
a contractile behavior and could thus be used to test these
predictions, either with multiheaded kinesins [63], clustered
kinesins [42,64], or dyneins [30].

VI. CONCLUSION

In this paper, we examined the effect of active flows on
the propagation of a reacting and diffusing activity regulator
species. We demonstrated that neither contractile nor extensile
active flows inhibit the propagation of the activity regulator.
We further showed that extensile activity (corresponding to
negative 
 = Pe/Da in our model) increases the propagation
speed of the activity regulator relative to k0, the speed in
the absence of activity, when the magnitude of 
 exceeds a
critical value 
∗, while contractile activity does not modify
the front speed. On the other hand, contractile active flows
above a critical value 
c destabilize the homogeneous state
behind the front leading to a periodic pattern. For moderate
Da and activity, however, a homogeneous state prevails near
the front edge as the speed of the pattern lags behind the front
speed.

RDAM systems may describe a wide range of in vivo
biological systems. For instance, they may be relevant for
the dynamics of activity regulators [23] in the cellular cor-
tex, or they may describe the dynamics of cell monolayers
[18]. They may also be synthesized in vitro. Indeed, we
motivated our one-dimensional, one-variable model from the
state-of-the art in vitro experiments involving a DNA/enzyme
autocatalytic RD front coupled with a DNA-responsive
kinesin/microtubule active fluid. We believe that the quali-
tative features predicted by the theory presented here can be
observed in in vitro RDAM systems such as the one suggested
here. Taken together, our results may prove useful in interpret-
ing pattern formation in RDAM systems in vivo and in vitro
that are on the experimental horizon.
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FIG. 7. Simulation results with alternative choices of stress and reaction terms. Top two rows: Representative simulations of the concen-
tration as a function of time in the reaction-diffusion active matter (RDAM) model [(4) and (5)], with three alternative forms of the stress
term ζ (c) and two forms of the reaction term f (c). The upper-left panel is the same as in Fig. 3. Parameters: Da = 0.4, L = 400, T = 100
for all simulations; dx = 0.05 and dt = 0.1 for simulations with ζ (c) ∝ c and ζ (c) ∝ c2; dx = 0.01 and dt = 0.05 for simulations with
ζ (c) ∝ c/(1 + c). Bottom row: Wave number with maximum amplitude in the Fourier transform of the concentration behind the front when

 > 
c, as a function of time, computed as described in Sec. V B. Parameters: Da = 0.4 for all simulations; T = 1800, L = 6300, dx = 0.05,
and dt = 0.05 for simulations with ζ (c) ∝ c; T = 2400, L = 8400, dx = 0.05, and dt = 0.05 for ζ (c) ∝ c2; T = 2400, L = 8400, dx = 0.01,
and dt = 0.05 for ζ (c) ∝ c/(1 + c).

APPENDIX A: DEMONSTRATION THAT THE RDAM
MODEL IS APPLICABLE BOTH FOR ALIGNED

AND ISOTROPIC SYSTEMS

In the main text, we described a simplified RDAM model
in which we did not take orientational ordering of the active
units into account. However, active matter systems, such as
the kinesin-microtubule one described in the main text, are
often aligned [32]. In this Appendix, we show that the RDAM
model is still applicable in this case as long as the speed of
the KPP front is fast compared to the relaxation of the angular
fluctuations in the aligned state.

We consider an aligned system (for instance, composed of
microtubules or polarized cells) with the degree of alignment
denoted by

Q = S

2

(
1 0
0 −1

)
, (A1)

where S is the degree of order, with S = 0 denoting
an isotropic organization and S �= 0 denoting an aligned
state. With this, the equation for the concentration field is
modified to

∂t c = D̄∇2c + ζc∇∇ : (Qc) − ∇ · (vc) + f (c), (A2)

where D̄ is the bare diffusivity and f (c) is a generic reaction
term. The “curvature current” ∝ ζc is a standard active con-
centration current in active, aligned systems [8]. The equation

TABLE I. Values of the constants μ and β in (B1) for each choice
of ζ (c) and f (c) shown in Fig. 7.

ζ (c)/α → c c2 c/(1 + c) f (c)/r → c − c2 c − c3

β → 1 2 1/4 μ → 1 2
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TABLE II. Critical values of 
 in nondimensional units, when
Da = 0.4, for each choice of ζ (c) and f (c) featured in Fig. 7 as
predicted from a linear stability analysis.


1,c ζ (c) ∝ c ζ (c) ∝ c2 ζ (c) ∝ c/(1 + c)

f (c) ∝ c − c2 6.66 3.33 26.65
f (c) ∝ c − c3 8.97 4.49 35.89

of the velocity field becomes

(η∇2 − γ )v = −∇� − ∇ζ̄c(c) − ∇ · [ζ̄ (c)Q], (A3)

where � is the equilibrium pressure stemming from an equa-
tion of state for c, ζ̄c is the isotropic active stress, and ζ̄ is the
active apolar stress that arises in aligned systems [8,65]. To
complete the description of the model, we also need to spec-
ify the fluctuations of the order parameter Q. However, we
assume that the propagation of the chemical species happens
at a timescale that is much faster than the alignment dynamics,
and on that timescale the order-parameter Q can be assumed
to be frozen at a constant value. Therefore, we replace Q by
its value given by (A1) with S = 0 for an isotropic state and
S = 1 for an aligned state. Further assuming that only varia-
tions of c and v are along x̂, we obtain the equations of motion
described in the main text with v ≡ vx, D = D̄ + ζc when
S = 1 (i.e., an aligned state) and D = D̄ when S = 0, ζ (c) =
ζ̄ (c) + ζ̄c(c) − � in the aligned state, and ζ (c) = ζ̄c(c) − �

in the isotropic state.

APPENDIX B: ALTERNATIVE STRESS
AND REACTION TERMS

Figure 7 demonstrates that the phenomena that we describe
in this paper are also present with several alternative choices
for the stress and reaction terms ζ (c) and f (c). Specifically,
for two reaction terms and three stress terms, we observe an
increased front speed with extensile stresses and an instability
behind the front that picks out a single wavelength at long
times. Linear stability analysis predicts that instabilities arise
when


1 > (1 + 2
√

μDa + Da)/(βDa), (B1)

where μ and β are constants that depend on the choice of ζ (c)
and f (c) with values given in Table I. Predicted values of 
c

for each value of μ and β are given in Table II. Figure 7(a)
shows that the location of the instability is shifted in agree-
ment with the linear stability prediction for all choices of f (c)
and ζ (c) considered here. While it is not clear from the short
simulation in Fig. 7(a) that the model with saturating stress

(a)

(b)

FIG. 8. Checking linear stability analysis predictions in simula-
tions. (a) The critical value of the stress for instabilities to arise as
a function of the box length. Error bars are ±1 standard deviation
about the mean from 10 simulations with different random initial
conditions. (b) The most unstable wave number qc at 
 = 6.95 as a
function of the box length. All of the points from 10 simulations with
different random initial conditions are plotted. Simulation parameters
for all data in this figure are dx = 0.01, dt = 0.1, T = 100, and
Da = 0.4.

[ζ (c) ∝ c/(1 + c)] picks out a single wavelength, the longer
simulations in Fig. 7(b) show that at long times q1 converges
even in this case.

APPENDIX C: CONFIRMING LINEAR STABILITY
ANALYSIS RESULTS IN SIMULATIONS

In this Appendix, we compare our linear analysis in Sec. IV
to simulations with periodic boundary conditions. Beginning
from a system with a high concentration plus a random
initial perturbation, c(x) = 1 + 0.001ν(x), where 〈ν(x)〉 =
0, 〈ν(x)ν(x′)〉 = δ(x − x′), we simulated a system with pa-
rameters Da = 0.4, dx = 0.01, dt = 0.1, T = 100, and a
range of box sizes. Denoting the Fourier-transformed concen-
tration as ĉ and assuming that fluctuations in the concentration
grow as ĉ(q) ∝ exp (σ (q)t ), we measured the growth rate of
the fastest growing wave number, σ (qc), as the slope of the
best-fit line to ln (c(qc)) versus t . We then fit 
 versus σ (qc)
to a line and extrapolated 
c as the value of 
 where σ (qc) =
0. We find that the critical values of 
c [Fig. 8(a)] and qc

[Fig. 8(b)—the wave number that dominates the spectrum of
c at long times] are in good agreement with our linear stability
analysis calculations.
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