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Equilibrium shapes and stability of magnetic filaments
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Equilibrium shapes of magnetic rods and their stability under the action of an applied field are analyzed.
The family of shapes is characterized by two magnetoelastic numbers due to the remanent magnetization and
paramagnetic susceptibility of the rod. Since in experiments with flexible magnetic rods the ends are usually
unfixed and unclamped, their stability is analyzed under these conditions. Solutions of the corresponding
eigenvalue problems for particular cases show that under these conditions the equilibrium shapes are unstable.
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I. INTRODUCTION

Flexible magnetic filaments have recently attracted the
growing interest of researchers. One of the ways to create
them consists of linking functionalized magnetic particles by
some linker (biotinized DNA fragments, some polymer) [1,2].
These filaments display certain mechanical instabilities lead-
ing to the formation of hairpins [3] in the case of paramagnetic
rods or loops [4] in the case of ferromagnetic filaments. Equi-
librium solutions for paramagnetic rods with one clamped and
one free end under the action of an applied field of various
orientations and subjected to various loads are investigated in
Ref. [5]. If the symmetry of the filament is broken (by cargo,
formation of a hairpin or a loop), then their self-propulsion in
an ac field is possible [6]. It should be noted that the numerical
simulations have shown that the deformed configurations are
unstable [7,8] and for their stabilization some defects of the
filament should be introduced (a smaller bending modulus in
the central part of the filament). In Ref. [9] ferromagnetic fil-
aments were created by linking ferromagnetic microparticles.
These filaments possess several interesting properties such as
the formation of loops at inversion of the applied field and
their straightening through the third dimension. It should be
noted that the problem of a ferromagnetic rod at field inversion
is similar to the classical Euler problem of an elastic rod
under the action of compressional force. As a result the Euler
problem for a rod with paramagnetic properties is analogous
to the behavior of a ferromagnetic filament with paramagnetic
properties. This problem was considered in Ref. [10]. Its solu-
tion in terms of the elliptic Weierstrass function is considered
in Ref. [11]. Since in real situations the magnetic filaments are
freely floating in some carrier fluid, the appropriate boundary
conditions correspond to unfixed and unclamped ends, and
a question arises regarding the stability of the equilibrium
solutions of this problem.

The equilibrium shapes of the ferromagnetic filaments with
paramagnetic susceptibility and their stability are investigated
in the present paper. In Sec. II the model is formulated and
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a general solution for the equilibrium shapes is given. In
Sec. III the parameter space is analyzed and the characteristic
solutions for its different regions are given. For an analysis
of their stability two algorithms are described, semianalytical
and numerical, and their correspondence for the considered
values of the parameters is demonstrated. The main conclu-
sions are summarized in Sec. IV and the claim is made that the
hairpin and U-like configurations with unfixed and unclamped
boundary conditions are unstable.

II. MODEL

The magnetization of the filament according to the hystere-
sis curve of core-shell ferromagnetic particles used in Ref. [9]
consists of two parts—the remanent magnetization and a mag-
netization due to a finite paramagnetic susceptibility. It should
be noted that in a such a setting the problem is isomorphic to
the problem of the paramagnetic rod buckling under the action
of compressional force. The energy of the filament includes
the elastic bending energy and the energy of interaction with
an applied field �H0 = (H0, 0),

E = 1

2

∫
Cb

(
dϑ

dl

)2

dl − b2(μ − 1)2H2
0

8(μ + 1)

∫
cos2 (ϑ )dl

+ MH0

∫
cos (ϑ )dl. (1)

Here, Cb is the bending modulus, l is the natural parameter
of the centerline, b is the radius of the cross section, μ is
the paramagnetic permeability, and M is the remanent mag-
netization of the filament per its unit length. The sign before
the third term in relation (1) corresponds to the magnetization
�M = −M�t (�t = [cos (ϑ ), sin (ϑ )] is the tangent vector to the

centerline of the rod) to emphasize the analogy with the Euler
rod under the action of a compressional force. The geometry
of the setting is shown by a sketch in Fig. 1.

Minimizing the energy (1) with respect to ϑ the Euler-
Lagrange equation reads

−Cb
d2ϑ

dl2
+ b2(μ − 1)2H2

0

8(μ + 1)
sin(2ϑ ) − MH0 sin (ϑ ) = 0. (2)

2470-0045/2022/105(1)/014601(6) 014601-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3979-4904
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.014601&domain=pdf&date_stamp=2022-01-05
https://doi.org/10.1103/PhysRevE.105.014601
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FIG. 1. Sketch of the ferromagnetic rod with the magnetization
antiparallel to an applied field.

Scaling the natural parameter l by the characteristic length
λ = √

Cb/(MH0) and introducing two magnetoelastic num-

bers Cmp = b2(μ−1)2H2
0 L2

8(μ+1)Cb
and Cm f = MH0L2

Cb
(2L is the length

of the rod), Eq. (2) may be put in the following dimensionless
form:

d2ϑ

dl2
+ sin (ϑ ) − Cmp

Cm f
sin (2ϑ ) = 0. (3)

Equation (3) has the first integral,

a2

(
dϑ

dl

)2

+ [cos (ϑ ) − a2]2 = c2, (4)

where c is the integration constant and a2 = Cm f

2Cmp
. Introducing

the variable z = cos (ϑ ), Eq. (4) is put in the following form:

a2

(
dz

dl

)2

= (1 − z2)[c2 − (z − a2)2]. (5)

The roots of the fourth-order polynomial on the right-hand
side of Eq. (5) are denoted as α1 < α2 < α3 < α4. The solu-
tion of Eq. (5) according to Ref. [10] is found by using the
substitution

z − α2

z − α3
= p

t + 1

t − 1
, (6)

which gives

4a2

(
dt

dl

)2

= B2(1 − t2)

(
1 − 1

h2
t2

)
. (7)

The solution of Eq. (7) is found in terms of the Jacobi elliptic
function t = sn ( B

2a l, 1
h ). The following notations are intro-

duced:

p2 = (α1 − α2)(α4 − α2)

(α1 − α3)(α4 − α3)
,

B = √
α2 − α1

√
α4 − α3 + √

α3 − α1
√

α4 − α2 > 0,

h = B2

(α3 − α1)(α4 − α2) − (α2 − α1)(α4 − α3)
> 1. (8)

The solution of Eq. (7) then gives

cos (ϑ ) = α3 + (α3 − α2)
[

sn
(

B
2a l, 1

h

) − 1
]

(p − 1) sn
(

B
2a l, 1

h

) + p + 1
. (9)

The configurations are found by integration of the set of ordi-
nary differential equations (ODEs),

dx

dl
= cos[ϑ (l )],

dy

dl
= sin [ϑ (l )]. (10)
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FIG. 2. Regions in parameter space.

III. EQUILIBRIUM SHAPES AND THEIR STABILITY

In the parameter space (a2, c) the four regions shown in
Fig. 2 are considered. In regions 1 and 3 neutral solutions
do not exist. On the boundaries between regions 1–4 the
fourth-order polynomial has double roots. On the boundary
c = 1 + a2 the tangent angle approaches ϑ = π as l → ±∞.
For this solution only the permanent magnetic moment in the
loop is opposite to the magnetic field direction. By integration
of Eq. (5) in this case an analytical solution is available [10],

cos [ϑ (l )] = (1 + 2a2) tanh2 (
√

1 + a2l/a) − (1 + a2)

tanh2 (
√

1 + a2l/a) − (1 + a2)
.

(11)

The shape of the rod corresponding to the tangent angle given
by (11) is shown in Fig. 3. In Ref. [10] it is found that the
solution (11) is unstable with respect to the loop migration
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FIG. 3. Loop solution on the boundary between regions 2 and 3
at a = 100.
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FIG. 4. Kink at a = 0.5.

towards one of the ends of the rod. In Ref. [9] it is shown that
the loop with a finite length is unstable also with respect to the
three-dimensional perturbation leading to the straight rod.

On the boundary c = −1 + a2 the only solutions possible
are z = ±1 [cos (ϑ ) = ±1] and these correspond to the per-
manent moment along the field (ϑ = π ) and opposite to it.
Only the first one is stable, of course.

On the boundary between regions 2 and 4 the fourth-order
polynomial has the double root z = 1. In this case the limiting
shape is different than the one shown in Fig. 3. Integration of
Eq. (5) in this case (c = 1 − a2) gives

cos (ϑ ) = 1 − 4(1 − a2)

a2[cosh (2
√

1 − a2l/a) + 1] + 2
. (12)

The shape of the filament corresponding to the tangent angle
given by the relation (12) at a = 0.5 is shown in Fig. 4. Con-
cerning the solution Eq. (12) we may note that the boundary
conditions dϑ/dl = 0 are satisfied also by the semi-infinite
solutions l ∈ (−∞, 0) and l ∈ (0,∞).

In region 2 U-like solutions exist and in region 4 hairpins.
Figure 5 shows the metamorphosis of the shapes as the pa-
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FIG. 5. Metamorphosis of shapes in region 2 for the sequence of
parameters shown in Fig. 2 (a2 = 5; c = 4.01, 5, 5.99).
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FIG. 6. Neutral solution at Cmf = 2.842, Cmp = 1.421×10−4.

rameter c in region 2 transitions from the lower boundary to
the upper one. Starting from a weakly bent shape at the lower
boundary the shape transforms to the loop as it approaches the
upper boundary. Qualitatively similar behavior is characteris-
tic for all a values in region 2.

In the case a → ∞ (Cmp → 0) in region 2 the neutral
solution approaches the U-like shape, as is characteristic for
the ferromagnetic rod.

In region 2 (Fig. 2) the roots of the fourth-order polynomial
are ordered as follows: α1 = −1 < α2 = a2 − c < α3 = 1 <

α4 = a2 + c. In regions 2.1 and 2.2, which correspond to
−1 + a2 < c < 1 + a2 and a > 1, the following parametriza-
tion is introduced, c = a2 − cos (γ ), γ ∈ (0, π ), which gives
(τ = 1/a2)

b(γ , τ ) = B(c, a)

2a
=

√
1 − τ cos (γ )

+ cos (γ /2)
√

1 − τ cos2 (γ /2),

k(γ , τ ) = 1/h(c, a) = sin2 (γ /2)

b2(γ , τ )
[1 + τ sin]. (13)

At the unclamped end points the boundary condition is sat-
isfied at cos (ϑ ) = a2 − c when sn [b(γ , τ )l, k(γ , τ )] = −1.
Rescaling the arc length according to l̃ = l

√
Cm f /L (2L is the

length of the rod, and hereinafter the tildes are omitted) we
obtain the following condition for the magnetoelastic number
Cm f :

√
Cm f = 2K[k(γ , τ )]

b(γ , τ )
= f1(γ , τ ). (14)

The function f1(γ , τ ) at fixed τ ∈ (0, 1/4) (a > 2) increases
monotonically with γ from its minimal value f1|γ=+0 =

π

2
√

1−τ
. As a result a nontrivial neutral solution exists at

Cm f > Cmc
f = π2a2

4(1−a2 ) . Its solution in the limit Cmp → 0

gives Cmc
f = π2

4 + 2Cmp—the paramagnetic susceptibility of
the rod stabilizes it with respect to the formation of the U-
like configuration. An example of a neutral configuration at
Cm f = 2.842, Cmp = 1.421×10−4 is shown in Fig. 6.

Further, we consider the stability of the neutral solutions
we have obtained. This is studied by two different methods,
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M. BELOVS AND A. CĒBERS PHYSICAL REVIEW E 105, 014601 (2022)

 0

 2

 4

 6

 8

 10

 12

-3 -2 -1  0  1  2  3  4  5

f 1f
2

λ

FIG. 7. Solution of eigenvalue problem at Cmf = 2.842, Cmp =
1.421×10−4. The intersection point of the horizontal line and
f1(λ) f2(λ) curve gives the eigenvalues.

one semianalytical and the other numerical. The second vari-
ation of the energy (dimensionless) at neutral solution ϑ0(l )
reads (the arc length is scaled by L)

δ2E =
∫ 1

−1

[(
dδϑ

dl

)2

+ [2Cmp cos (2ϑ0) − Cm f cos (ϑ0)]δϑ2

]
dl. (15)

If the eigenvalue problem [here, Q(l ) = 2Cmp cos (2ϑ0) −
Cm f cos (ϑ0)]

−d2δϑ

dl2
+ Q(l )δϑ = λδϑ,

dδϑ

dl

∣∣∣∣
l=±1

= 0, (16)

has a negative eigenvalue, then the neutral solution is unstable.
The first method of the solution of the spectral problem (16) is
similar to the well-known shooting method and is as follows.
The eigenvalues are the roots of the equation

fp(λ) fm(λ) = 1, (17)

where fp(λ) = hp(1, λ) and hp(l, λ) is the solution of the
Cauchy problem,

−d2hp

dl2
+ Qhp = λhp, hp(−1, λ) = 1,

dhp

dl
(−1, λ) = 0,

(18)

and fm(λ) = hm(−1, λ), where hm(l, λ) is the solution of the
Cauchy problem,

−d2hm

dl2
+ Qhm = λhm, hm(1, λ) = 1,

dhm

dl
(1, λ) = 0.

(19)

Details of the derivation of Eq. (17) are given in the Appendix.
In the case of the numerical example considered above

(Cm f = 2.842, Cmp = 1.421×10−4) from Fig. 7 we see that
there is one negative eigenvalue, −2.13. Thus the U-like neu-
tral solution of the ferromagnetic rod is unstable.
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FIG. 8. Instability of oscillating and propelling a filament with a
U-like shape. Cmf = 3.75, T/τe = 0.16.

In another approach the eigenvalue problem is solved by
discretization Eq. (20) with finite differences,

d2δϑ

dl2
− Q(l )δϑ = λδϑ, (20)

and calculation of the eigenvalues of the arising matrix.
The mesh in the interval [−1, 1] li = −1 + (i − 1)h1 (i =
1, . . . , n + 1) (h1 = 2/n is the mesh size) is introduced and
the matrix A constructed: A(i, i) = −2/h2

1 − Q(li), A(i, i +
1) = 1/h2

1, A(i, i − 1) = 1/h2
1 (i = 2, . . . , n) and A(1, 1) =

1, A(1, 2) = −1, A(n + 1, n + 1) = 1, A(n + 1, n) = −1. To
satisfy the boundary conditions the matrix B is introduced,
B(i, i) = 1 (i = 2, . . . , n), B(1, 1) = 0, B(n + 1, n + 1) = 0,
and eigenvalues are found from the general eigenvalue
problem Ax = λBx. In the case of the numerical example
considered above (Cm f = 2.842, Cmp = 1.421×10−4) the
calculated negative eigenvalue [λ = −2.13 (n = 300)] co-
incides with the one calculated by the first method. The
numerical method is indispensable, for example, for the anal-
ysis of the Euler problem of the stability of the neutral solution
for the rod with clamped and fixed ends when it is necessary
to account for the constraint. The corresponding calculation
shows that at these boundary conditions the neutral solution
corresponding to the first mode is stable. It is interesting to
note that higher modes of the Euler problem are unstable.

The conclusion regarding the instability of the ferromag-
netic rod with the free and unclamped ends is in agreement
with the experimental observations in Ref. [12], where it is
found that in order to achieve a stable self-propulsion of the
ferromagnetic rod in the piecewise pulsed magnetic field,
the time duration of the unstable situation should be chosen
sufficiently small. It should be noted as well that the U-like
shape leading to the formation of the loop is also unstable
with respect to the three-dimensional perturbations as shown
in Ref. [9] and is not considered by the present approach.

The characteristic sequence of events at the development
of the instability of a U-like shape in a pulsed field, observed
in the experiments [12], is shown in Fig. 8 by the dynamics
of the ferromagnetic rod obtained numerically at Cm f = 7.75
and T/τe = 0.16, where T is the period of pulsed field and
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τe = ζL4/Cb is the characteristic elastic relaxation time. A
numerical simulation shows that oscillating and propelling a
filament with a U-like shape (shown for several periods in
Fig. 8) is unstable with respect to the elongation of one of
its legs and a shortening of another, which corresponds to the
development of the instability mode described above. Due to
this instability the filament overturns to the stable orientation
and the propulsion stops.

As the second example of the study of the stability of the
neutral equilibrium solutions, we consider the case a → 0
which corresponds to the hairpins of the paramagnetic rods
under the action of the magnetic field perpendicular to the ini-
tially straight rod. It corresponds to region 4 in the parameter
space (a2, c) shown Fig. 1. In this case the sequence of the
roots of the fourth-order polynomial is as follows: α1 = −1,
α2 = a2 − c, α3 = a2 + c, α4 = 1. In this case the relations
corresponding to (8) are as follows:

B(c, a) =
√

(1 − c)2 − a4 +
√

(1 + c)2 − a4,

k(c, a) = 1

h(c, a)
= 4c

B(c, a)2
,

p(c, a) =
√

1 − (a2 − c)2

1 − (a2 + c)2
. (21)

In this case α2 � cos (ϑ ) � α3 and the boundary condition at
the unclamped ends gives

√
2Cmp = f2(c, a) = 2K[k(c, a)]

B(c, a)
. (22)

The function f2 at a given a is an increasing function of c.
Its minimal value is f2(0, a) = π

2
√

1−a4 . The solution for Cmp

exists if
√

2Cmp > π

2
√

1−a4 . As a result in the limit Cm f → 0
for the critical value of Cmc

p we have

Cmc
p = π2

8
+ 2Cm2

f

π2
. (23)

Relation (23) shows that the remanent magnetization in-
creases the critical magnetoelastic number for the existence
of the neutral hairpin configuration. The stability of the neu-
tral solution shown in Fig. 9 is investigated by both the
semianalytical and the numerical methods. For the values of
the magnetoelastic numbers Cmp = 1.53, Cm f = 0.03, both
methods for the negative eigenvalue give λ = −1.96. Thus the
hairpin configuration is unstable. In Ref. [7] this instability for
propelling a filament with the hairpin shape was stabilized by
reducing the bending modulus in its central part.

IV. CONCLUSIONS

Magnetic rods with remanent magnetization and finite
paramagnetic susceptibility in an applied field possess quite a
rich family of equilibrium shapes, the morphology of which
may be classified by two magnetoelastic numbers. In the
standard cases used in magnetic soft matter experiments the
rods have unfixed and unclamped ends which are unstable,
in agreement with the analysis carried out here. The two
methods we have proposed allow us to analyze the stability
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FIG. 9. Neutral hairpin solution. Cmp = 1.53, Cmf = 0.03.

of particular equilibrium configurations even though a general
analysis is still lacking.
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APPENDIX: EIGENVALUE PROBLEM

The first method is based on an integral representation
of the solution and consideration of two Cauchy problems.
Putting Eq. (16) in the form

d2δϑ

dl2
+ λδϑ = Qδϑ, (A1)

and introducing the Green’s function of the boundary problem

d2G(l, τ )

dl2
+ λG(l, τ ) = δ(l − τ ),

dG

dl

∣∣∣∣
l=±1

= 0, (A2)

the problem is reduced to the solution of the integral equation

δϑ (l ) =
∫ 1

−1
G(l, τ )Q(τ )δϑ (τ )dτ, (A3)

where

G = cos [
√

λ(l − 1)] cos [
√

λ(τ + 1)]√
λ sin (2

√
λ)

, l > τ,

G = cos [
√

λ(τ − 1)] cos [
√

λ(l + 1)]√
λ sin (2

√
λ)

, l < τ. (A4)

Equation (A3) may be rewritten as follows:

δϑ (l ) = cos [
√

λ(l + 1)]
∫ 1
−1 cos [

√
λ(τ − 1)]Q(τ )δϑ (τ )dτ√

λ sin (2
√

λ)

+ 1√
λ

(
sin (

√
λl )

∫ l

−1
cos (

√
λτ )Q(τ )dτ

− cos (
√

λl )
∫ l

−1
sin (

√
λτ )Q(τ )dτ

)
. (A5)
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After some transformations we have

δϑ (+1) = cos (
√

λ)c1(λ) − sin (
√

λ)c2(λ)√
λ sin (2

√
λ)

,

δϑ (−1) = cos (
√

λ)c1(λ) + sin (
√

λ)c2(λ)√
λ sin (2

√
λ)

, (A6)

where

c1(λ) =
∫ 1

−1
cos (

√
λτ )Q(τ )δϑ (τ )dτ,

c2(λ) =
∫ 1

−1
sin (

√
λτ )Q(τ )δϑ (τ )dτ. (A7)

To find c1, c2 we consider two Cauchy problems for Eq. (A1).
The first Cauchy problem for Eq. (A1) is formulated as

follows: hp(−1) = 1, dhp/dl (−1) = 0. We denote fp(λ) =
hp(1, λ). Then from the unity of the ODE solution, h(l ) =
hp(l )δϑ (−1) is the eigenfunction. As a result, δϑ (+1) =
fpδϑ (−1). In similar way the second Cauchy problem is
formulated: hm(1) = 1, dhm/dl (1) = 0. Denoting fm(λ) =
hm(−1, λ) we see that h = hm(l )δϑ (1) is the eigenfunction.
Then δϑ (−1) = fmδϑ (1) and as a result the following set of
equations for c1, c2 is obtained:

( fp − 1) cos (
√

λ)C1 + (1 + fp) sin (
√

λ)c2 = 0,

(1 − fm) cos (
√

λ)c1 + (1 + fm) sin (
√

λ)c2 = 0. (A8)

The condition of the solvability of Eqs. (A8) gives the follow-
ing equation for the eigenvalues:

fp(λ) fm(λ) = 1. (A9)
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