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Preaveraging description of polymer nonequilibrium stretching
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This article focuses on a preaveraging description of polymer nonequilibrium stretching, where a single
polymer undergoes a transient process from equilibrium to nonequilibrium steady state by pulling one chain
end. The preaveraging method combined with mode analysis reduces the original Langevin equation to a
simplified form for both a stretched steady state and an equilibrium state, even in the presence of self-avoiding
repulsive interactions spanning a long range. However, the transient stretching process exhibits evolution of a
hierarchal regime structure, which means a qualitative temporal change in probabilistic distributions assumed in
preaveraging. We investigate the preaveraging method for evolution of the regime structure with consideration
of the nonequilibrium work relations and deviations from the fluctuation-dissipation relation.
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I. INTRODUCTION

Ubiquitous phenomena from small to large scale observed
in the materials and life sciences through to the geosciences
are discovered as stochastic systems [1–9], of which appro-
priate simple descriptions may be formulated to meet with
spatiotemporal resolutions. In dealing with systems that have
large internal degrees of freedom, discerning noise in a coarse-
grained picture and in the structural regimes based on scale
separation is crucial.

Soft matter, as exemplified by a polymer, may exhibit
viscous or elastic motion depending on the spatiotemporal
scale, and involves some characteristic scale quantities that
classify multiple regimes. Let us consider a single polymer. A
dynamical regime is intimately associated with static spatial
structures. A global structure forms a fractal referred to as
a random coil that does not rely on local specificities such
as proper chemical bonds [10–12]. The fractal regime creates
a remarkable dynamical feature called anomalous diffusion,
which is defined as the nonlinear growth of the mean-square
displacement (MSD) [7,8], while a Brownian particle exhibits
only normal diffusion that is linearly proportional to time.
An important issue in polymer physics is to incorporate long-
range repulsive interaction that yields nonlinear self-avoiding
(SA) effects, and mode analyses utilized for the chained
structure [11,13–17] have been developed to allow the re-
production of polymer anomalous diffusion by employing a
preaveraging method [11], where the probability distribution
in variables other than those of interest is assumed in advance.

In the equilibrium for a simple polymer, the global struc-
ture has a few stationary fractal regimes. However, the
nonequilibrium conditions do not ensure the same case, as
illustrated in polymer stretching (see Fig. 1) [18,19]. Turning
our attention to SA polymers with nonlocal interaction, we are
aware that polymer stretching undergoes a qualitative tempo-
ral change in the fractal regime structure due to the effective
emergence of a distinct interaction range [17,20–24], which
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should modify the distribution assumed in preaveraging. This
article focuses on the preaveraging description relevant to the
temporal evolution of the fractal regime structure [18,19].
This is an interesting issue in stochastic energetics [2] be-
cause an interpretation of the energy balance is inherent in the
resolution scales, while multiple scales involve the polymer
stochastic processes.

The paper is organized as follows. Section II introduces
polymer stretching with a concept for the evolution of the
regime structure, and then we give the mode description
with an effective Langevin equation based on preaveraging.
We then discuss the nonequilibrium work relation [25–30]
and the deviations from the fluctuation-dissipation relation
(FDR) [31–34], which play a crucial role in the progress on
nonequilibrium physics at the small scale. Section III dis-
cusses applications and perspectives. Finally, we summarize
the study in Sec. IV. Supplemental information is provided in
the Appendix.

II. EVOLUTION OF REGIME STRUCTURE

We begin with the physical mechanism of polymer stretch-
ing [17,20–22], as shown by the schematic representation
in Fig. 1. A linear homopolymer chain is suspended in a
solution that serves as a thermal bath. (0) The polymer is
initially in equilibrium. One chain end starts being pulled
with force magnitude f at t = 0. (i) At the beginning, only
the monomers close to the forced monomer along the chain
are set in motion, and then the moving domain [shaded in
Fig. 1(i)], where tension has propagated, grows in time while
qualitatively retaining the equilibrium shape. However, a force
magnitude larger than a threshold f � kBT/R0 is applied, so
that the polymer cannot sustain the equilibrium shape for
approximately t > τ f .1 Note that R0 denotes the spatial size

1Relaxation time for a monomer unit or for a blob is denoted by
τu or τ f � τu(ξ f /a)z, respectively. Note that z is referred to as the
dynamical exponent that relates the relaxation time to the correlation
length ξ f [see also the discussion after Eq. (9)].
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FIG. 1. Schematic representation of polymer stretching. (0) Ini-
tial equilibrium coil. (i) Early blob formation for 0 < t < τ f . (ii)
Stretching transient for τ f < t < τ . (iii) Nonequilibrium steady state
for t > τ . Dashed circles represent blobs (local coilings), and an
entire moving domain is shaded.

of the equilibrium polymer [see Fig. 1(0)]. (ii) The poly-
mer is largely deformed, i.e., the nonequilibrium stretched
shape appears around t = τ f . The moving domain [shaded in
Fig. 1(ii)] grows, accompanied by the propagation of tension
along the chain, i.e., undergoing a transient stretching process.
(iii) When the tension eventually arrives at the other chain end,
the entire polymer enters a stretching nonequilibrium steady
state [18,19].

There are a few scale-dependent regimes to express the
static conformation for equilibrium [see (0) and (i)]: (a) local
specific structures smaller than the monomer (or less than the
Kuhn length); (b) global fractals, for which asymptotic behav-
ior does not rely on local specific characteristics, such as the
chemical bonds. Note that this article considers only a flexible
polymer for simplicity; therefore, we may treat just a single
fractal regime in the equilibrium.2 On the other hand, the non-
equilibrium stretching state exhibits a different hierarchal

2For a semiflexible polymer with local bending stiffness such as
double-stranded DNA, two fractal regimes may be observed due to
the SA effects, even in equilibrium dependent on the chain length
[10]. Using the Flory exponent ν, the short polymer chain assumes
ν = 1/2, while the longer polymer chain assumes those of the SA
polymer, i.e., ν = 3/4 or ν � 0.588 . . . in two or three dimensions,
respectively.

organization of a regime structure, which adds one more level
[see (ii) and (iii)]. The fractal structure, in a broad sense, is
represented by a blob (dashed circle) at the intermediate scale
and global one-dimensional deformation is represented by a
sequence of these blobs (the entire shaded domain). There-
fore, the stretching transient process intrinsically reorganizes
the regime structure.

A. Formulation

We formulate the large-scale dynamics with the Langevin
equation. The linear polymer is written with N + 1 monomer
units being a in each size.3 Monomer indices are denoted by n
assigned from a chain end. A subscript n indicates a variable
of the nth monomer; e.g., xn(t ) is the position of the nth
monomer along the x-axis. No subscript indicates a variable
of the forced monomer x(t ) ≡ xN (t ) (the N th monomer is
pulled). In addition, for compact notation, we introduce a
difference from the time origin or the mean value, which are
respectively denoted by

�x(t ) ≡ x(t ) − x(0), δx(t ) ≡ x(t ) − 〈x(t )〉, (1)

where 〈(·)〉 denotes the ensemble average.
An elementary expression for overdamped Langevin mo-

tion in real space is translated into the preaveraged description
in mode space:∑

n′
γ[�xn, �xn′ ]

d�xn′ (t )

dt
= −∂E(e)({�xi})

∂�xn
+ �fn(t ) + �ζn(t ). (2)

⇓

γq(t )
dXq(t )

dt
= −∂Eq(Xq, kq(t ))

∂Xq

∣∣∣∣∣
Xq (t )

+ Fq(t ) + Zq(t ). (3)

A transformation rule between the real space variable xn(t )
and the normal mode Xq(t ) is defined as in Ref. [11]:

Xq(t ) ≡
∫ N

0
dn xn(t )hq,n, xn(t ) =

N∑
q=0

Xq(t )h†
q,n, (4)

hq,n ≡ 1

N
cos
(qnπ

N

)
, h†

q,n = c−1
q cos

(πnq

N

)
, (5)

after taking the continuum limit for n (refer to the Appendix
Sec. 1 or Refs. [23,35–37]).4 Note that if a vector notation
drops like �xn → xn, one-dimensional coordinate along x-axis
is traced. In Eq. (5), the numerical factors c0 = 1 for q = 0
and cq = 1/2 for q � 1 are introduced.

The left-hand side of Eq. (2), a tensor γ[�xn, �xn′ ] denotes
the original (incompressive-fluid) frictional kernel with �xn and
�xn′ , which may reflect the fluid-flow-mediated interactions.
There are two important models: free-draining, and nondrain-
ing. The free-draining model employs local friction such as

3The way of counting determines the total number of monomers;
however, a difference between N and N + 1 does not cause a signifi-
cant problem in the long chain limit of interest.

4Technically, the conversion rule in Refs. [23,35,36] (by factors) is
defined in a different way from the conventional rule that appears in
Ref. [11].
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γ[�xn, �xn′ ]i j = γ δnn′δi j with i, j denoting Cartesian component
in a discrete expression, which means that Stokes drag is
exerted on each monomer. On the other hand, the nondrain-
ing model has a long-range hydrodynamic interaction, which
yields friction heat due to the motion of distant monomers.
Regardless of the model, in a random fractal polymer, the
asymptotics of a two-point long-range correlation are replaced
with a function of a contour distance along the chain: 〈|xn −
xn′ |2〉 ∼ |n − n′|2ν with the Flory exponent ν [see discussion
after Eq. (9) for details]. The integral kernels are thus averaged
in advance, or preaveraged. This enables the use of an approx-
imation such as γ[xn, xn′ ]i j → γn−n′ (t )δi j , which technically
makes a convolution on the integral transform available, as
reduced to Eq. (3).

On the right-hand side, the external driving force exerted
along x-axis is fn(t ) = f δnN�(t ) with the Heaviside step
function, and Fq(t ) is converted from fn(t ) through Eq. (4).
ζn(t ) or Zq(t ) denotes the Gaussian-distributed random noise
with zero mean in the real or mode space, respectively, and the
covariance is assumed to satisfy the FDR of the second kind
〈Zq(t )Zq′ (s)〉 = [2cqγq(t )/N]kBT δqq′δ(t − s) with correlation
of the temporal δ function in the mode space.

The first term E(e)({�xn}) or Eq(Xq; kq(t )) on the right-hand
side is called the effective Hamiltonian, which produces a
conservative force between monomers as a function of {�xn},
where the subscript (e) represents the elementary description
before preaveraging. A general polymer model necessarily has
the bonding potential that connects monomers to form the
chain. In this article, we also consider a repulsive potential
between the monomers that gives rise to the SA effects, unless
otherwise specified. A point in the approximation for the
mode analyses is that, even under the long-range SA (and un-
der hydrodynamic interaction), we may diagonalize the modal
motion with harmonic potentials:

Eq(Xq; kq(t )) = 1
2 kq(t )X 2

q . (6)

Notation Eq with subscript q is employed as the effective
Hamiltonian for the q-mode component, which originally
arises from the approximation E(e) �∑q NcqEq(Xq)(h†

q,N )2.
The mode diagonalization for the equilibrium SA polymer has
been numerically verified as a good approximation [38].

The friction coefficient γq(t ) or the spring constant kq(t )
may vary with time such that Eq. (3) can contain nonstationary
dynamics. Polymer stretching is described by specifying the
time-dependent coefficients [17] for the internal modes q � 1
with

kq(t ) =
⎧⎨
⎩

k(q/N )2ν+1 for t < τ f{
k( f )(q/N )2 (q < q f )
k(q/N )2ν+1 (q > q f )

for t > τ f
, (7)

γq(t ) =

⎧⎪⎨
⎪⎩

γ (q/N )−ν(z−2)+1 for t < τ f{
γ ( f ) (q < q f )
γ (q/N )−ν(z−2)+1 (q > q f )

for t > τ f
, (8)

or for the center-of-mass mode q = 0 with

k0(t ) = 0, γ0(t ) = γ1(t ), (9)

where k( f ) = kg f /(ξ f /a)2 � k( f a/kBT )(2ν−1)/ν , γ ( f ) �
γ ( f a/kBT )2−z+(1/ν) are the force-dependent components of

the coefficients. Here ν denotes the Flory exponent, which
is used to express the polymer extension R0 ∼ Nν being
the static properties, while its inverse, 1/ν, is the fractal
dimension in N ∼ R1/ν

0 . ν = 1/2 for an ideal polymer chain,
or ν = 3/4 and ν � 0.588 for the SA chain in the respective
two and three dimensions [10,11,38]. On the dynamics
side, the scaling of the characteristic relaxation time τ is
expressed with the dynamical exponent z as τ ∼ Rz

0 (z = 3
for nondraining or z = 2 + 1/ν for free-draining) [10,11]. The
top lines of Eqs. (7) and (8) for t < τ f are the same of those for
the equilibrium mode, as in Refs. [11,37,38]. The coefficients
for t > τ f capture the nonequilibrium characteristics relevant
to the transient (ii) or the steady-state (iii) regimes. Note that
q f = N ( f a/kBT )1/ν is a threshold mode index that separates
the global nonequilibrium and intermediate equilibrium
modes.5 Bear in mind that the characteristic time t = τ f

signifies the change in the distributions assumed in the
preaveraging.

B. Nonequilibrium work relations

An issue of nonequilibrium work relations is addressed
here. Small particles such as colloids suspended in a solu-
tion undergo stochastic motion induced by thermal agitation,
where work, heat, and internal energy may be defined as the
stochastic quantities according to the stochastic motion and
the respective trajectories [2]. For such thermal stochastic
motion, the nonequilibrium work relations [25–28] claim that
averaging an exponential of work divided by thermal energy
over the nonequilibrium processes between equilibrium states
satisfies the integral relations, which is known as the Jarzyn-
ski equality [25], or the Bochkov-Kuzovlev relation [27,28],
according to the work definition [26]. The former nonequi-
librium average is identified with a free energy difference
specified by the system equilibrium, and the latter relation
takes the form of an identity.

In discussing application of the nonequilibrium work rela-
tion to the present system, there are some points to be aware
of. The first point is heat for the internal modes. The stretch-
ing polymer finally arrives at the nonequilibrium steady state
shape, in which the internal modes (q � 1) could evolve as
if they equilibrated whereas the center of mass mode (q = 0)
maintains the translational motion. This indicates that the heat
for the internal modal motions (q � 1) is found as the fluc-
tuating quantity, but do not produce mean heat as in the equi-
librium. On the other hand, the center of mass mode motion
(q = 0) keeps producing dissipative heat. Accordingly, we are
restricted to considering an application of the Jarzynski equal-
ity or the Bochkov-Kuzovlev relation to the internal modes,
while the Hatano-Sasa equality is the integral relation between
(genuine) nonequilibrium steady states [29,30].

The second point concerns the definition of the work
[26,39,40]. While the Bochkov-Kuzovlev relation employs
mechanical work, as discussed later, our attention is first fo-
cused on an analog of the Jarzynski equality by introducing
the work defined as the change in the effective Hamiltonian

5Let ξ f or gf be the blob size or the number of monomers in the
blob, respectively. The threshold mode number is estimated by qf �
N/gf and ξ f � agν

f .
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varied by the external parameters:

W (t ) ≡
∫ t

0
dt ′ ∑

q

cqN

[
∂E ( f )

q

∂kq

dkq(t ′)
dt ′

+ ∂E ( f )
q

∂Fq

dFq(t ′)
dt ′

]
(h†

q,N )2, (10)

where the effective Hamiltonian is replaced so as to include
the coupling term of the position with the external force:

E ( f )({Xq; kq, Fq}) ≡ E − f (t )x(t )

=
∑
q�1

cqNE ( f )
q (Xq, kq )(h†

q,N )2 (11)

with the q-mode components denoted by

E ( f )
q (Xq; kq, Fq ) ≡ Eq − FqXq. (12)

The third point is the time dependence of the spring con-
stants kq(t ) for the SA polymer, while the nonequilibrium
work relation is rigorously discussed for the Rouse polymer
with a time-independent spring constant [41–43]. The second
term in the brackets in Eq. (10) is the explicit work done by
the applied force, which is literally given by changes in the
external parameters. On the other hand, we note that the work
[Eq. (10)] has nonconventional contributions. Considering
the original elementary structure of the nonequilibrium poly-
mer stretching, the temporal variation in the spring constants
should be envisaged as the spontaneous change, not the exter-
nally controlled change. Nonetheless, the preaveraged view
virtually considers the spring constants kq(t ) as externally
controlled parameters embedded in the effective Hamiltonian.
The preaveraging procedure modifies the original probability
distribution, and the preaveraged probability distribution is
expressed with kq(t ) based on the SA blob picture, where
the change in the repulsive interaction range is incorporated
into kq(t ). From the preaveraged-level point of view built by
observers, it looks as if the interaction manner were externally
varied, and the changes in the spring constants show up as
an indirect external parameters (see also the last paragraph in
Sec. II B).

Using Eqs. (10) and (11), the energy conservation for each
stochastic process is written as

�E ( f )(Xq(t ); kq(t ), Fq(t )) = W (t ) − Q(t ), (13)

where heat is defined through the mode space as6

Q(t ) =
∫ t

0
dt ′∑

q�0

cqN

(
γq

dXq

dt ′ − Zq(t ′)
)

◦ dXq

dt ′ (h†
q,N )2, (14)

with ◦ denoting Stratonovich multiplication type. Equation
(14) is motivated by the definition of the real space with Gaus-
sian white noise [2]. From the equation of motion [Eq. (3)],
we can confirm that the energy balance (13) holds under
Eqs. (10)–(12) and Eq. (14). Note that the heat flow from the
system to the external environment is assigned to be positive
in Eq. (14).

6Reference [37] considers reinterpretation of heat in equilibrium
through projection of degrees of freedom in the polymer chain.

As with the first point, extraction of the internal mode com-
ponents (q � 1) from W and rewriting them as Wq�1 leads to
the expectation of an analog to the Jarzynski equality [25,26]
for t � τ : 〈

e−Wq�1/(kBT )
〉 = e−��/(kBT ). (15)

The ensemble average is taken over the initial configurations,
and all the paths from the initial to the final equilibrium (or
nonequilibrium steady) states. In addition, � is referred to as
the thermodynamic potential for the fixed-tension ensemble
[1], defined as follows:

� = −
∑
q�1

[cqN (h†
q,N )2]

cqkBT

N

× log

[∫ +∞

−∞
dXq exp

(
− E ( f )

q

cqkBT/N

)]
, (16)

where the factor cqkBT/N corresponds to the effective tem-
perature of the q-mode space (see the consistency with
〈Zq(t )Zq′ (s)〉 = [2cqγq(t )/N]kBT δqq′δ(t − s)). �� = �(t ) −
�(0) represents a difference written as follows:

�� =
∑
q�1

[
− f 2

4Nk( f )
q

− kBT

4
log

√
kq

k( f )
q

]
(h†

q,N )2, (17)

where the first and second terms in brackets, which are derived
from changes in the external force and in the spring constants,
respectively, appear as additive forms (see the Appendix
Sec. 2). The present system evolves under Gaussian processes,
of which the calculi for the ensemble average may be per-
formed through path integrals with reference to Refs. [44–46].

We next consider the distinct nonequilibrium work relation
referred to as the Bochkov-Kuzovlev relation [27,28], where
the work is defined as mechanical work (i.e., force times
displacement as conventionally found in textbooks of classical
mechanics). In the same way as in the integral relation of
Eq. (15), the change in the spring constant must be incorpo-
rated into the mechanical work as a fictive part, and then the
Bochkov-Kuzovlev relation written for the internal modes:〈

e−W (0)
q�1/(kBT )〉 = 1, (18)

where the mechanical work for q � 1 is introduced as

W (0)
q�1 =

∫ t

0
dt ′ ∑

q�1

cqN

[
−1

2
�kq(t ′)

d[Xq(t ′)2]

dt ′

+ Fq(t ′)
dXq(t ′)

dt ′

]
(h†

q,N )2 (19)

such that

−Wq�1 + W (0)
q�1 =

∑
q�1

cqN

[
−1

2
�kq(t )Xq(t )2

+ Fq(t )Xq(t )

]
(h†

q,N )2 (20)

with dW (0)
q�1/dt |t=0 = 0 as in Ref. [26]. Note that in the work

definition of Eq. (19), Fq(t ) = Fq�(t − ε+) with infinitesimal
positive ε+, so that we can have Fq(0) = 0 required for an
applicable condition in the Bochkov-Kuzovlev relation.
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A short summary of this section is that the preaveraging
description may become associated with the nonequilibrium
work relations [Eqs. (15) and (18)] if we assume that the
changes in the spring constants that do not originally belong
to the external parameters contribute to the work. Imposing
the external force induces the blobs, but, once the stochastic
motion is written with the preaveraged quantities like kq, the
fact that the blob formation spontaneously occurs is no longer
discerned from the preaveraged-level point of view, where the
characteristic quantities of the blobs should be rather viewed
as externally controlled parameters since the preaveraged
picture is created by observers. The preaveraging procedure
modifies the original probability distributions, accompanying
the effective time-dependent spring constants. If the system
contains the effective elastic Hamiltonian, the elastic Hamil-
tonian variation due to the change in the spring constant may
be interpreted as work (see the Appendix Secs. 3 and 4 for an
observation from the elementary to the preaveraged Langevin
equations). In addition, the energy balance at each respective
mode in the present regime structure, or at each respective
hierarchal level with the characteristic scale, is independently
interpreted so that the interactions between the distinct modes
or regimes may be reduced to the external parameter changes.

C. Transient deviations from FDR

The next issue is the transient side on the regime struc-
ture relevant to the FDR. Two integral forms of the FDR
are utilized here: (a) The first integral form is the equality
often involved in anomalous diffusion by monitoring of the
displacement �x(t ). The conventional approach is to observe
the MSD 〈�x(t )2〉 as a primary statistic [7,13–16]; however,
we may look at the variance 〈δ�x(t )2〉 in the context of the
driven system [16,17]. (b) The other integral form is expressed
as a convolution of the friction kernel with the difference
between the response function and the velocity correlation.
The deviation from the FDR in the integral form (b) is de-
termined to be compatible with the energetics [31–34]. Note
that derivations from the FDRs between (a) and (b) appear
as distinct integral forms that are built by the deviation from
the response function and the velocity correlation, not through
incorporation of a δ function type, but through another type
kernel due to degree of non-Markovity in the polymer.7

7In the presence of the step force f (t ) = f for t > 0, the q-mode
component 〈�q(t )〉 of 〈�(t )〉 [Eq. (23)] is obtained from the follow-
ing integration:

〈�q(t )〉
kBT

− F 2
q

(kBT/N )2

∫ t

0
dt ′
∫ t

0
ds′
[〈

dXq(t ′)
dt ′

dXq(s′)
ds′

〉
�(t ′ − s′)

− cqkBT

N
Rq(t ′, s′)

]
= F 2

q

2(kBT/N )2
〈�Xq(t )〉2. (21)

Note that a part of the kernel in the double integral corresponds
to the FDR deviation between the response function and velocity
correlation, where the integrand does not have the kernel γq(t ′)
like Eq. (32). It should be noted that the velocity correlation is not

covariance 〈δ( dXq (t ′ )
dt ′ )δ( dXq (s′ )

ds′ )〉.

1. Anomalous diffusion

We begin with a review of the polymer dynamics around
the integral form (a). The anomalous diffusion is defined as
the temporal nonlinear power-law growth of, e.g., the MSD
〈�x(t )2〉 ∼ tα (α �= 1) [7,13–16]. A formalism with the gen-
eralized Langevin equation (GLE) facilitates understanding.
Unless otherwise indicated, the forced N th monomer is traced
and referred to as a tagged monomer. Solutions to Eq. (3) are
superimposed to give the equation of motion for x(t ) ≡ xN (t )
as follows:

dx(t )

dt
=
∫ t

−∞
ds μ(t, s) f (s) + η(t ), (22)

where η(t ) denotes colored noise, and μ(t, s) is a memory
kernel. The equilibrium condition assures time translational
symmetry and the FDR of the second kind kBT μ(t − s) =
〈η(t )η(s)〉; i.e., Eq. (22) is reduced to the conventional GLE
[15,16]. The MSD absent force, f (t ) = 0, is calculated from
the solutions to Eq. (3), which gives the anomalous diffusion
〈�x(t )2〉 f (t )=0 ∼ t2/z that reproduces the well-known results
for the Rouse model, 〈�x(t )2〉 f (t )=0 ∼ t1/2 [13,14] with ν =
1/2 and z = 4. In the presence of the step force f (t ) = f for
t > 0 and f (t ) = 0 for t < 0, the variance serves as a substi-
tute for the MSD and shows the same power law 〈δ�x(t )2〉 ∼
t2/z. Furthermore, with focus on the displacement, the FDR
for the integral form (a) is confirmed as 2kBT 〈�x(t )〉 =
f 〈δ�x(t )2〉. However, these are not necessary conditions for
nonequilibrium polymer stretching; the SA polymer does not
satisfy these conditions. Let us then quantify the FDR devia-
tions for the integral form (a) with the index8

�(t ) ≡ f �x(t ) − f 2δ�x(t )2

2kBT
, (23)

of which the expected value becomes 〈�(t )〉 = 0 when the
FDR holds (see the Appendix Sec. 5). On the other hand,
placing the solutions to Eq. (3) [or together with Eqs. (7) and
(8)] into Eq. (23), we may find a nonzero value 〈�(t )〉 �= 0 in
the nonequilibrium:

〈�(t )〉 =
∑
q�1

cqN
∫ t

0
ds Tq(t, s)

d

ds

(
F 2

q

2kq(s)

)
(h†

q,N )2 (24)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 · · · (t < τ f )

−∑N
q=q f

f 2

4NkBT

[
kBT
kq

− kBT
k( f )

q

]
×[1 − e−(t−τ f )(q/N )2/τ f ]2(h†

q,N )2

· · · (t > τ f )

, (25)

where the integral kernel is expressed as

Tq(t, s) =
[∫ t

s
ds′ kq(s′)

γq(s′)
e− ∫ t

s′ ds′′ kq (s′′ )/γq (s′′ )
]2

= [1 − e− ∫ t
s ds′ kq (s′ )/γq (s′ )]2. (26)

Note that an integration by parts and the equipartition of
energy 〈Xq(0)2〉 = kBT/(2Nkq ) for q � 1 at t = 0 are applied

8The stochasticity related to �(t ) will be addressed later.
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to obtain Eq. (24). Equation (25) is the same as Eq. (73)
in Ref. [17] with the coefficients Eqs. (7) and (8), while in
practice we can arrive at Eqs. (24) and (26), even without
specifying the time-dependent coefficients [Eqs. (7) and (8)].

The analytical results 〈�(t )〉 that show the FDR devi-
ation for the SA polymer are numerically investigated by
molecular dynamics simulation on the plot of dimension-
less effective temperature f 〈δ�x(t )2〉/[kBT 〈�x(t )〉] = 2 −
2〈�(t )〉/[ f 〈�x(t )〉] [17], which takes a value of 2 if the
FDR holds. The analytical consideration predicts three regime
evolution:

(i) The FDR is maintained until about τ f after being
pulled, which corresponds to the equilibrium regime (i).

(ii) Then, 〈�(t )〉 clearly deviates and exhibits a positive
value, which is interpreted as the transient stretching regime
(ii) accompanied by the tension propagation.

(iii) Finally, f 〈δ�x(t )2〉/[kBT 〈�x(t )〉] → 2, i.e.,
〈�(t )〉/[ f 〈�x(t )〉] → 0, where the mean displacement
of the center of mass keeps growing linearly along with
〈�x(t )〉 ∼ t and then overwhelms the eventual finite value of
the FDR deviations 〈�(+∞)〉 ∼ const > 0 produced by the
internal modes [see Eq. (25)]. This implies that the internal
modes relax whereas only the center of mass mode survives
the regime (iii).

As suggested by Eq. (25), the FDR deviations are larger in
two dimensions with ν = 3/4 than three dimensions with ν =
0.588. Indeed, the numerical results in Ref. [17] observed the
manifest FDR deviations in two dimensions, which supports
the dimensionality predicted by the analyses. On the other
hand, whether or not the FDR deviates is not clearly confirmed
in three dimensions, which may arise from the finite length
N = 100 employed in the numerical simulation [17].

2. Harada-Sasa equality

Let us next consider the integral form (b). The FDR devi-
ation with the integral form (b) is quantified with an energy
input rate under the nonequilibrium steady state, which is
referred to as the Harada-Sasa (HS) equality [31]. Although
the scope of application is appropriate in the steady state,
we attempt to move forward along an analogous line, even
towards the transient processes. The following calculations
are performed in accordance with Ref. [47], which mainly
investigates the GLE for the non-Markovian process.

A response function on the mode space is defined with a
functional derivative as follows:

Rq(t, s) ≡ δ

δFq(s)

〈
dXq(t )

dt

〉
. (27)

The path integral formulation is combined in a subsequent
calculation. Ensemble averages 〈· · · 〉 are taken over the dis-
tributions of the initial configurations and trajectories for each
mode space. The probability of a trajectory given Xq(0) in the
mode space is denoted by Pq[Xq(·)|Xq(0)], which is obtained
through the occurrence probability generated by a temporal
sequence of noise {Zq(t ′)}, gives the following:

Pq[Zq(·)] ∼ exp

(
−
∫ t

0
dt ′ 1

4cqkBT γq(t ′)/N
Zq(t ′)2

)
. (28)

Zq(t ′) in Eq. (28) is transformed into Xq(t ′) with Eq. (3)
[48–50]9 and combining a functional derivative with respect
to the external force, the difference of the response function
with a velocity correlation for t > 0 is reduced to∫ t+ε+

0
ds γq(s)δ(t − s)

×
[

2cqkBT

N
Rq(t, s) − 2

〈
dXq(t )

dt
◦ dXq(s)

ds

〉
�(t − s)

]

=
〈

dXq(t )

dt
◦
[

∂Eq(Xq, kq(t ))
∂Xq

− Fq(t )

]〉
. (30)

Integrating over time and superimposing the mode compo-
nents, we then organize for t > 0:

〈 f �x(t )〉 = 〈�(HS)(t )
〉+ 〈�E (t )〉

−
∑
q�1

cqN
∫ t

0
dt ′
〈

∂E ( f )
q

∂t

〉
(h†

q,N )2, (31)

where the first term on the right side of Eq. (31) is given by

〈�(HS)(t )〉 ≡
∑

q

cqN
∫ t

0
dt ′ γq(t ′)

[〈
dXq(t ′)

dt ′ ◦ dXq(t ′)
dt ′

〉

− 2cqkBT

N
Rq(t ′, t ′)

]
(h†

q,N )2. (32)

The HS equality focuses on 〈�(HS)(t )〉, which consists of the
difference between the velocity correlation and the response
functions. Furthermore, the extra terms on the right-hand side
of Eq. (31) arise as a consequence of the chainlike internal
degrees of freedom, i.e., the global polymer configurations.
The stretching polymer eventually settles into the steady state
with finite variance 〈Xq(t )2〉, which is eliminated when tak-
ing a long time limit in the time average of the second
term of Eq. (31). This indicates limt→+∞〈�E (t )〉/t = 0 and
limt→+∞(1/t )

∫ t
0 dt ′ [∂〈E ( f )

q (t ′)〉/∂t ′] = 0. We thus arrive at
limt→∞[〈 f �x(t )〉 − 〈�(HS)(t )〉]/t = 0. This means that the
energy input rate 〈 f �x(t )〉/t that corresponds to the rate of
genuine mechanical work for the present system is balanced

9Substitution of Eq. (3) reinterprets Eq. (28) as

Pq[Xq(·)|Xq(0)]

∼ J exp

(
−
∫ t

0
dt ′ 1

4cqkBT γq(t ′)/N

×
[
γq(t ′)

dXq(t ′)
dt ′ + ∂Eq(Xq, kq(t ′))

∂Xq
− Fq(t ′)

]2
)

, (29)

where the Jacobian is J = exp [
∫ t

0 dt ′ 1
2γq (t ′ )

∂2Eq (Xq,kq (t ′ ))
∂X 2

q
].

The functional derivative of 〈dXq(t )/dt〉 =∫
dXq(0)Pq[Xq(0)]

∫
DXq(s′) Ẋq(s′)Pq[Xq(·)|Xq(0)] is with respect

to the force Fq(t ′) to give Eq. (30). Note that Ẋq(t ) ≡ dXq(t )/dt ,
and Pq[Xq(0)] denotes the probability density function for the initial
condition.
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with 〈�(HS)(t )〉/t for t → +∞, as expressed by the HS equal-
ity that quantifies the FDR violation with the energy input rate.

Equation (31) is rewritten as 〈W 〉 = 〈�(HS)〉 + 〈�E ( f )〉 at
time t with Eq. (10) and (11). Considering the transient pro-
cess carefully, we identify 〈�(HS)(t )〉 by comparison with an
ensemble average of Eq. (13) as

〈�(HS)(t )〉 = 〈Q(t )〉. (33)

When q-mode components are represented with the subscript
q, the approximated description (or the rigorous description
for the Rouse polymer) also satisfies each energy balance
〈Wq〉 = 〈�(HS)

q 〉 + 〈�E ( f )
q 〉 with the analogous interpretation

〈�(HS)
q (t )〉 = 〈Qq(t )〉. Thus, 〈�HS (t )〉 or 〈�HS

q (t )〉 is identi-
fied as the mean heat within the present definition of the work
and the effective Hamiltonian.

Recall the observation of 〈�(t )〉 [Eqs. (24) and (25)] with
the integral form (a) in order to see an association with the
integral form (b). Here we directly compare Eq. (31) with
〈�(t )〉 by the introduction of an elasticity-related term as

�(ela)(t ) ≡
∑
q�1

[ ∫ t

0
dt ′ cqN

∂Eq

∂Xq
◦ dXq(t ′)

dt ′

− N2F 2
q

2kBT
δ�Xq(t )2

]
(h†

q,N )2, (34)

where the second term in the square brackets on the right-
hand side represents the mode components decomposed
from the quadratic term in Eq. (23), i.e., f 2〈δ�x(t )2〉 =∑

q N2F 2
q 〈δ�Xq(t )2〉(h†

q,N )2, of which the terminal vari-
ance 〈δ�Xq(+∞)2〉 = kBT/[2Nkq(+∞)] is written with the
equipartition of energy as the static quantities (see the Ap-
pendix Sec. 5). We then organize the FDR deviations as

〈�(t )〉 = 〈�(HS)(t )〉 + 〈�(ela)(t )〉, (35)

where〈
�(HS)(t )

〉 = ∫ t

0
dt ′
∫

dn′
∫

dn′′ γn′−n′′ (t ′)〈ẋn′ (t ′)ẋn′′ (t ′)〉

− 2kBT
∫ t

0
dt ′
∫

dn′ γN−n′ (t ′)
δ〈ẋn′ (t ′)〉
δ fN (t ′)

,

〈
�(ela)(t )

〉 = ∫ dn′
∫

dn′′
∫ t

0
dt ′

× κn′−n′′ (t ′)
2

d

dt ′ 〈xn′ (t ′)xn′′ (t ′)〉

− f 2〈δ�x(t )2〉
2kBT

, (36)

in which κn−n′ (t ) ≡∑N
q=1 c−1

q Nkqhq,nhq,n′ denotes the spring
kernel in real space. An interesting point is that 〈�(HS)(t )〉
is in contrast to 〈�(ela)(t )〉 because the former and latter are
closely related to the dynamical and static quantities, respec-
tively. The former, as one of the cases, even includes the
hydrodynamic long-range interaction, in which the dissipation
mechanism is incorporated as the convolution of the power-
law-decaying frictional kernel γn′−n′′ (t ). The latter has the
convolution of a spring kernel κn′−n′′ (t ) with the monomer
indices n′ and n′′, which is derived from the effective Hamil-

tonian based on the mode description. Thus, the difference
between 〈�(t )〉 and 〈�(HS)(t )〉, i.e., between the integral
forms (a) and (b), is 〈�(ela)(t )〉, which is closely associated
with the static quantity. The terminal difference is thus given
only by the static quantities.

As another significant point, an analog to the Bochkov-
Kuzovlev relation could possibly be introduced. The ensemble
average 〈·〉 taken over the preaveraged Gaussian distribution
gives a simple analytical expression with the FDR deviations
〈�(t )〉:

〈e− f �x(t )/kBT 〉 = e−〈�(t )〉/kBT , (37)

whereas generally a non-Gaussian distribution without preav-
eraging, or an incorporation of the fictive part of the
mechanical work (the first term in the bracket of Eq. (19))
due to the preaveraging in the left side of Eq. (37) replaces
the right side with identity 1 and provides the well-known
Bochkov-Kuzovlev relation for t = +∞. Note that the de-
coupled component of the center of mass is added as from
f [�x(t ) − �X0(t )] to f �x(t ) in the argument of the left
exponential of Eq. (37). Although the Rouse polymer satisfies
the identity 〈e− f �x(t )/kBT 〉 = 1 because 〈�(t )〉 = 0, it is not
always the case for the SA polymer. In the literature [17], a
direct numerical calculation of 〈�(t )〉 for the free-draining
SA polymer without the preaveraging exhibits the manifest
FDR deviation in two dimensions (at least not yet numerically
clear in three dimensions), and the temporal evolution and
force dependence are in qualitatively good agreement with
the analytical results with the preaveraging [Eq. (25)]. This
suggests that the preaveraging Gaussian approximation works
qualitatively well from a viewpoint of the FDR deviations that
concern up to second moment. The temporal change in the
spring constant incorporated into Eqs. (18) and (19) may be
interpreted as compensating for the effects of the coupling
between the internal modes and the nonlinearity eliminated
by preaveraging. Incidentally, if 〈�(t )〉 on the right-hand
side were viewed as a thermodynamic function defined with
Eq. (37), then a downward concavity of the exponential math-
ematically would lead to the following inequality: 〈 f �x(t )〉 �
−kBT log e−〈�(t )〉/kBT , where the derivation calculus appears
similar to that of the second law of thermodynamics 〈W 〉 �
�F from 〈e−W/kBT 〉 = e−�F/kBT with �F denoting the free
energy difference. As in e−�F/kBT , if e−〈�(t )〉/kBT is consid-
ered as a ratio of the partition-function-like quantities, then
e−〈�(t )〉/kBT corresponds to a ratio of deviations of normaliza-
tions in the Gaussian distributions due to the − f x term.10

10Explicitly, we can write

e−〈�(t )〉/kBT

=
∏

q

⎛
⎜⎜⎜⎜⎜⎜⎝

∫ dXq√
2πcqkBT

Nkq

exp

[
−

kq
2 X 2

q −FqXq

cqkBT/N

]

∫ dXq√
2πcqkBT

Nk( f )
q

exp

[
−

k
( f )
q
2 X 2

q −FqXq

cqkBT/N

]

⎞
⎟⎟⎟⎟⎟⎟⎠

cq (h†
q,N )2

. (38)

In the absence of the − f x term, i.e., Fq = 0, the Gaussian distribu-
tions of the integrands appearing above are normalized, and then we
find 〈�(t )〉 = 0.
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III. DISCUSSION

The preceding sections have been devoted to analytical
investigation based on a priori assumption, which should
necessitate a numerical verification with molecular dynamics
(MD) or Brownian dynamics (BD) simulation in the polymer
stretching. There are two schemes (a) and (b) with or without
the preaveraging from the numerically obtained data, since the
probability distributions are altered by the preaveraging.

(a) A first scheme employs the elementary Langevin
equation (2) without a priori preaveraging assumption and
observes the positions of monomers {xn(t )} (or {�xn(t )}).
What to verify is 〈e−W(e)/(kBT )〉 = e−��(e) , where the ensem-
ble average 〈(·)〉 is taken over an initial distribution {xn(0)}
and trajectories of monomers {xn(·)}. We can redefine and
compute work W(e) = ∫ t

0 dt ′[xN (t ′) − X0(t ′)](df /dt ′) by sub-
tracting the center of mass X0(t ) = (1/N )

∑
n xn(t ) from the

respective position, and the thermodynamic potential �(e) ≡
−kBT log

∏
n

∫
dxne−E(e)/(kBT ) may be computed without the

preaveraging. Besides, the average operation for the verifica-
tion of the FDR 〈�(t )〉 is taken in the same way as above
procedure, which was employed in the numerical investiga-
tion of Ref. [17].

(b) The other scheme involves the preaveraging. From the
observed positions {xn(t )}, we first construct {Xq(t )}, and then
the preaveraging procedure assumes decoupling the probabil-
ity distribution for each normal mode. To get the statistical
relation 〈e−Wq/(kBT )〉 = e−��q of the work Wq(t ) with the
thermodynamic potential �q for q-component, the ensemble
average is taken over only q-mode Xq(·) by projecting the
other normal modes Xq′ (·) for q′ �= q. Then the production
of all

∏
q〈e−Wq/(kBT )〉 =∏q e−��q turns out to be Eq. (15)

in a priori preaveraging procedure with the temporal change
in the effective spring constants. Note that we estimate the
polymer parameters kq, γq, k( f )

q , and γ
( f )

q from the initial
equilibrium and the terminal nonequilibrium steady states.
In addition, we may similarly numerically estimate 〈�q(t )〉
from the observation of Xq, where the ensemble average is
taken over only q-mode Xq(·), and then constructs 〈�(t )〉 =∑

q cqN〈�q(t )〉(h†
q,N )2. The crossover time τ f � τu(N/q f )zν

and the threshold mode q f may be numerically estimated from
the onset, when the FDR 〈�(t )〉 deviates.

The observation of the change in the effective spring con-
stants is a key in the numerical verification. Since the global
conformation with the low modes experiences the change
in the Flory exponents to ν = 1/2 from ν = 3/4 in two di-
mensions or � 0.588 in three dimensions, the 2-dimensional
simulation anticipates the larger change in the spring con-
stants. Indeed, the FDR deviations are observed for N = 100
in two dimensions, but not clear in three dimensions at least
for the length according to the numerical MD simulations
[17].

The analyses in Sec. II, a knot formation and its conse-
quence, have not been considered for simplicity. However, the
knots for the longer linear chain in equilibrium are expected
in three dimensions [51]. The knot formation is to emerge
during the polymer stretching, and thus, the topological issues
are inevitable. It would be the necessary future research to
integrate the previous studies [52–58]. On the other hand,
the knot formations do not occur in the two-dimensional

simulation. Hence, the two-dimensional simulation could be
one of the candidates just to see if the statement about the
preaveraging picture with the temporal change in the effective
spring constants is reasonable.

Preaveraging the hydrodynamic interactions is introduced
in this article. The subsequent arguments about the heat are
based on the FDR of the second kind with the preaveraged
frictional coefficients γq, which provides the consistent def-
inition with Eq. (14). The present preaveraging approach
has room for improvement. Indeed, as f -shell model was
proposed in Refs. [59,60], the asymptotic prediction of the
nondraining model does not totally meet with the numerical
results at least for finite chain length. In addition, “static
dynamics approach” in Ref. [61] is notable as the way to
develop the preaveraging method. Nonetheless, if we find
the improvement to satisfy the FDR of the second kind in
the Markov process under the hydrodynamic interactions, the
same strategy to investigate nonequilibrium work relation or
the FDR deviations based on the preaveraging is applicable.

Section II C discussed the ensemble average quantities. Let
us consider Eq. (33). The equality emerging on the average
statistics suggests to look for �(HS)(t ) = Q(t ) at the stochastic
level. If an instantaneous stochastic response function in the
mode space is introduced for the Langevin dynamics with

R∗
q(t, t ) = −k−1

B

δ{−kB logPq[Xq(t )]}
δFq(t )

◦ dXq(t )

dt
, (39)

then under Gaussian white noise, we may define

�(HS)(t ) ≡
∑

q

cqN
∫ t

0
dt ′ γq(t ′)

×
[

dXq(t ′)
dt ′ ◦ dXq(t ′)

dt ′ − 2cqkBT

N
R∗

q(t ′, t ′)

]
(h†

q,N )2

(40)

such that �(HS)(t ) = Q(t ). Calculation of R∗
q(t, t ) (see the

Appendix Sec. 6) and comparison with Eq. (14) reveals equiv-
alence under the Gaussian white noise:

�(HS)
q (t ) = Qq(t ). (41)

We confirm that 〈R∗
q(t, t )〉 = Rq(t, t ). In addition, the function

sq(t ) = −kB logPq[Xq(t )] that appears in Eq. (39) corre-
sponds to the stochastic entropy [62,63]. If the equivalent time
quantities [e.g., t = s in Eq. (27)] are focused on exclusively,
then the ensemble average level with Rq(t, t ) = 〈R∗

q(t, t )〉
leads us to a special case of the FDR expression with the
stochastic entropy [62,63].

To reveal the FDR deviations, this study has so far dealt
with an SA polymer, of which the effective interaction range is
nonlocal. However, it is stressed that the nonlocal interaction
is not a necessary condition to cause the FDR deviations. For
example, let us modify the Rouse model such that the elastic
force varies with time, such as f (ela)

n = k(t )∂2xn/∂n2, while
the range is kept local (the second derivative with respect to
n indicates the local interaction). However, analogous argu-
ments can be made, and then we find the FDR deviations
�(t ) �= 0. In practice, temporal changes in the stiffness could
be widely observed, probably in intracell situations.

014502-8



PREAVERAGING DESCRIPTION OF POLYMER … PHYSICAL REVIEW E 105, 014502 (2022)

IV. CONCLUDING REMARKS

This article has discussed the preaveraging description
of the temporal evolution of the regime structure for poly-
mer stretching in terms of the nonequilibrium work relation
and the FDR deviations. The effective spring constants are
considered as spontaneously varying in the sense of the phys-
ical origin. However, the preaveraging hides the spontaneous
properties of the elemental degrees of freedom and modifies
the original representations of the probability distributions,
introducing the effective spring constants. An observer di-
rectly controls the applied force, whereas the change in the
effective spring constants for the SA polymer may turn to an
attribution of indirect control from the preaveraged-level point
of view, if the system includes the effective elastic Hamil-
tonian. In applying the preaveraging description, consistency
may require the effective spring constants to be interpreted as
fictive external parameters. In the present mode formalism, the
interactions from different modes or from the other structure
regimes are given via the parameters (the spring constants
and the friction coefficients) based on preaveraging, and the
respective regime levels are rather viewed as distinct systems
independent of each other. Therefore, a change in the effective
Hamiltonian may be considered as an energy transfer from the
exterior, even if it is actually from the interior in light of the
entire regime system.

This study has considered a significantly simplified
nonequilibrium polymer system, e.g., compared to biological
systems. Nonetheless, we hope that the basic idea would be
helpful for diverse polymer systems.
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APPENDIX

1. Rouse polymer

A Rouse model illustrates a rigorous analysis. The equation
of motion in real space for the discrete model is governed by

γ
∂xn(t )

∂t
= f (ela)

n (t ) + fn(t ) + ζn(t ), (A1)

where f (ela)
n = −∂E/∂xn denotes the elastic force produced

by harmonic potentials E = (k/2)
∑N

n′=−1(xn′+1 − xn′ )2. To
maintain a free boundary condition in the discrete form, the
additional end monomers are assumed such that x−1 ≡ x0 and
xN+1 ≡ xN . Taking the continuum limit, we see that f (ela)

n =
k(xn+1 − 2xn + xn−1) → k∂2xn/∂n2. Unless otherwise noted,
the main text employs the continuum picture.

The integer exponent is “2” in the spring constant kq =
k(q/N )2 with ν = 1/2 in the mode space for the Rouse
polymer, which is followed by the second-order derivative
−k∂2xn/∂n2 in real space. The integer exponent indicates
the local interaction. On the other hand, the SA effects or the
hydrodynamic interactions (HIs) are long-range interactions,
which are represented by, roughly speaking, fractional deriva-
tives with noninteger exponent ν in real space.

2. Difference in thermodynamic potential

A difference in the thermodynamic potential for fixed-
tension ensemble is calculated from Eqs. (6) and (11). For
t � τ , �(t ) is obtained as

�(t ) = −
∑
q�1

[cqN (h†
q,N )2]

cqkBT

N
log

[∫ +∞

−∞
dXq

× exp

(
− E ( f )

q

(cqkBT/N )

)]

= −
∑
q�1

[cqN (h†
q,N )2]

cqkBT

N
log

[√
2πcqkBT

Nk( f )
q

× exp

(
F 2

q

2cqkBT k( f )
q /N

)]

=
∑
q�1

[
− F 2

q

4(k( f )
q /N )

− kBT

4
log

√
πkBT

Nk( f )
q

]
(h†

q,N )2 (A2)

with E ( f )
q (Xq, kq(t ), Fq(t )). Also, for t = 0, we get

�(0) = −kBT

4

∑
q�1

log

√
πkBT

Nkq
(h†

q,N )2. (A3)

From �� = �(t ) − �(0), we then arrive at Eq. (17).
For the Rouse model, the left-and side of Eq. (15) is easily

calculated as follows:

〈e−Wq�1/(kBT )〉

=
〈

exp

[
−
∑

q

N
Fq(∂E ( f )

q /∂Fq)|t=0

kBT
cq(h†

q,N )2

]〉

=
〈

exp

[∑
q

N
FqXq(0)

kBT
cq(h†

q,N )2

]〉

= exp

[∑
q�1

N2
F 2

q 〈Xq(0)2〉
2(kBT )2

c2
q(h†

q,N )4

]

= exp

[∑
q�1

f 2

4Nkq
(h†

q,N )2

]
, (A4)

where cqh†
q,N = (−1)q and (∂E ( f )

q /∂Fq)|t=0 ≡ ∫ t
0 dt ′ Fqδ(t ′ −

ε+) are used. In the case of the Rouse polymer with the
invariant coefficients kq(t ) = kq and γq(t ) = γq, only the first
term in brackets on the right-hand side of Eq. (17) survives.

3. Energy balance modified by preaveraging

We consider energy balance modified by preaveraging.
There are two descriptions for the Langevin equations: (i)
an elementary expression before preaveraging and (ii) that
after preaveraging. While the latter is extensively discussed
in the main text [e.g., see Eq. (3) with Eq. (6)], the elementary
equation of motion for the former is represented by Eq. (2).
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The elementary effective Hamiltonian before preaveraging is
explicitly expressed by

E ( f )
(e) = E(e) − f xN , (A5)

E(e) =
∑

n

1

2
k(�xn+1 − �xn)2 +

∑
i> j

USA(|�xi − �x j |), (A6)

where USA(|�xi − �x j |) represents the SA interaction
potential similar to the Lennard-Jones potentials, hard
core interaction potentials, or a corresponding part
(vSA/2)

∫ N
0 dn

∫ N
0 dn′ δ(�xn − �xn′ ) of the Edwards Hamiltonian

with vSA being the SA interaction parameter [64]. The energy
balance for the respective Langevin equations is maintained
as

dE ( f )
(e) = d ′W(e) − d ′Q(e), (A7)

dE ( f ) = d ′W − d ′Q. (A8)

Note that Eq. (A8) is repeated and essentially the same as
Eq. (13).

As in Sekimoto’s definition of heat [2], we similarly intro-
duce

d ′Q(e) =
∑

n

(∑
n′

γ[�xn, �xn′ ]
d�xn′

dt
− �ζn(t )

)
◦ d�xn, (A9)

where the dot product and Stratonovich multiplication are
taken by ◦d�xn from right. To make clear the point about an
origin of the temporal change in the spring constants, Carte-
sian components except x are projected even in the elementary
Langevin equation, and we focus on only x-component as
γ[�xn, �xm]i j → γ [xn, xm]δi j below unless otherwise specified.
We require the condition that the elementary heat changes into
the preaveraged heat as

P̂(d ′Q(e) ) = d ′Q, (A10)

where the preaveraging operator is introduced with P̂(·) =∑
q P̂q(·). Let P̂q(·) be the preaveraging operator extracting

the q-mode defined as

P̂q

(
·
)

=
∫ ∏

q′ �=q

dXq′ ρq({Xq′ (t )})

(
·
)

, (A11)

where

ρq({Xq′ (t )}) ≡ P(e)({Xq′ (t )})∫ ∏
q′′ �=q dXq′′ P(e)[{Xq′′ (t )}] (A12)

and

P(e)({Xq(t )}) =
∫ ∏

q′′
DXq′′ dXq′′ (0)

×P(e)[{Xq′ (·)|Xq′ (0)}]P(e)[{Xq′ (0)}]. (A13)

Here P(e)[{Xq′ (·)|Xq′ (0)}] denotes the probability of the
path from {Xq′ (0)} = {X0(0), X1(0), . . . , XN (0)} to {Xq′ (t )} =
{X0(t ), X1(t ), . . . , XN (t )}, and P(e)({Xq′ (0)}) is the probability
density of the initial condition. Keep in mind that Eq. (A12)

is normalized to unity for each mode q:∫ ∏
q′ �=q

dXq′ ρq({Xq′ }) = 1. (A14)

The operator does not essentially alter the dissipation for a
free-draining polymer, because P̂(d ′Q(e) ) = d ′Q(e) = d ′Q ex-
actly, whereas the nonlocal kernel γ [xn, xm] with the relative
monomer position for the nondraining polymer is reduced to
γ (n − m) with the relative monomer index. Equation (A10)
is the assumption of the preaveraging, and the noise with
the viscous friction is transformed such that the FDR of the
second kind is maintained (refer to the Appendix Sec. 4).

In addition, a condition is imposed on the effective Hamil-
tonian as

P̂
(
E ( f )

(e)

) = E ( f ), (A15)

which also indicates that the value of the effective Hamilto-
nian is maintained after preaveraging.

We move on to observation of an infinitesimal. A key point
is that P̂(d ′Q(e) ) = d ′Q and P̂(E ( f )

(e) ) = E ( f ); however, gener-

ally P̂(dE ( f )
(e) ) �= dE ( f ). A change in the effective Hamiltonian

by preaveraging is obtained as

dE ( f ) = P̂
(
dE ( f )

(e)

)
+
∑

q

[∫ ∏
q′ �=q

dXq′ E ( f )
(e) ({Xq′ })dρq({Xq′ })

]
, (A16)

where

P̂
(
dE ( f )

(e)

) =
∑

q

∫ ∏
q′ �=q

dXq′ ρq({Xq′ })dE ( f )
(e) ({Xq′ }). (A17)

If dρq({Xq′ }) = 0 holds, then Eq. (A16) indicates
dE ( f ) = P̂(dE ( f )

(e) ); however, generally dρq({Xq′ }) =∑
q(∂ρq/∂Xq)dXq + (∂ρq/∂t )dt �= 0. Application of the

preaveraging operator into Eq. (A7) gives

P̂
(
dE ( f )

(e)

) = P̂(d ′W(e) ) − P̂(d ′Q(e) ), (A18)

where P̂(d ′W(e) − d ′Q(e) ) = P̂(d ′W(e) ) − P̂(d ′Q(e) ) is fol-
lowed from the linearity of P̂(·). Recalling Eqs. (A10) and
(A16), we find

d ′W = P̂(d ′W(e) )

+
∑

q

[∫ ∏
q′ �=q

dXq′ E ( f )
(e) ({Xq′ })dρq({Xq′ })

]
. (A19)

Thus, the work may also be modified via preaveraging.
The linearity of the term with the “genuine” external

parameter f (t )xN = f (t )
∑

q Xqh†
q,N indicates P̂[ f (t )xN ] =

f (t )xN under a transformation with Eq. (A12). Thus, in the
discussion on how the fictive external parameters emerge,
the genuine external parameter f (t ) is separated from the
effective Hamiltonian, as in

E(e)({Xq}) = E ( f )
(e) ({Xq}, f ) + f

∑
q

Xqh†
q,N . (A20)

Defined as E(e)({Xq}), which does not have the external param-
eters, an infinitesimal in the effective Hamiltonian is generally
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given by

dE(e) =
∑

q

∂E(e)

∂Xq
◦ dXq, (A21)

and the preaveraged infinitesimal is formally written as

dE =
∑

q

∂E
∂Xq

◦ dXq +
∑
λq=kq

∂E
∂λq

λ̇qdt, (A22)

where {λq} = {k1, k2, . . . , kN } represents a set of the “fictive”
external parameters that emerge after preaveraging. The force
balance is assumed to be sustained after the preaveraging, i.e.,
−∂E(e)/∂Xq is converted to −∂E/∂Xq from the elementary to
the preaveraged levels, and then

−
∑

q

∂E
∂Xq

◦ dXq = P̂

(
−
∑

q

∂E(e)

∂Xq
◦ dXq

)
. (A23)

Comparison of the preaveraged Eq. (A21) with Eq. (A22)
indicates

dE = P̂(dE(e) ) +
∑
λq=kq

∂E
∂λq

dλq. (A24)

Recalling Eq. (A16), and comparing it with Eq. (A24), the
additional term is identified as

∂E
∂λq

dλq =
∫ ∏

q′ �=q

dXq′ E(e)({Xq′ })dρq({Xq′ }), (A25)

which means that dρq({Xq′ }) becomes the time-dependent
term mediated by the fictive external parameters.

4. Heat modified by preaveraging

We see the preaveraging assumption regarding the heat
from a viewpoint of the Crooks fluctuation theorem (FT) [65].
The Crooks FT for the elementary Langevin dynamics from
initial time 0 to t is written as

P(e)[{Xq(·)|Xq(0)}; f ]

P(e)[{X †
q (·)|X †

q (0)}; f †]
= eQ(e)/kBT , (A26)

where P(e)[{Xq(·)|Xq(0)}; f ] denotes the probability of the
path from {Xq(0)} = {X0(0), X1(0), . . . , XN (0)} to {Xq(t )} =
{X0(t ), X1(t ), . . . , XN (t )} under the protocol with the external
parameter f (t ), and P(e)[{X †

q (·)|X †
q (0)}; f ] denotes the proba-

bility of the reverse path from {X †
q (0)} = {Xq(t )} to {X †

q (t )} =
{Xq(0)} under the reverse protocol f †(t ′) = f (t − t ′) for 0 �
t ′ � t . Q(e) denotes heat that satisfies the first law of ther-
modynamics, �E ( f )

(e) = W(e) − Q(e). Note that in the present
notation, the external parameter f (t ) explicitly appears in the
argument of the probability of path.

In an analogous way, we expect the FT for the preaveraged
Langevin dynamics:∏

q

Pq[{Xq(·)}|Xq(0); �q]

Pq[{X †
q (·)}|X †

q (0); �†
q]

= eQ/kBT , (A27)

where �q ≡ (λq, f ) includes both the fictive and gen-
uine external parameters, Pq[{Xq(·)}|Xq(0); �q] denotes the
probability of the path from Xq(0) to Xq(t ) on q-mode,
and the probability of the reverse path is represented by

Pq[X †
q (·)|X †

q (0); �†
q]. The first law of thermodynamics is

transformed as �E ( f ) = W − Q.
The preaveraging assumption P̂(Q(e) ) = Q means

P̂q

(
log

P(e)[{Xq(·)|Xq(0)}; f ]

P(e)[{X †
q (·)|X †

q (0)}; f †]

)
= log

Pq[Xq(·)|Xq(0); �q]

Pq[X †
q (·)|X †

q (0); �†
q]

.

(A28)

Equation (A28) holds if the preaveraging is performed so as
to maintain

P̂q

([∑
q′

γ [Xq, {Xq′ }]dXq′

dt
− Z(e),q(t )

]
◦ dXq

dt

)

=
[
γq

dXq

dt
− Zq(t )

]
◦ dXq

dt
, (A29)

and the FDR of the second kind describes the noise distri-
bution Pq[{Zq(·)}] ∼ exp [− ∫ t

0 dt ′ Zq(t ′)2/(2γqkBT )]. That is,
if the preaveraging satisfies Eq. (A29) and the FDR of the
second kind is under Gaussian white noise, then we find the
FT for the preaveraged description [Eq. (A27)]. Note that
Z(e),q(t ), and γ [Xq, {Xq′ }] are formal expressions before preav-
eraging.

5. FDR deviation

Provided that the system is in equilibrium, the FDR for
each mode holds:

Fq〈�Xq(t )〉 = F 2
q

〈δ�Xq(t )2〉
2(cqkBT/N )

(A30)

with the external force in the mode space being given by Fq =
(−1)q f /N . Bear in mind that the FDR in the real space is
written as 〈�(t )〉 = 0.

Expansion of the cumulant facilitates understanding the an-
alytical structure by using a property of the Gaussian process.
In the real space, we know that a characteristic function is
written with first and second moments:〈

exp

[
− f �x(t )

kBT

]〉
= exp

(
− f 〈�x(t )〉

kBT
+ f 2〈δ�x(t )2〉

2(kBT )2

)
.

(A31)

The conversion rule rewrites the argument of the exponential
on the left-hand side as

f �x(t )

kBT
=
∑

q

Ncq
Fq�Xq(t )

kBT
(h†

q,N )2

=
∑

q

(−1)qcqFq�Xq(t )

cqkBT/N
h†

q,N , (A32)

where cqh†
q,N = (−1)q is used. Then Eq. (A31) is calculated

in the mode space:〈
exp

[
− f �x(t )

kBT

]〉
=
〈
exp

[
−
∑

q(−1)qcqFq�Xq(t )

(cqkBT/N )
h†

q,N

]〉

=
∏

q

〈
exp

[
− (−1)qcqFq�Xq(t )

cqkBT/N
h†

q,N

]〉
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= exp

(
N∑

q=0

[
− (−1)qcqFq〈�Xq(t )〉h†

q,N

(cqkBT/N )

+1

2

(cqFq)2〈δ�Xq(t )2〉(h†
q,N )2

(cqkBT/N )2

])
.

(A33)

Inspecting Eqs. (A31) and (A33), we find

− f 〈�x(t )〉
kBT

+ f 2〈δ�x(t )2〉
2(kBT )2

=
N∑

q=0

[
−cq

Fq〈�Xq(t )〉
kBT/N

+F 2
q

〈δ�Xq(t )2〉
2(kBT/N )2

]
(h†

q,N )2. (A34)

If the FDR in the mode space, i.e., Eq. (A30), holds, then we
arrive at the FDR in real space 〈�(t )〉 = 0. It should be noted
that Eq. (A34) is obtained under the assumption of a Gaussian
distribution.

6. Instantaneous response

Let us consider our motivation for the stochastic response
function.

Looking back at Eq. (28), we have the path probability
given Xq(0), which is written with Xq for t ∈ [0, t]:

Pq[Xq(·)|Xq(0)]

∼ J exp

(
−
∫ t

0
dt ′ 1

4cqkBT γq(t ′)/N

×
[
γq(t ′)

dXq(t ′)
dt ′ + kq(t ′)Xq(t ′) − Fq(t ′)

]2
)

, (A35)

where the Jacobian is denoted by J = |δZq(t ′′)/δXq(t ′)|. Note
that we consider the overdamped Langevin (3), with which the
Jacobian is specified as

J = exp

[∫ t

0
dt ′ 1

2γq(t ′)
∂2Eq[Xq, kq(t ′)]

∂X 2
q

]
. (A36)

As well as for the case that Eq(Xq, kq(t ′)) is the harmonic
potential, the Jacobian does not matter in the following cal-
culations, because

δJ

δFq(t )
= J

1

2γq(t )

δ

δFq(t )

[
∂2Eq[Xq, kq(t )]

∂X 2
q

]
= 0. (A37)

With Eq. (A37) in mind, we calculate

δ{− logPq[Xq(·)|Xq(0)]}
δFq(t )

= δ

δFq(t )

(∫ t

0
dt ′ 1

4cqkBT γq(t ′)/N

×
[
γq(t ′)

dXq(t ′)
dt ′ + ∂Eq(Xq, kq(t ′))

∂Xq
− Fq(t ′)

]2
)

= − N

2cqkBT

[
dXq(t )

dt
+ 1

γq(t )

∂Eq(Xq, kq(t ))
∂Xq

− Fq(t )

γq(t )

]
.

(A38)

Substituting Eq. (3) of motion into Eq. (A38) gives

δ{− logPq[Xq(·)|Xq(0)]}
δFq(t )

= − Zq(t )

2cqkBT γq(t )/N
. (A39)

In addition, noting Pq(Xq(t )) =∫
dXq(0)

∫
DXq(s′)Pq[Xq(·)|Xq(0)]Pq[Xq(0)], we discover

δ{− logPq[Xq(·)|Xq(0)]}
δFq(t )

= δ{− logPq[Xq(t )]}
δFq(t )

. (A40)

Combining Eq. (A40) with Eqs. (39) and (A39), we find that
the right-hand side of Eq. (40) is Q(t ) [Eq. (14)].

Next, we consider the ensemble average relation
〈R∗

q(t, t )〉 = Rq(t, t ). With the notation Ẋq(t ) ≡ dXq(t )/dt ,
we transform the response function by integration by parts:〈

δẊq(t )

δFq(s)

〉

≡
∫

dXq(0)Pq[Xq(0)]
∫

DZq(t ′)
δẊq(t )

δFq(s)
Pq[Zq(·)]

=
∫

dXq(0)Pq[Xq(0)]
∫

DZq(t ′)
δẊq(t )

δZq(s)
Pq[Zq(·)]

= −
∫

dXq(0)Pq[Xq(0)]
∫

DZq(t ′) Ẋq(t )
δPq[Zq(·)]

δZq(s)

=
〈
Ẋq(t )

δ

δZq(s)
{− logPq[Zq(·)]}

〉
, (A41)

where, on the third line of the right-hand side, the boundary
terms that appear through integration by parts are assumed to
be ignored. The term in brackets on the last line resembles
Eq. (39) but is still distinct. Recalling Eq. (28), we apply
functional differentiation to − logPq[Zq(·)] with respect to
Zq(t ). Comparing the result with Eq. (A39), we find

δ{− logPq[Xq(·)|Xq(0)]}
δFq(t )

= −δ{− logPq[Zq(·)]}
δZq(t )

(A42)

with attention to the sign. Application of Eqs. (39), (A40), and
(A42) to Eq. (A41) verifies that 〈R∗

q(t, t )〉 = Rq(t, t ).
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