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Noise-induced quasiperiod and period switching
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We employ a typical genetic circuit model to explore how noise can influence dynamic structure. With the
increase of a key interactive parameter, the model will deterministically go through two bifurcations and three
dynamic structure regions. We find that a quasiperiodic component, which is not allowed by deterministic
dynamics, will be generated by noise inducing in the first two regions, and this quasiperiod will be more and
more stable along with the increase in noise. In particular, in the second region the quasiperiod will compete
with a stable limit cycle and perform a new transient rhythm. Furthermore, we ascertain the entropy production
rate and the heat dissipation rate, and discover a minimal value with theoretical elucidation. In the end, we unveil
the mechanism of the formation of quasiperiods, and show a practical biological example. We expect this work
to be helpful in solving some biological or ecological problems, such as the genetic origin of periodical cicadas
and population dynamics with fluctuation.
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I. INTRODUCTION

The periodicity of life has always been a fascinating is-
sue. This periodicity is often realized by a set of genetic
circuits, which are ubiquitous in life. Many important bi-
ological functions, such as circadian rhythms of mammals
and some unicellular organisms [1–3], cell cycle processes
of bacteria [4], oscillators in Xenopus embryonic cells [5],
etc., are regulated by a genetic circuit containing positive and
negative feedback. The essence of the genetic circuit is some
interrelated biochemical reactions, which can be described by
a set of differential equations.

However, the biosystem cannot be simulated only by deter-
ministic dynamics, because noise is inevitable—even a natural
and indispensable part of biological systems, having caused
a lot of interesting phenomena, for instance, the regulation
of the noise effect in eukaryotic gene expression [6], the
stochastic focusing phenomenon [7], the influence of noise
in Bacillus subtilis cells [8], the positive roles in plant cells
[9], and many other discoveries [5,10–15]. Noise can also
have the more counterintuitive effect of generating new stable
states that do not exist in the absence of fluctuations, and
most of the existing works focus on the two-state transition
induced by noise [16–20]. This transition requires the bistable
structure of the system. Further, it is of practical significance
to explore whether random action can produce near-stable
periodic oscillation, regarding which there have been some
theoretical efforts on this matter [21,22]. If so, what kind of
new system will be formed by the new periodic behavior and
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the original system? What will happen to its nature? Hitherto,
definitive answers to these questions have been scarce.

Our work takes a concrete model as the starting point and
endeavors to answer the above questions, the model of which
was first proposed in the literature [23]. It is a typical genetic
circuit structure with positive and negative feedback, which
often appears in various biological systems (in some cases as
a part of the system) [4,24]. We elaborate upon it in the section
where we introduce the model, and show its detailed dynamic
properties, as well as an undiscovered Hopf bifurcation point,
which leads to the emergence of a stable limit cycle state. By
changing a key parameter, the system will experience three
different dynamic structures. A quasiperiodic dynamic state
induced by noise appears in two of the three dynamic struc-
tures. In particular, it is impossible for this periodic structure
to exist according to deterministic dynamics.

With the help of the theory of generalized potential and
probability flow [25,26], we show the dynamic structure of
the system in the form of the probability distribution, and the
motion trend of the state points representing the position of the
system in the phase space. It can be confirmed that the above
two aspects support each other by the analysis of the trajectory
of the state point in the noise environment. Next, we define the
barrier height and the average first passage time; the former
can quantify the ability of the system to form a periodicity,
and the latter can effectively measure the cycle length of this
periodicity. We have also clarified the relationship between
the two. In particular, we give a practical biological example
and make a brief analysis to show the possible universality of
this noise-induced periodicity in biology.

As a nonequilibrium system, it will exchange energy with
the outside environment and generate dissipation. The cost
of dissipation is likely to be related to the stability of the
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FIG. 1. Illustration of the model of an activator-repressor circuit.

system, which is also of interest to us; that is, under what
conditions is the noise-induced quasiperiodic structure most
stable? The answer to this question is important for us to
understand and utilize this quasiperiodic structure. Therefore,
we study the entropy production rate and the associated heat
dissipation rate. In general, due to the nonequilibrium nature
of biological systems, the entropy generation rate is a more
common physical quantity in related research [27–29]. In-
deed, the determination of the entropy production rate plays a
decisive role in active particles [30,31], single-cell biological
systems [32], soft biological materials [33], complex networks
[34], and so on. Equally, the concomitant heat dissipation
rate is also an important physical quantity [35–39]. When
describing the global properties of the nonequilibrium system,
they are like two sides of a coin. Some studies also show
that the entropy production rate and heat dissipation rate are
intimately related to the robustness of the system [40–42].

We offer an interpretation for the physical significance of
the minimal value we found in the research of the heat dissi-
pation rate. One can see the Supplemental Material (SM) for
proof for consolidating the physical significance we interpret,
and an interesting intuitive result [43].

II. MODEL

A. Structure determined by nonlinear dynamics and the
changes in topology

In this work, the model is a simple activator-repressor
circuit [23]; see Fig. 1. For a biosystem, x and y are two
products (activator protein and repressor protein), and X, Y are
the corresponding genes. x has a self-excited subcircuit, while
y is excited by x, which in turn inhibits x. x and y are major
research objects in our work, for the reason that X and Y can
be eliminated adiabatically. This is because the dynamics of
mRNA transcribed by corresponding genes represented by X
and Y is much faster than that of the proteins represented by x
and y [23].

Eventually, the model can be simplistically described by a
set of two-dimensional equations as

dx

dt
= F1(x, y) = α1 + β1xn

kn
1 + xn

− δxy − λ1x, (1)

dy

dt
= F2(x, y) = α2 + β2xp

kp
2 + xp

− λ2y. (2)

One can see details of the coefficients in F1 and F2 in
the Appendix. This set of equations describes the dynamic
behavior of a biological system in phase space. In this model,
the change of dynamic properties and topological structure

k2=0.15

c

a b

FIG. 2. Nullclines of x and y, and their intersection. k2 = 0.15 is
selected as a sample. The orange dashed line depicts x nullcline, and
blue for y. Intersection depicted by the solid circle filled with orange
(a) is a stable node, solid circle filled with blue (b) for the saddle, and
open circle (c) for focus. In the range k2 ∈ [0.12, 0.17], the system
will maintain this structure.

is obtained by changing k2. We focus on the kinetic be-
havior in the first quadrant. In the range k2 ∈ [0.12, 0.17],
nullclines of x and y have three intersection points, and two
bifurcation points of the dynamics structure (C1 and C2)
were found, as shown in Figs. 2 and 3. The reason why we
choose the range k2 ∈ [0.12, 0.17] is that it is symmetric to
the two bifurcation points which have a critical influence on
the structure of the system, and the system will maintain
the corresponding structure outside this range. The stability
of those three intersections can be determined by discrimi-
nants. One of those two bifurcation points (C2), k2 = 0.1559,
can be determined by solving nullclines (F1 = 0 and F2 = 0)
with discriminant of focus simultaneously. Another one (C1),
k2 ∈ (0.1474, 0.1475), which is a saddle-node-separatrix-
loop (SNL) bifurcation [44], was found by simulation but not
by analysis. One can see details about solving the bifurcation
in the SM [43]. What should be emphasized is that we found
a stable limit cycle around the unstable focus in the range
k2 ∈ [0.1475, 0.1559).

Bifurcation of the system means the changes of topolog-
ical structure [45]. In nonlinear dynamics, we consider it
as the phase transition of the system. Stable and unstable
manifolds are streamlines starting from or going back to the
saddle. Therefore, we can judge and predict the behavioral
trend of every streamline by considering the shape of the
nullclines together with the manifolds. Markedly, there is a
bifurcation (C1) on the number axis between k2 = 0.1474
and k2 = 0.1475, on each side of which the structure of the
system is essentially different from the structure on another
side (Figs. S5(d), S5(e), S5(d1), and S5(e1) in the SM [43]).
Figures S5(f) and S5(f1) in the SM show a Hopf bifurcation
at k2 = 0.1559 (C2) [43]. From the right to the left of C2 on
the number axis, a stable focus develops into the stable limit
cycle, which is the typical characteristic of Hopf bifurcation.

In the following, we sum up the global kinetic properties
determined by deterministic nonlinear dynamics in the first
quadrant:
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    Stable 

k2∈(0.1474,0.1475)
     Bifurcation C1

  k2 ≈ 0.1559

Bifurcation C2
   

FIG. 3. Summary illustration of the topological structure’s change. Crimson solid lines depict the stable manifolds and cyan solid lines
depict unstable manifolds, and trends of manifolds are marked by arrows. As k2 crosses C1, the stable manifold is peeled off from the focus,
and a node that started at the stable node strides over the part between the stable node and the saddle. Meanwhile, there is a stable limit cycle
formed. After k2 crosses C2, the limit cycle shrinks to the focus. It is like a donut turning into a mug.

Parameter interval I, k2 ∈ [0.12, 1474]. The system has a
stable node in the left-bottom part nearby the saddle, which
is the only stationary structure of the system. An unstable
manifold forms a large closed loop, by which the unstable
focus is encircled. That hints that our system can form a loop
if the state point of the system at the left-bottom node strides
across the saddle.

Parameter interval II, k2 ∈ (0.1559, 0.17]. The whole re-
gion is divided into two parts by a stable manifold back to the
saddle, in each of which there is a stationary structure, being
the stable focus and the stable node. In the area where the
stable node is located, every state point will return to the stable
node. Similarly, state points will return to the stable focus in
another area.

Parameter interval III, k2 ∈ (0.1475, 0.1559). The whole
region is divided into two parts by a stable manifold similar
to what we see in parameter interval II, in each of which there
is a stationary structure, being the limit cycle and the node.
If k2 is close to the right neighborhood of C1, the limit cycle
will cling to the stable manifold, being a large loop, which
is similar to that in parameter interval I. If k2 is close to the
left neighborhood of C2, the limit cycle will tightly surround
the unstable focus in the neighborhood of the focus, which is
similar to that in parameter interval II.

B. Stochastic dynamics model

We construct a stochastic dynamic model by adding white
noise to the deterministic nonlinear dynamic system, for the
reason that white noise is a good approximation to the actual
situation, and this simple noise is very representative [46],

having played an important role in many studies [26,47–
50]. The stochastic differential equations (SDEs) derived from
Eqs. (1) and (2) are written as

dx

dt
= F1(x, y) +

√
2Dη(t ), (3)

dx

dt
= F2(x, y) +

√
2Dη(t ), (4)

in which the definitions of F1 and F2 are the same as those in
the previous section. From the point of view of dynamics, this
is a set of overdamped Langevin equations. D is the constant
and isotropic diffusion coefficient, meaning the off-diagonal
elements of diffusion matrix D, D12, and D21 are zero. η(t )
is the standard Gaussian white noise, 〈η(t )η(t ′)〉 = δ(t−t ′),
which can be regarded as a Wiener process with a diffusion
coefficient of 1. According to these definitions, the global
kinetic property can be described by a Fokker-Planck (FP)
equation derived from Eqs. (3) and (4) [46]:

∂P(x, y, t )

∂t
= − ∂

∂x
(F1P) − ∂

∂y
(F2P) + D

(
∂2

∂x2
+ ∂2

∂y2

)
p.

(5)

The FP equation shows how our nonequilibrium system’s
state points distribute in phase space by probability, but what
we are more interested in is the motion of the system in steady
state. Equation (5) can be transformed into

∂P(x, y, t )

∂t
= −∇ · J, (6)
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in which J1 = F1P−D(∂ p/∂x) and J2 = F2P−D(∂P/∂y). At
the long-time limit, our nonequilibrium system reaches steady
state, ∂ p/∂t = −∇ · J = 0. The divergent free steady state
probabilistic flux is rotational, which means J does not have
to vanish and can be expressed as

Jss = FPss − D · ∇Pss. (7)

As the steady state probability flux vector, Jss can represent
the state points’ motion trend of the system in the nonequilib-
rium steady state (NESS). Therefore, dividing both sides by
Pss, one gets

F ′ = Jss

Pss
= F + D · ∇U, (8)

in which U = − ln(Pss) is generalized potential, and F ′ is
composed of the deterministic generalized driving force F and
diffusion effect [51]. In our work shown in a later section,

we use U as the potential landscape to reveal the structural
changes of the system in NESS.

The deterministic dynamic mechanism of the system en-
sures that the trajectory from a certain starting point will
concentrate in the range of a certain path without excessive
deviation when the noise is not too large. That “certain path,”
because of the presence of noise in stochastic dynamics cir-
cumstances, may be a little different from that in deterministic
dynamics. We used the stochastic path integral to determine a
dominant path, which benefited our work [52–57]:

∫
for all paths x(t )

· · ·
∫

p[q(t )]Dq(t ), (9)

in which Dq(t ) is integral for all paths and p[q(t )] is the
probability of path q(t ) in phase space:

P[q(t )] = exp

(
−

∫ tb

ta

L[q̇(t ), q(t )]dt

)

= exp

[
−

∫ tb

ta

dt

(
1

4D
{q̇(t ) − f [q(t )]}2 + 1

2

df [q(t )]

dq(t )

)]
. (10)

The f [q(t )] is the deterministic driving force and L[q(t ), q̇(t )] is the Lagrangian of the system. Using the Euler-Lagrange
equation, the dominant path can be derived [58]. Its general principle and detailed technique can be viewed in the SM [43].

Additionally, to ensure consistency, we mainly adopt the Eulerian approach to solve the SDE. The discrete Wiener process is
approached by adding random numbers according to the distribution

√
2D�tN (0, 1) in every time step, in which �t is the time

interval in the computation and N (0, 1) is the standard normal distribution.
In this work, simulations of the SDE with white noise give adequate results. However, the master equation may reach better

results being closer to actual biosystems; it has the general form (provided that the state space is continuous) [46]

∂

∂t
P(z, t |y, t ′) =

∫
[W (z|x, t )P(x, t |y, t ′) − W (x|z, t )P(z, t |y, t ′)]dx, (11)

where W is the propensity function. It is a fact that a Fokker-
Planck equation can always be approximated by a master
equation, while the reverse situation is usually true under a
relatively low noise, as what we study in this work [46,59–
62]. Therefore, results given by master equations are excep-
tional comparisons with the SDE simulation. In our work, we
employ the Gillespie algorithm (SSA) as a method to simulate
master equations of our model, which has been proven as an
efficient approach to the chemical master equation [63,64].
Also, see details in the SM [43].

III. RESULT AND DISCUSSION

A. Landscape and streamline plotting

From a micro point of view, phenomena, which appear in
a system determined by equations with the form as in Eqs. (3)
and (4), are the joint presentation of cooperation and compe-
tition between stochastic noise and deterministic generalized
forces. In our work, the dynamic structure in phase space is
reconstructed by noise, or so-called fluctuating force, result-
ing in a new physical state of the global system in phase space
throughout the entire domain of k2. In order to further study
this property, we select a representative point in each of the
three domains of k2, which are, respectively, k2 = 0.12, 0.15,

and 0.17. Figures 4(a)–4(c) show the deterministic dynamics
structure of them.

As we have defined in the previous section, landscapes and
steady state probability fluxes on it depict the kinetic struc-
ture of the system. Noticeably, a large circle adhered to the
unstable manifold emerges, which can never exist in the deter-
ministic dynamics system (Fig. 5). It is not only because this
phenomenon is completely the product of stochastic action,
but more importantly, the large circle cannot exist according
to the Bendixson-Dulac theorem if it is regarded as a limit
cycle to some extent.

The streamline plotting can be used as the evidence of the
conclusion of landscapes [Figs. 4(a1)–4(c1)]. For the situa-
tion k2 = 0.12, the large circle including the stable node and
the saddle constitutes all of the dynamics structure. This is
because all of the state points in phase space will return to
the stable node driven by the deterministic generalized force,
and the white noise makes these state points cross the saddle
with a certain probability. For the situation k2 = 0.15, this
complex system has two circles. One is the stable limit cycle
we have already verified, and another is the large circle created
by the noise. Obviously, a part of the limit cycle clings to
the stable manifold [Fig. 4(b1)]. Because of this, the state
points running on the limit cycle can easily cross the stable
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FIG. 4. Nullclines, stable and unstable manifolds, and deter-
ministic forces in areas of the stable node and the saddle, of
representative points in each of the three domains of k2. (a1)–
(c1) portray the deterministic dynamic structures. (a2)–(c2) depict
stochastic streamlines, all the starting points of which are (1500,
17 500). Grid lines in (a1)–(c1) and (a2)–(c2) can assist the compar-
ative observation. (a3)–(c3) are diagrams of deterministic forces and
nullclines of the area where the stable node and saddle are, in which
gray arrows depict deterministic forces and red arrows indicate the
direction of unstable manifolds between saddles and stable nodes.
Their subordinate relationships are marked by purple boxes and
dashed arrows. Consistent with Fig. 2, “a” represents the stable node
and “b” represents the saddle.

manifold driven by noise (this is also one of the reasons why
k2 = 0.15 is chosen as the representative value). This means
that the two circles may switch alternately. Besides, the larger
the diffusion coefficient D is, the more the two circles mingle
with each other, which is because the state points that have
already jumped into the large circle have a higher probability
of jumping back to the right side of the stable manifold before
returning to the stable node. As for k2 = 0.17, the stable man-
ifold is far away from the unstable manifold, which resembles
the classical bistable transition. Compared with the case of
k2 = 0.12 or 0.15, it is relatively difficult to form a large circle
in this case. Therefore, we do not pay much attention to this
situation, as long as we know that there are still transitions
between two stable structures in the form of the large circle.

To clarify, the kinetic mechanism is of benefit to compre-
hend how the large circle, which is the main component of
the quasiperiod to be discussed later, is produced. Generally,

FIG. 5. Landscape and vertical view of k2 = 0.12, 0.15, and
0.17. (a)–(c) are landscapes of k2 = 0.12, 0.15, and 0.17 with D = 5,
5, and 30. The pruned parts are areas where the probabilities ap-
proach zero. (d)–(f) are vertical views of (a)–(c), in which the ranges
of color change are the same as (a)–(d). The black arrows in vertical
views show the Jss, the length being taken as the logarithm of the
sizes of the flow at points where they are drawn. These arrows may
not express the values of fluxes precisely, but they can be used
to characterize where there are significant probability flows. More
figures depicting the influence on the dynamic structures by changing
D are in the SM [43].

the deterministic force determines the global and large-scale
motion tendency of the system. Meanwhile, fluctuations of the
dynamic behavior of the system are generated by stochastic
action. Namely, noise (random action term) makes the land-
scape change from the form with only deterministic force to
the final form we get, and maintains the flow of Jss together
with deterministic force (Fig. 5). The emergence of the large
circle does embody that. In the area on the right of the stable
node and on the left of the saddle, deterministic forces, which
are from right to left, are tiny, and stochastic action plays a
predominant role [Figs. 4(a2)–4(c2)]. It makes state points
prone to be driven from the vicinity of the stable node to
the right of the saddle by the stochastic action, resembling a
Brownian movement. The fluctuation at this special position
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FIG. 6. Evolution of x-axis coordinates with time for k2 = 0.12.
Horizontal ordinates of (a)–(e) are x, and longitudinal coordinates
of (a)–(e) are y. Since the dynamics of the system takes the form
of oscillators, these diagrams look like amplitude diagrams. These
graphs can be regarded as a supplement to the stochastic streamline
plotting, which is convenient for us to observe the quasiperiodic
behavior of the system. One can see the graph of a longer time range
of 5 × 106 in the Appendix.

performs the effect resembling a switch. After that, the state
point is driven by the dominant deterministic force to form a
large circle.

B. Barrier height, first passage time, and competing capacity
of the quasiperiod

We will study the properties of the quasiperiod by an-
alyzing two specific quantities, namely, mean first passage
time (MFPT) and barrier height. It is advantageous to connect
the two in series through a consistent definition, in which
we want to define the first passage time as the time span
that a state point moves from the stable node to a certain
position on the right side of the saddle point. The reasons
are sufficient: From Fig. 6, we can see that the widths of
the thin and high peaks representing the large circle have no
obvious change. Therefore, almost all the differences, which
are between periods of large circles with different diffusion
coefficients D, come from the expected time required to cross
the barrier at the saddle from the vicinity of the stable node.
Furthermore, only crossing the saddle does not guarantee that
the state point will continue to move along with the unstable
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FIG. 7. Manifolds plotting and dominant paths. We select the sit-
uation D = 5 as examples. The black dashed lines are the dominant
paths calculated by [Eq. (10)]. Because the dominant path integral
will diverge in the region where the unstable manifold and the stable
manifold are close to each other [this fact can also be seen in figures
of landscapes, where the landscapes tend to be flat in this area
(Fig. 5)], we truncate the total step length of the dominant path inte-
gral. Each dominant path starts from the stable node. For k2 = 0.12,
the stable node locates at (116.611, 250.002). For k2 = 0.15, it is
(116.611, 250.001). FXP is the intersection of the Poincaré section
and the dominant path. For k2 = 0.12, the unstable focus locates at
(3178.89, 14 547.50). For k2 = 0.15, it is (4170.96, 15 998.50).

manifold and form the large circle. This can be learned from
the streamline plotting and t − x plotting, because the state
point still has the possibility of returning to the left side of
the saddle after crossing the saddle. This enlightens us that it
is effective to introduce a Poincaré section at the appropriate
position. In our work, starting from the unstable focus above, a
straight line perpendicular to the x axis is the Poincaré section
defined in this two-dimensional system, which is the “‘certain
position” (Fig. 7). In our work, the MFPT is calculated by
directly averaging the first passage time obtained from 10 000
measurements.

Another problem is how to ensure that the state point under
the effect of noise will cross the saddle and move along the
unstable manifold with a certain probability, instead of diffus-
ing to other areas. As we have mentioned earlier, calculating
the dominant path by [Eq. (10)] is an efficient solution. As
we see in Fig. 7, in the region where we are concerned and
define the first passage time and barrier height, the dominant
path almost coincides with the unstable manifold. When the
total time steps are the same, the probability of the dominant
path is much greater than that of other paths. This fact can
also be seen by comparing [Figs. 4(a2)–4(c2)] with Fig. 7.
Even if there is noise, the streamlines will not deviate from
the dominant paths.

Naturally, we define the barrier height as follows: Barrier
height �H = UFXP − UFixed. As the definition, the value of
barrier height is the difference between the value of landscape
U at FXP and that at the stable node. The definition of FXP
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FIG. 8. (a), (b) Mean first passage time of k2 = 0.12 and k2 =
0.15. We confirm one measurement has been accomplished if the x-
axis coordinate of the state point reaches the Poincaré section. (c), (d)
Barrier height of k2 = 0.12 and k2 = 0.15. (e), (f) The relations
between barrier height and MFPT.

ensures the unity between barrier height and first passage
time, which is convenient for us to investigate the relationship
between them.

In Figs. 8(a) and 8(b), we have seen that with the diffusion
coefficient D increasing, the MFPT decays rapidly and then
tends to be stable and flat. This corresponds to Fig. 6; that is,
the distance between peaks becomes closer with the diffusion
coefficient D becoming larger and larger. In particular for
k = 0.12, with the increase of the diffusion coefficient D, the
appearance of the large ring will change from occasional pulse
behavior to quasiperiodic behavior (Fig. 6). In the biological
system we study, it implies an oscillator whose period is
distributed in a certain range. Meanwhile, the data of barrier
heights shown in Figs. 8(c) and 8(d) keep a high consistency
with the MFPT.

Overviewing Figs. 8(a)–8(d), we can draw the following
conclusions. First, the MFPT and the barrier height decrease
monotonically with the increase of diffusion coefficient D.
It is not difficult to understand that with the increase of the
diffusion coefficient, the “activity” of the state point increases.
In other words, the width of the expected value of the white
noise composed by the Wiener process increases, which can

FIG. 9. Distributions of the first passage time with different
diffusion coefficients D. For each D value, we record 2000 measure-
ments. The fitting graph on the right side of each scatter diagram
depicts the density distribution of points in the diagram, and its range
is consistent with the ordinate of the scatter diagram. The inverse
Gaussian distribution is used for fitting. The dark gray bar charts are
proportions of the number of points in different intervals, and the
magenta curves are fitting curves. Note that from (a) to (c), the range
of each ordinate axis becomes smaller and smaller.

cause appreciable effects. This is reflected in the landscapes,
where the global shape flattens (Fig. 5). Second, with the
increase of the diffusion coefficient D, the MFPT decays
rapidly and then tends to be stable and flat. Observing the
solution of a general Wiener process may help us to under-
stand this fact that only when the diffusion coefficient D is
small, will the shape of the function of the solution change
significantly with the change of the diffusion coefficient D.
Third, the polyline of barrier heights and the MFPT have
similar shapes. In fact, there is also a monotonic relation-
ship between the MFPT and the barrier height, in which the
barrier height acts as a scale to measure the diffusion coeffi-
cient D [Figs. 8(e) and 8(f)]. This result is similar to that in
Ref. [26].

Furthermore, the definition of the Poincaré section has
another significant application, that is, to endow a justification
for the quasiperiod constructed by the large circle (Fig. 9).
D = 1, 5, and 9 are selected to reflect the evolution of distri-
butions of the first passage time, which are fitted as inverse
Gaussian which is always used to portray the distribution of
Wiener processing with a positive drift. As mentioned earlier,
this can be used as a characterization of the time of one
cycle. On the one hand, one can see, respectively, that in
Figs. 9(a)–9(c), distributions of each value of D are quite
concentrated. On the other hand, following the increase of D,
distributions become more and more concentrated, which is
exhibited by the variety of lengths of longitudinal coordinates
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FIG. 10. Evolution of x-axis coordinates with time for k2 = 0.15.
Horizontal ordinates of (a)–(e) are x, and longitudinal coordinates of
(a)–(e) are y.

being shorter and shorter. This means that not only for each
D is the distribution of cycle length concentrated in a very
limited region, but also the periodicity will become more and
more stable with the increase of D. More information about
the frequency can be found in the SM [43].

Figure 10 exhibits the competition between the large circle
that is the quasiperiodic structure represented by high and thin
peaks, and the original stable limit cycle that is the inherent
periodic structure represented by relatively small oscillations.
Here we use competition but not mixture to describe the
situation of k2 = 0.15 constructed by the large circle and the
stable limit cycle together, because it is a dynamic process
that with the increase of D, the occurrence frequency of
the large circle rises obviously, as the large circle snatches
the room originally belonging to the limit cycle. Interest-
ingly, this competing capacity of the large circle has been
implied in the case of k2 = 0.12, in which the more intense
the noise is, the more salient the quasiperiod is (Figs. 6, 9,
and 15).

In Fig. 11(a) we concisely present a comparison between
the Gillespie simulation algorithm (SSA) and the SDE simu-
lation in the case of k2 = 0.15, the comparison being about
proportions of large circles in whole dynamic processes.
These stemmed from t − x data of the two simulation meth-
ods. If a peak is higher than 11 855, which is 85% of the
maximum of the unstable manifold on the x coordinate, this
peak will be regarded as representing a large circle. Parts of
a large ring above 1391 are counted as the running time of
the large ring, where 1391 is 10% of the maximum value

FIG. 11. (a) Proportions of large circles in whole dynamic pro-
cesses of SDE simulation and SSA. (b) Results of linear correlation
analysis between SDE simulation and SSA simulation. Each dark
blue point is a one-to-one corresponding data point between SDE
and SSA in (a). The light blue line is the linear fitting line.

of the unstable manifold. In addition, if a large circle is
connected to a limit cycle, the connection will be cut off
at 4171, which is the x coordinate of the unstable focus.
Though there may be a situation where a circle, whose peak
is higher than 13 909, does not pass across the barrier to be
an intact dynamic process, it will still be considered as a
large circle, because it indeed performs the function of the
large circle. The parameters, V = 1/3, 1/6, 1/9, 1/12, and
1/15 in the Gillespie algorithm representing the intensity of
stochasticity, correspond to D = 1, 3, 5, 7, and 9 in SDE sim-
ulation, respectively [62]. We can see that with the change
of parameters, development trends of proportions of large
circles are quite consistent. The capacity of large circles to
compete with stable limit cycles in these processes becomes
stronger and stronger, being reflected as proportions of large
circles extend with the parameters’ increase. Moreover, we
did the linear correlation analysis between SDE simulation
and SSA simulation [Fig. 11(b)]. The result is that there is
a strong linear correlation between the two groups of data,
which provides a considerable guarantee for the authenticity
of SDE simulation.
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C. Entropy production and heat dissipation

The well-known and widely used definition of entropy in
the interdiscipline of statistical physics and derivative is as
follows:

S = kB

∫
	

P(x, y, t ) ln P(x, y, t )d	, (12)

where kB is the Boltzmann constant, and 	 is the domain of
the system we studied. Thereupon, the time change rate of the
entropy S is [39]

T
∂S

∂t
= kB

∫
	

(1 + ln P)∇ · Jd	

= −
∫

	

(kBT ∇ ln P − F ) · Jd	 −
∫

	

F · Jd	

=
∫

	

� · Jd	 −
∫

	

F · Jd	

= EPR − HDR. (13)

In Eq. (13), EPR is the entropy production rate, and HDR
is the heat dissipation rate of which the original definition is
the time derivative of the expected value of work done by
deterministic generalized forces expressed in the form of the
Stratonovich integral. The introduction of temperature T is
to maintain thermodynamic consistency based on Einstein’s
relation DDT = 2kBT . Therefore, the thermodynamic force
� = F + D · ∇U [39,65]. If the system is in NESS, � =
Jss/Pss.

In NESS, we have

T
∂S

∂t
=

∫
	

(Jss/Pss − F ) · Jssd	 =
∫

	

D∇U · Jssd	 = 0.

(14)

The most direct inference is that Jss is orthogonal to ∇U .
This can only be proved when D → 0 [66]. It can be ex-
plained vividly that the direction of J can be determined by
the deterministic generalized force

∫
	

F · Jd	dt only when
the noise almost does not exist. The general explanation is
that ∇ · J = 0, J is the curl flux, and the integral along any
closed curve (i.e., the work done by ∇U ) in the gradient field
is zero.

Since the entropy production rate EPR is equal to the heat
dissipation rate HDR in NESS, we only need to calculate the
heat dissipation rate which is easy to calculate; then we can
get all the information of the two. Figure 12 shows the heat
dissipation rates of k2 = 0.12 and k2 = 0.15.

For k2 = 0.12, the polyline of HDR is similar to that in
other studies; it shows certain monotonicity and increases
with the increase of the diffusion coefficient D [26,42]. Ad-
ditionally, for k2 = 0.17, the shape of the polyline is virtually
identical to the result of k2 = 0.12. For k2 = 0.15, the polyline
presents the shape of a check mark; it is not common that
there is a minimum value of HDR in the neighborhood of
D = 3. What is the essence of the entropy production rate and
heat dissipation rate? What does the minimal value of the heat
dissipation rate imply [Fig. 12(b)]? An intuitive illustration,
which is that the increase of noise makes a part of Jss shift
from the stable limit cycle to the large circle, can be seen

FIG. 12. Heat dissipation rates of k2 = 0.12 and k2 = 0.15. In
(b), k2 = 0.15, we reduce the interval between the points of diffusion
coefficients D from 1 to 10, the reason for which is to make the
minimal value of HDR more evident. In our calculation, P(x, y, t )
of each D has been normalized.

in the SM [43]. However, we prefer to clarify its physical
significance in the following.

According to Eq. (8), we define J = υpP(x, y, t ), in which
υp = F ′ as the velocity of probability flow. Meanwhile, F
from the overdamped Langevin equation is still interpreted as
a generalized force. In the phase space dynamics determined
by the FP equation and described by probability, the velocity
of the state should be represented by υp. In this expression,
dx/dt = up. Therefore, the heat dissipation rate is

HDR =
∫

	

F · υpPd	. (15)

Equation (15) has the form of power. It connotes that we
may explicate HDR from the perspective of work. However,
the self-consistency of this idea initiated by υp needs to be
demonstrated before we continue to analyze it. One can see
the proof in the SM [43].

The material derivative does not comprise the change of
entropy produced by the motion of the state point (Eq. (S8) in
the SM [43]), since in the whole process from the initial state
to the nonequilibrium steady state, the deterministic general-
ized force F only plays the role of maintaining the movement
of the state point. Its work is immediately dissipated by the
overdamped system. From a global perspective, as a deter-
ministic and constant force field, F pushes the dynamic point
motion according to its established structure from beginning
to end. F really consumes the energy supply of the system
(in biological systems, the energy supply is chemical energy),
which is reflected in the kinetic behavior of the system in the
nonequilibrium state. This is the same whether it is in the
NESS or before reaching the NESS.

On the contrary, the stable dynamic behavior of the system
does not need to be continuously driven by the stochastic
action D∇U , because the expected value of the diffusion mo-
tion driven by white noise is zero. Before reaching NESS, the
result of its work is to make the state point reach the position
where the deterministic force cannot be realized, which is the
process of constructing the landscape (the dynamic structure
of phase space) from the initial state. After reaching NESS,
the development of the landscape has been completed, and
the weighted average of D∇U · υp is zero, which means that

014419-9



WU, JIAO, ZHAO, JIA, AND XU PHYSICAL REVIEW E 105, 014419 (2022)

the stochastic forces cancel each other, which is the character
of thermal fluctuation.

In terms of probability, the deterministic force field is con-
stant, which does not provide new possibilities for the state
of the system. When the system reaches NESS, the landscape
does not change, so the stochastic effect is zero. This is con-
sistent with the explanation of entropy in statistical physics.

Through the above analysis, we know that heat dissipation
is a measure of system energy consumption, which has the
meaning of “power.” This conclusion applies to all systems
which can be described by Eqs. (3) and (4). For a biochemical
system, such as a set of genetic circuits, the energetic material
is generally ATP, and the stochastic effect comes from the hot
bath, the randomness of biochemical reaction, or the copy
noise of plasmids, and so on. For ecosystems, the energy
supply materials may be producers and primary consumers,
and the sources of noise are more extensive. No matter what
kind of system, the explanation of Fig. 12(b) is the same: The
minimum value of heat dissipation rate means that the system
has a relatively minimum energy consumption rate; that is, the
energy consumption required to maintain the system in NESS
is the least.

D. Application to a practical model

Now we discuss a practical biological model. The model
comes from [67]. Its main content can be described by equa-
tions similar to Eqs. (1) and (2):

dx

dt
= υ + 0.01gx2

r2 + 0.01x2
− 0.1x

1 + 0.1x + y
,

dy

dt
= h

1 + 10−5k5x5
− y

1 + 0.1x + y
, (16)

where the parameters of this set of equations come from the
supplemental material of [67]. k = 4.5045 is the coefficient of
the regulating Hill function, which is normally an invariant.
By adjusting coefficients g, h, r, and υ, one can obtain differ-
ent dynamics structures of this model. We chose two sets of
parameters to study. One set is g = 0.043, h = 0.974, r = 0.3,
υ = 0.00028. The system controlled by these parameters will
be similar to the case in our work when k2 = 0.12. That is, in
the first quadrant, there are three fixed points in the system,
which are stable node, saddle, and unstable focus [Fig. 13(a)].
Another set is g = 0.106, h = 0.978, r = 0.4, υ = 0.00016.
For equations controlled by this set of parameters, the system
will present similarly to the case in our work of k2 = 0.17.
Three fixed points were found in the first quadrant, which are
the stable node, saddle, and stable focus [Fig. 13(b)].

With the noise being introduced in this system, we can
see in Fig. 13(c) that a large circle along with the unstable
manifold is formed. It means that this actual biological system
can also appear as noise-induced quasiperiodicity, and even
switch between different periods by reasonably adjusting co-
efficients, i.e., reaction rates. To some degree, this shows that
the quasiperiod induced by noise is common, and the results
of our work are of general significance. Figure 14 shows the
t − x diagram of the situation of Figs. 13(a) and 13(c). It quite
resembles Figs. 6 and 15.

FIG. 13. Dynamics structures and stochastic streamlines of the
model from [67]. The use of the color and line type is the same
as Fig. 4. In (a), (b) at the top right corner, the black solid circle
represents the stable node and the black hollow circle is for the
saddle. In (a), the yellow solid circle represents the unstable focus.
In (b), the red solid circle represents the stable focus. (c), (d) are
stochastic streamline diagrams of the cases described in (a), (b),
respectively.

Results of this practical model in this section consolidate
the main content of our work: Noise can create a quasiperiod.
It is absent in deterministic dynamics because there is a
barrier constructed by the saddle and the stable node near
each other, and stochastic action can push the state point to
overcome the barrier. One thing is principal: As long as this
saddle-node-unstable focus structure exists, we can expect the
quasiperiodic behavior induced by noise. That is, the methods
and results we have developed in our work are general.

IV. DISCUSSION

In this work, we utilized a classical model with positive
and negative feedbacks, producing three kinds of dynamic
structures by changing a key parameter k2. We thoroughly
studied two structures of them, one of which is the saddle-
node-unstable focus structure that produced a quasiperiod by
noise (k2 = 0.12), and the other is the node-limit cycle struc-
ture that produced the switch between two quasiperiods by
noise (k2 = 0.15).

Now we can answer the questions raised at the beginning
of this paper. Noise can induce the system to produce a new
periodic state, which is different from the transition between
bistable states or the relatively long stay near the unstable
fixed point (similar to the case of k2 = 0.17), and which is
independent of the critical phenomenon near the bifurcation.
In the case k2 = 0.12, noise induces a quasiperiodic

014419-10



NOISE-INDUCED QUASIPERIOD AND PERIOD … PHYSICAL REVIEW E 105, 014419 (2022)

FIG. 14. The stochastic streamline and its t − x diagram of the model discussed in this section, which is similar to the case in our work
when k2 = 0.12.

behavior resembling a saddle node on an invariant cycle
(SNIC) bifurcation, which does not exist in the original
system [68]. For k2 = 0.15, the periodic behavior induced by
noise coexists with the limit cycle in the original system and
competes with each other, resembling a saddle homoclinic
orbit (HOM) bifurcation based on an intrinsic stable limit
cycle having existed [68]. This can only happen in a stochastic
process.
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FIG. 15. Evolution of x-axis coordinates with time for k2 = 0.12.
Horizontal ordinates of (a)–(e) are x, and longitudinal coordinates of
(a)–(e) are y. The time range is 5 × 106.

As long as the deterministic dynamic structure of a system
has the saddle-node-unstable focus structure, the periodic-
ity induced by noise has the conditions to realize, just as
the biological example given in this work. In fact, similar
genetic circuits can be synthesized artificially in synthetic bi-
ology [69–72]. By properly adjusting the rates of biochemical
reactions, that is, the parameters in the differential equations,
a structure that meets our requirements can be obtained.

For the case of k2 = 0.12, the periodicity based on the large
circle can be selectively activated by adjusting the noise inten-
sity. The sensitivity of the system to noise can be realized by
adjusting the distance between the saddle point and the node.
If our research object is a biochemical system, such as the
genetic circuit, this adjustment is to change some reaction rate.
For k2 = 0.15, it is worth noting not only the noise-induced
large circle, but also the switch and competition between
the two cycles. In particular, when the noise increases, the
motion on the stable limit cycle becomes disordered, and the
frequency of the large cycle increases. This may mean that in
some systems, the large circle is an auxiliary mechanism to
partly replace the unstable original periodic structure.

Period switch and competition are also reflected in nature.
The periodical cicadas are a good instance [73,74]. There are
many explanations about the life cycle of this insect, such
as the seasonal cycle of the host [75], resource constraints
[76], the influence of the ice age paleoclimate [77], and so on.
Other work shows different views and mentions the mutation
of the cycle [78]. Various reasons lead to periodical cicadas
forming a set of accurate time counting mechanisms, and
external factors such as climate, resources, and predators are
the external factors that affect the timing mechanism, such as
environmental noise. We might as well speculate that it may
be a genetic circuit with unclear structure that controls the life
cycle of the periodical cicadas. Thus, the case k2 = 0.15 in
our work is a potential approach to explain that.

In fact, the life cycle of 17-year cicadas is longer than
that of 13-year cicadas by a 4-year inhibition period of early
pupal growth. Reference [79] proved the homology between
13-year cicadas and 17-year cicadas by measuring the mito-
chondrial DNA of periodical cicadas, and this work negated
the hybridization hypothesis, concluding that it is only
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because 17-year cicadas experienced a rapid development
period of 4 years in the development process. In terms of
dynamics, if the extra 4 years are regarded as the time taken
by the state point to cross a potential barrier, then a model
similar to our work can be a candidate. Consequently, the case
k2 = 0.12 is an alternative, considering that the starting points
of the cycle of 17-year or 13-year cicadas are, respectively,
before or behind the barrier that reflects the rapid development
period of 4 years. Another explanation is that the existence or
absence of the barrier, respectively, represents the 17 or 13
years of cicadas. Details are in the SM [43].

In the model of this work, the constant α in F1(x, y)
represents the ratio of the formation rate of the molecule x
to the degradation rate in the equation [Eq. (1)]. In other
words, the process of α decreasing can be seen as the process
where the ratio of “birth rate” to “death rate” of x gets smaller
and smaller. In this way, as the ratio decreases, the original
stable periodic structure diverges. The excessive attenuation
of x caused by noise will result in the number of both x
and y dropping to near zero rapidly. Then, a new cycle will
be started stochastically, as described in Figs. S9(a), S9(b),
S10(a), S10(b), S10(e), S10(f), S11(a), and S11(b) [43]. We
expect that this will help to explain the dynamics of some
species evolution.

It is expected that the results of this work can be verified in
experiments and the real world. Further work should focus on
whether it can set an effective switch to control the switching
between two periods, or even turn on one period and turn off
another. In addition, the significance of the minimum value
of heat dissipation rate in the actual system is also worth
exploring in the actual system.

APPENDIX

The parameters in Eqs. (1) and (2) were initially derived by
a set of biochemical reactions, being the reaction rates. They
may have been determined by experiment at that time, plus
some artificial assumptions. No matter what, it hardly affects
the result. In this work, parameters are

Equation (1): α1 = 0.00875, β1 = 7.5, k1 = 2.5 × 107,
δ = 4 × 10−8, λ1 = 0.0004, Hill coefficient n = 2.

Equation (2): α2 = 0.025, β2 = 2.5, λ2 = 0.0004, Hill co-
efficient p = 5; k2 is the key parameter that changes according
to the requirements.

These parameters are dimensionless in our work, which
also reflects our original intention: We hope this work can ben-
efit not only the genetic circuit, but also for broader research
involving noise and periodicity.
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